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Introduction.

The development of the general theory of dynamical constrained systems
'is traced back to the famous works by DirAc [1-3] and BERGMANN with col-
laborators [4-6]. Apart from Dirac’s lecture notes, which have become classical,
there exists a number of excellent reviews [7-9] which reflect the present status
and methods for solving the quantization problems of constrained dynamical
systems. These reviews may be recommended to a reader who is interested in
the state of the problem as a whole.

The purpose of the present paper is to consistently present, on an unique
ground, original author’s results which solve the problem of operatorial canonical
quantization of relativistic dynamical systems subject to first-class constraints
generating a gauge algebra of the most general kind. -

It is conventional to use the path integral formalism when guantizing
constrained dynamical systems. Our view, however, is that the operatorial
quantization is most appropriate, since quantum mechanics is to be taken as
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an algebraic entity. As for the path integral it should follow as a closed func-
tional solution to operatorial equations of motion.

When developing operatorial quantization, the question about equal-time
commutation relations becomes crucial. If dynamical systems with first-class
constraints are dealt with, and gauge conditions are chosen as relativistie, their
relativistic nature shows itself in two ways. First, in such ganges the reduction
of the original phase gpace onto the hypersurface specialized by constraints
is not possible. Second, the Lagrange multipliers to the first-class constraints
and to the corresponding gauge conditions become dynamically active pairs
of canonically conjugate variables. Consequently, when quantizing, one be-
comes able to impose canonical equal-time commutation relations on the
operators belonging to the extended (relativistic) phase space without en-
countering any contradictions. Then the problem of operatorial quantization
reduces to that of finding the unitarizing Hamiltonian.

The unitarizing Hamiltonian is constructed using generating operators of
the gauge algebra of constraints in such a way that there exists the BRS-
algebra formed by the conserved BRS-charge and ghost number operators.
Then, accordmg to the remarkable theorem proved by Kuao and Osma [10, 11],
the S-matrix proves to be unitary in the physical subspace of BRS singlets
(see also the work by NISHLIIMA [12]).

Such is the general outline of the operatorial method for canonical quan-
tization of dynamical systems subject to first-class constraints and rela,tlwstlc
gauges, presented in this paper..

Unfortunately, the situation in operatorlal quantization of systems sub]ect
to second-class constraints is far less satisfactory. Apart from rather trivial
caseg, the crucial problem of equal-time commutation relations remains here
unsolved. The main difficulty for the second-class constraints is in that the
original phase space is actually reduced onto the hypersurface specialized by
the constraints. Therefore, canonical commutation relations cannot be im-
posed, as being definitely incompatible with the operatorial constraint equations.
The heart of the as yet unsolved problem of operatorial quantization of second-
class constrained systems is just in finding the general form of equal-time
commutation relations compatible with the operatorical constraint equations
and besides self-consistent under the Jacobi identities.

It is a widespread opinion.that the guantization problem of second—class
constrained systems may be supposedly (at least partially) solved by equating
equal-time commutation relations among the phase space variables with the
corresponding Dirac brackets. The following remark is in order at this point,
If is sure that the Dirae brackets allow us to achieve a completely consistent
treatment of classical dynamics of systems with second-class constraints. In
the quantum domain, however, the use of the Dirac brackets for treating general
gecond-class constraints does not lead to a consistent solution of the equal-
time commutation relation problem, as not, generally, meeting the above
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two requirements. Only a very trivial case of linear constraints, when one can
explicitly separate physical degrees of freedom, admits the operatorial analogune
of the Dirac brackets to be uniquely defined and self-consistent. :

Since the general operatorial quantization problem of second-class con-
strained system is yet unsolved (), one should treat with some precautions the
results concerning their euristic quantization in terms of the path integral.
We must be aware that, generally, the euristic path integral drastically depends.
on the choice of a finite-dimensional approximation [14], as not being derived
from an accurate operatorial formalism. This ecircumstance may mask the
inconsisteney in the equal-time commmutation relations.

It is well known that the combination of first-class constraints with admls-
sible nnitary ganges makes a set of second-class constraints. Everything said
above about the operatorial quantization of a general second-class constrained
system holds true for this special case as well. Accordingly, the operatorial
quantization of first-class constrained systems ean be as a matter of fact carried
out aceurately in a unitary gauge only for simplest cases, when one manages to
explicitly separate physical degrees of freedom. Electrodynamics and Yang-
Mills field theory in the Coulomb or axial gauges belong to these cases.

It is remarkable that the method presented in this paper for operatorial
canonical quantization of first-class constrained systems in relativistic gauges
has a quite general applicability and is not restricted by the technical re-
quirement that the constraints and gauge conditions be explicitly solvable.
The operatorial gauge algebra generated by the original constraints may also
be of the most general nature, (any rank) open and (any stage) reducible. In
this respect the proposed method is, seemingly, most advanced towards solving
the problem of operatorial quantization of constrained systems.

Affer these preliminary remarks we shall dwell in more detail only on those
works which lie in the channel of the general method developed and are, thereby,
most closely related to the purpose of the present work. Unless the opposite.
is indieated, we mean that the papers quoted below deal with the quantization
understood in terms of the formal (euristic) path integral.

The canonical S-matrix for dynamical Bose systems was obtained for
unitary (nonrelativistic) gauges in ref. [15]. The solution for the S-matrix
of dynamical Bose-Fermi systems subjected to second-class constraints was
obtained in ref. [16]. As a consequence of this result, the canonical S-matrix
was obtained for Fermi-Bose systems w1th first- and second-class constraints
in unitary gauges. : :

In ref.[17] the canenical formalism was extended to relativistic ganges.
It was shown that consfructing the S-matrix in a relativistic gauge reduces

(*) A new consistent approach to the solution of the operator quantizatlon problem
in second-class constraint case was developed recently "by the present authors [13]
in thé framework of the generalized canonical quantization method.
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to finding a unitarizing Hamiltonian in the relativistic phase space. The ex-
plicit form of this Hamiltonian was obtained in [17] for the case of dynamical
Bose systems subject to first-class constraints that generate the rank-1 gauge
algebra. Simnltaneously, an important observation was made in [17 ] that the
gange part of the unitarizing Hamiltonian may be represented as the Poisson
bracket between a fermion function, determined by the choice of the gauge,
and another fermion function, formed by the constraints and the struectural
coefficients of their involutions. That was the firgt step towards understanding
a universal relation between the structure of the unitarizing Hamiltonian and
the process of the gauge algebra generation.

The basic formula for the classical unitarizing Hamiltonian, as well as the
cla,ssma.l generating equations for the Hamiltonian gauge algebra, were formu-
lated in ref. [18]. Their explicit solution was obtained in that reference for
Bose-Fermi systems subject to first-class constraints which generate a rank-1
gauge algebra.

The authors of ref. [19] extended the definition of the unitarizing Hamil-
tonian and the form of the generating equations to the case when the second-
class constraints are also present, and obtained the solution for the canonical
S-matrix in relativigtic gauges for Bose-Fermi systems subjected to constraints
of both classes in the general case of any rank, irreducible gauge algebra.

The generalized canonical formalism developed in ref.[17-19] gave the
possibility to achieve essential results when applied to gpecial dynamical
systems. The most important is the consistent eanonical quantization and con-
struction of the S-matrix for the Einstein gravity [20] and supergravity [21].

The generalized canonical formalism for systems subject to linearly de-
pendent first-class constraints was first developed in ref.[22]. This allowed
one to obtain the solution for the canonical S-matrix of dynamical Bose-
Fermi systems subject to first-clags constraints generating an open (any rank)
and reducible (of any stage) Hamiltonian gauge algebra when (linearly inde-
pendent) second-class constraints are also present. In the subsequent
paper [23] this result was extended to the most general case when the second-
class constraints may be also linearly dependent and of any stage of re-
ducibility. All these papers dealt with guantization of constrained systems
using the formal path integral in the phase space.

The clue to operatorial gquantization of relativistic gauge systems was
pointed out in ref. [24]. It is to impose canonical commutation relations on op-
erators of the relativistic phase space that include, in the irredueible situation,
the original dynamical variables, Lagrange multipliers for relativistic gauges
and first-class constraints and the corresponding ghosts. Using this basic idea,
the operatorial quantization of the Yang-Mills theory with relativistic gauge
wag considered in ref. [25, 26].

_In ref. [27], which is a further development of the same idea, the operatorial
canonical quantization was carried out for Bose-Fermi systems subject to
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first-class constraints which generate an open (any rank) irreducible gauge
algebra. In that paper the operatorial version of the universal definition of
the unitarizing Hamiltonian and of the gauge-algebra—generating equations was
first formulated. In more explicit form, these results are presented in ref. [28],
where the corresponding solution for the canonical S-matrix is also given in
the form of accurate (nonformal) path integral in the phase space. In other
words, it was first shown in that paper that on the virtual phase trajectories
there acts a quantum gauge algebra, generated by the operator symbols of the
first-class constraints.

In the next paper [29], dealing with the case of irreducibility, the closure
and abelization procedures are formulated for the operatorial gauge algebra.
The classical counterpart of this result is well known: first-class constraints
may always be converted into Abelian ones, at least locally, by means of a
rotation (i.e. by finding a linear superposition) performed with the mse of a
reversible matrix, depending, generally, on phase variables. In [29] a ghost-
operator-dependent unitary transfermation is defined that reduces the fermion
generating operator to the form that corresponds to new constraint operators
which commute among themselves. The same transformation, but accom-
panied with an effective form variation of the gauge fermion operator when
applied to the bosoniec generating operator, reduces the latter to the form
which corresponds to a new Hamiltonian, commuting with the new constraints.
Of course, as far as the field theory is concerned, the new operator-valued
constraints and Hamiltonian are, generally, nonlocal and do not possess correct
properties under the Lorentz group. Nevertheless, the dynamics of the new
operator-valued phase variables governed by them is physically equivalent
to the original one.

The goal of the present paper is to synthesize the results of [22, 27, 29].
Namely we are going to present 1) the consistent solution to the problem of
canonical operatorial quantization of dynamical Bose-Fermi systems subject
to first-class constraints which generate an open (any rank) and any-stage—
reducible gange algebra, 2) the formulation, for the general case of any-stage
reducibility, of a regular procedure for closing and a.behzlng the operatorial
gauge algebra. The paper is organized as follows.

Section 1 is of auxiliary nature and is intended to recall some elementary
faets and relations concerning the correspondence between the symbol and
its operator.

In sect. 2 we consider in every detail how the gauge algebra of any stage
of reducibility is generated. Here the generating equations are formulated
for the fermionic and bosonic generating operators of the gauge algebra which
depend upon canonical pairs of operators belonging to the so-called minimal
sector. Solution to these equations is searched for in the form of normally
ordered power series in the gheost operators of the algebraic sector with all the
ghost canonical momenta placed to the left of their canonical co-ordinates,
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The coefficients of these series depend only on canonical pairs of operators of
the original dynamical variables and are the structural operators of the gauge
algebra.

 In sect. 3 we give the operatorial version of the unitarizing Hamiltonian
which is made up of the three basic components: fermionic and bosonic gen-
erating operators of the gauge algebra and the operator-valued gauge fermion.
This unitarizing Hamiltonian makes a basis for the operatorial dynamical
description of systems subject to first-class constraints.

Section 4 contains an explicit-formulation of the operatorial dynamics.
The time evolution of the operators belonging to the relativistic phase space
is governed by the Heisenberg equations of motion depending on the unitarizing
Hamiltonian of the theory. By introducing external sources in an usual way,
one defines the generating functional of T-products of the Heisenberg dynam-
ical variables. Simultaneously this- generating operator-valued functional
defines a canonical transformation that puts an operator in the new external-
gource—dependent representation into correspondence with each Heisenberg
operator. An important consequence of the equations of motion in the new
representation are the operatorial Ward identities.

In sect. 5 we. derive, following the standard scheme [30-33], variational
derivative equations for the generating functional of the quantum Green’s
functions, using the operatorial equations of motion dependent on the external
sources. The solution to these equations has the form of a functional path
integral in relativistic phase space. The effective action in this path integral
containg the symbol of the unitarizing Hamiltonian with its time arguments
moved apart. Thereby, the ordering of the operatorial factors is completely
allowed for [33].

The procedure of closing and abelizing the operator-valued gauge algebra
is formulated in sect. 6. We find the equation for the unitary operator of the
canonical transformation in the minimal gsector that reduces the fermionic
generating operator of the gauge algebra to the form linear in the ghost can-
onical momenta. This means that the commutation relations of the new
operator-valued first-class congtraints have been closed among themselves.
In order to close the commutation relations of the new constraints also with
the new Hamiltonian, one must remove from the bosonic generating operator
of the gauge algebra the terms nonlinear in the ghost momenta which have
remained after the canonical transformation. This goal is achieved by a special
form variation of the gauge fermion operator. This results in a new unitarizing
Hamiltonian operator, which describes an equivalent dynamical system charac-
terized by a closed, or even Abehan, gange algebra.

Some conve'm:ions Each quantity we shall be dealing with belongs to either
of the two sets of uniform elements: bosons orfer mions. If n is the number of
gome objects, then =, (n_) is the number of bosons (fermions) among them,
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n = n, + n_. Each quantity 4 is characterized by a function of the statistics
—the so-called Grassmann parity &(4):
| o if 4 i3 a boson,

I _ if 4 is a fermion,

where (0, I) are elements of the field of residues modulo 2. Evidently, £(AB) =
= &(4) 4- £(B). Each quantity A bears, besides, an internal label called a
« ghost number » gh (4). After appropriate values of the ghost number have
been attached to the elementary dynamical variables, we have, by definition,
gh(AB)=gh(4) 4 gh(B) for any two quantities A and B. .In what follows
rank, | M| denotes the set of ranks of the Bose-Bose () and Fermi-Fermi (-)
boxes of the even rectangular matrix |M,|, &(M,,) = &, + &,. Right and
left derivatives are, as usual, denoted as 9, and 9, respectively. - '

1. — Operators and symbols.
The quantum operator which corresponds to a classical observable A is
denoted as 4. Their (common) Grassmann parity is denoted as £(4) = &(4),

and the ghost number as gh(4)= gh(4). The supercommutation of any
two operators 4 and B is defined as ‘ IR

1.1) [4, Bl = AB — BA(— 1) D*® |

and possesses the following standard algebraic properties:

(1.2) [4, B] = — [B, A](— 1) D¢® ,
(1.3) (4, BC1=[4, B1C + B[4, C1(— 1)“3”(3)’,
1.4) [4, [B, O1](— 1)*D*D  qyel, perm. (G, 4, B) =0

The symbol of an operator 4 is designated as 4 and

w5)  &d)=&4), gh(d)=gh(d), [4,B1=[4,Bl=0.
The correspondence ¢« symbol <—>oper_ator » is one to one:

(1.8) ' : 44

and defines an associative x-multiplication law of symbois

(L.7) . ABoAxB,
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so that commutation (1.1) is mapped onto the %-commutation of the symbols

(1.8) (4, Bl [4, Bls,
where
e (4, Bl =A% B— Bx A(—1)7@e®

The *-commutation (1.8) has the same algebraic properties (1.2)-(1.4) under
the %-multiplication as commutation (1.1) has under the operator one.

An explicit form of the %-multiplication law of symbols depends on how
the normal form has been chosen, ¢.e. on how the elementary operators B,,
@Y, 1 of the Heisenberg superalgebra

(1.10) [Py, Pyl=0, [Q% P =i#skT, [@¥,@¥1=0

have been ordered. We shall be using the PB(-symbols corresponding to the
PQ-normal form, i.e. the one when all P are placed to the left of all @:

w1 AP0 = exp[Pu o] exp [0x 25| AP, )

P=0,0=0

For the PJ-symbols the %-multiplication law has the form

(1.12) AxB= A'(P, Q + ik %)E(P + P, Q)

P'=0

If the P@-symbols of operators A4 and B are expandable into power series in

(1.13) AEA+§ﬁ"£,,, BEB—l—%ﬁ”E”,
n=1 n=1
(1.14) A=1lmd, B=1mB,
%—0 #—0

one has for their x-product (1.12) the expansion

(115) A%B=AB+ iﬁ»;—"’ (A, B+
n=1 .

n—1

o 3 m o n—1 m—141
+ 2 fin z ";_‘[(A; Bn—m)m + (J —m3 B)m] + z fir Z Z %(ﬁm—h En—m)l;
1 . n=3 m=2l=1%V-

n=2 m=
wherein the concise notation

ord or

(1.16) (4, B)a = 3Q™: ... 0Q¥» 3Py, ... OPx,
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is used. The corresponding #-power expansion of the k-commutation (1.9)
has the form

(117 [4, Bl = 2 ﬁ,% {4, B}s +
Z fir 2 .({A Bymim + {du-m, Blm) +
+ Z ﬁ”mz E 2l' ({J -1 Bﬁ—m}l + {A’n—mr m—-l}l) ’
where we used the notation
(1.18) {4, B}, = (4, B), — (B, 4),(—1)*W®
Thereby, for the classical limit (1.14) one has

(1.19) lim (i#)- (4, Bl, = {4, B},
where

oA B &,B A

= = I 1)E(e®)

is the classical Poigson bracket. : :
Let now J, denote the Dyson time-ordering. Then, for every operator

A(P(t), @(t)) one has

(1.21) 4= lim 75 A(P(t + ), Q) ,
(1.22) (0%, 4] = i# lim 75 J(Pﬁg ;ME)’Q“’),
(1.23) (4, Py) = i# Iim ygar“f(mag;)’@w)L

2. — Generating operatorial gauge algebra.
Let
(2.1) (%, 4, i=1,..,mn,

be operators of original dynamical variables, there being 4 bosonie and n_
fermioniec pairs among them:

(2.2) n=mn,+n_,
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a,’nfd{’ e o
(2.3) a Ep) =€) .

The zero value of the ghest number is attached to theinitial operators (2.1):
@4 . ghd)=—gd)=

. The egua,l-tlme commutation relations for operators (2.1) are meant to
be ‘canonical, like eqgs. (1.10), so that the - commutator

(2.5) - £, B = #SA

is the only nonzero one. Let, further, for each 8 = 0, ..., L the distribution of
the Grassmann parity

(2.6) : . é’aa.) o o, =1,...,m,,

be given, and (m,), and (m,)_ be the numbers of bosonic and fermionic co-
ordinates respectively, among those distributed according to (2.6):

21) o me= )t m)

Deﬁne the sequence

Y

(2.8) | Yol L)y —z’(m )i (— 1)""’

and impose the followi_ng cond.itions on the nﬁ’mbers (m,) . 3

(2.9) | ny >7o_(1'4)iv, | ;y,(l_})ii>0, " 8=0,.., L.
vGonsider now the foﬁoWing epefatoré fhaﬁ"for,m the ghost algebraic sector

(2.10) | (ﬁ’sa,,éj“), By =1, ccrmy 8= 0, ..., L.
Their statistics and the ghost numbef afe, resﬁectively, V

@1 EP) =60 =t s+ 1,

@12 v@@@——@@u—s+n

The equal-time commutatlon rela.tlons for operators (2 10) are meant to
be canonical, in the sense of eqs. (1.10), too. The only nonzero commutator
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among them is- ‘
013 . 10, B 1= iho, 031

We po'stt‘](]a.té, besi(kles,jtllie follofviné Hernﬁte—cgﬁjﬁgation p;(.)pei'tiés‘of (,2.1i)),‘
compatible with (2. 13)

(2.14) (gi’”‘)f — gaw (__ 1)3(9'.,.) " (00:,)1. o 0,,,

The original operators (2 1) and ‘the ghost operators (2. 10) of the algebralc
sector form together the so-called minimal sector, henceforth ~designated as
I For the operators (2.10) of the algebraic sector ‘we shall be uging the fol-

min *
lowmg collective notation:

(2.158) - . . (#,, 04 = gi,a, 0%y,

where the collective index A = (s;a,) runs the set of ‘values & =0, vy g
e, =1,...,m,.
Thus

(2.16) - T E(pi,.%,q 04

Define the fermionie (.Qm,n and bosonie (Hmm) generating operators of the
gauge algebra to be solutions of the equations R

(2.17) (@i L] =0, gh(ﬁm> =1,

(2.18) [Hmm, Q.n1=0, gh(h m) =0,

in the minimal sector (2. 16) We requ.lre a.lso that the genera,tmg opera.tors“
satisfy the formal Hermiticity condltlon

(2.19) Q= Qs i
(2.20) Bt =HBop: 0o
Due to the Jacobi identities (1.4) one .las
(2.21) [(Quins Loals L] =0, - T
(2.22) [[ﬁmm’ Qmin]['ém]n] = %[Hm]nj [gmm’ -men]] =0,

the cyclic operator identity (2.21) providing the necessai}y. solvability “cons:
ditions for eq. (2.17). On the other hand, the faect that the right-hand side
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of (2.22) vanishes due to (2.17) guarantees that the necessary conditions for
the solvability of eq. (2.18) are fulfilled.

Solution to egs. (2.17), (2.18) is looked for in the form of a power geries (°)
in operators (2.15) taken in the 9’0 normal form (¢.e. where all 9’ are on the
left of all )

(2.23) 0= 0; + 215‘3;” 541041---44, |
(2.24) -Em =7, + iﬁ . éﬂllv‘h---f’».
_ : =
The coefficients of these series
(2.25) 0,, U044, n=1,..,
(2.26) P,, V44, n=1,..,

possess the following statistics and ghost number

(2.27) &0)=1, &U44)= S 664 +1,
i=1
(2.28) &W) =0, EF44)= i &(CY),
i=1
229) gh(Uy)=1, gh(0% )= S gh (04) + 1
i=1
(2.30) gn(P) =0, gh(P4%) =3 gh(04),
and the following property, called generalized symmetry:
(2.31) o UA""A": (0svm)A
(2'32) VA,...A,. — (Vsym)dl"-' Ay ,

where for every K4:-+4» the generalized symmetrization is defined as

(2.33) (KM)AI---A. = S" A.KB,

al E), - —)
2.34 n'S :( —— vee —— Pp_ ... P3,].
(2.34) b=l 55, P P

(*) If geries (2.23), (2 24) .contain a finite number of terms, the highest power of

the ghost momenta gﬂ being (r, ') we refer to the rank-(r,7') gauge algebra. Any
closed algebra-is of rank — r=r'=1.
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By substltutmg expansion (2.23) into eq. (2.17) and transforming the Lh.s.
to the $C-normal form, we obtain the following relations for the operator-
valued coefficients (2.31):

(2.35) [O,, U0l + 2i% %U—" U4=0,
= dF 04,
(2.36) [ﬁAl...A.’ Uo] + Z zﬁ)km U3:...5 +
k=1

F (Ryym) s 4n = — ifi(n + 1) %@ Oady... 4 1)83

where

(2.37) 4=0, ZX4.ta= pS (—1)%= (;_[ﬁA;...A,,’ [74,..“...4.] +

m=1

+ Lt ('n -_m + k)!('iﬁ)k af UA""AM 0’31...BgAm+1....IAn)’

1 kl(n—m)! 303 ... 90"
(2.38) &= i 804,
i=m+1

Analogously, by substututmg expansions (2.23), (2.24) into eq. (2.18) and
reducing its 1.h.s. to the #(0-normal form we obtain the following relatlons
for the operator-valued coefficients (2.26):

(2.39) [P, Ul =ik a—dﬁ—" P4,

(2.40) [PAraa O] — [UA;...A,. Dol + ,
o Tds... 44 anA,...A.. Ty
+ 3, 6y (TT O — 550 V"'""") +
(P eee4n = ifi(m 1)95@’ Padsdn(—1)%%
where .

(2.41) Phs=0, Pdida E"z_:l ([t}A,...A..’ O4mes...4n]

m=1
w(n—m_*_k)! ; akvl kAmy -‘u
+.2 kl(n —m)! (m)k(aog b—ﬁﬂx Brdmiyodn

k=1
. (_ )l" %_%;__ ?B,...Bidnﬂ-niin))‘.

Conditions (2.19), (2.20) of formal Hermiticity of operators (2.23), (2. 24)
imply the following properties of the operator-valued coefficients (2.25), (2.26)
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under the Hermitian: coujugation e

R T k({7 B1... Byt
(2.42) Uo= (Uo)*+ Z %——a—@%,

)1 ak(ﬁAn...Alﬂl...Bk)t _
(243)  (—1)SE Vo= (Ot 4T+ 21 nv}u s o T
'?B, Bk)'l‘

@44)  Po= (Tt + Z(—l)‘*(@ﬁ)"—@——a@a

17,4....._4l Bl...Bk)‘r

(é-'45) ""”'V'A A.n —'; ?An Al 1' + Z (n + k) (_1)“( ) aOB" e aOBk :

nlk!

The opera.torlal coefﬁclents (2 25) (2.26).a.re polynomials in powers of the
operators C4: " Sl s ,

@46) Oy = Toa.(ﬁ,q)é“n.,
(2.47) 'mw%;“rx tﬂﬁ;—ﬁﬁmwﬁuﬁ%

m=1 (Bf=uh, "'m'
(2.48) | = R,0

I =',,'E;"-\w§;,%ﬁi%ﬁf-ﬂ@’ ) 0... 0,

where. gy, ¥, are the sets of values for the indices By, vy B,‘,,"defermined by
the conditions

(2.50) o Z gh (C™) —‘21 gh<04'> +1
(2.51) PR }: gh(OB')— 2gh<04‘)

. The mgna.ture faetor in (2 47), (2 49) is deﬁned as
@52) . Ba A =Bt LBy g
~For n=1 or m =1 one hag.... -

(253) , o E“ns By =0,

Whereas, for 'n>2 m>2

P3N
£

@y pesesd S04 1),
@88 T By a=3 SECM+1)]
. . SRR Ck=2i=k
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The operators -

(2.56) | P, Ok

from (2.46), (2.47), a5 well as el |

(2.57) " A " Pk a

from (2.48), (2.49) are functlons only of the ongma.l operators (2.1) and. form
a structural set (basis) of operators of the gange algebra Due to (2.4) every
operator (2.56), (2.57) has its ghost number zero, while its sta.tlstms follows
from (2.27), (2.28) to be

258)  EP0) =&, EDEg=F &0 + % &™) +1,.
i=1 i=1
2589) &H)=0, A% s ) '-=iz &(0%) +3 &™)
- K -1 . LT =

If any two neighbouring upper 4,_;, A, or lower B;, B,_, indices are mter-
changed, the operators (2.56), (2.57) acqmre the mgna,ture factors S

(2.60) , - (.'—1)(‘(("“—1”1)(((?")&)!,» | o
or ,
(2.61) — (- 1)(6(0"4-:)+1)(e(09.)+1)’

respéctively. Let us use the"followiilg detailed indexing of any quantity

‘ : ¥4y .. An__. 81 ... 800, .. a8, o : L
(2.62) Riv4 _K,, AP ST

which decodes the condensed, in the sense of (2 15), upper

(2'63) V ‘ l' = (817 ) ’ R 1= 1-’ -.d”’
and lower indices
(2.64) o S By= (77‘5,Aﬁ£,)\, ‘ SRR j=1, .‘..',*‘my
where : .

0<s,< L, o<,
(2.65) . :

1<og<m,, 1<f,<m,.

With designations (2.62) operators {2,15) may be written as

~ ~ ~

(2.66) Pu=2 =Py, - 01=0l=C..
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The sets of values of u, v, described in (2.50), (2.51) are now presented as

n

(2.67) umZ(r+1=_zs'+1)+1,
(2.68) va:jg(r, 41) =‘21(s‘+ 1).

If opera.tors' (2.56), (2.57) with the lower indices belonging to the sets
u>, vt , respectively, are taken for the quantities (2.62), their Grassmann parity
owing to (2.58), (2.59) is

(2.69) 7 2 Eaat, + E Jf,pi,

i=1

both for (2.56) and (2.57), &,,, being the Grassmann parities from distribu-
tion (2.6). Powers (2.54), (2.55) of the signature factors are written as

(2.70) | Baesldintl, = 3 3 (ot + 8) s
k=2 i=k

(2.71) Er,,....r,lﬁ}.'; B = E 2 (gr,ﬂﬁ, + "1) .
k=2 i=k

Let us use the special notation

(2.72) Q=0

w (B, 4)
for the operators (2.56) when # = m =1 in the gectors
Ay=(—1,0.,), B =(a).

For » = 1, expansions (2.48), (2.49) take in the zeroth sector A4, = (0, «,) the
explicit form

(2.73) 0% = 3 Oodl5e,. (8, §) O O(— 1% + Z33,(8, ) OF,
(2.74) Pl = Polse(8, 9) C

By substituting (2.46), (2;73) into the lowest-order equation (2.35) we
obtain

(2.75) ' Do, Tosd = T4, O%es 5
(2.76) o P Za=0,
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where the concise notation -
(2.77) : U Lp, = 008,3::5,(@ 9

is used the operators (2.77) being anhsymmetnc with respect to the lower
indices '

(2.78) O, = — U, (— 1),

The substitution of (2.46), (2. 48), (2.74) into the lowest-order equation
(2.39) results in

(2.79) (Ao, Top,] = i#T,, Vi,
where the not'ation

(2.80) - o= To(5, 9)

has been used. Equations (2.75), (2.79) are nothihg but involution equations
of the operatorial first-class constramts Toa (p, §) among themselves and with
the original Hamiltonian ﬂo(p, 4). Equation (2.76) tells that Zl‘j‘,;(;ﬁ, g) are
right-handed operator-valued null vectors of the operator-valued first-class
constraints. Now consider eq. (2.36) at » = 1 in the sector 4, = (0, a,):

lo
(2.81)  [O0l=, Uy] + zﬁ—a— Dolss @ﬁ%ﬁ_ D6 4

« T ﬁo %o N
+ () S 07107 = 2 s, DO0ins—1)0m,

where

@83 Db O, 0 000 00O =1) +

| + (0,
— D8, ) O8O — 1))+ 2536, @)

525 (By §) O8 Ofr(— 1)%n —

fapony §) O 5 Cpr(— 1)%%

LA:BH

(2.83) (— ’o-, ﬁ’ﬂolﬂoi’. . ﬁ ogg

+ 1 (O%Yse5:(8, §) OF O (— 1)%% — O

1

g:;:(ﬁa )] 05"0’:‘(— 1)‘{':,) + :
+ 1 0%e8, 0 Oy

From (2.81) the following relations result for the coefficients in the ghost-
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power operatorial expansions (2.73), (2.82), (2.83): the 03 terms produce .

2.84) (1075, Posl— ﬂ.,,w n,,n)( 1)%0%0 | gycl. perm. (By, o, 0) =
= %'I;ﬁ Ho' ’o ﬁ;:zzﬂn - iﬁzl‘;: g:?’oon’

where the concise notations have been used

(2.85) ﬁ::v = 6“0T 60‘ To”n( ‘”‘u‘“'n o iﬁﬁzoy. Toanﬁ::ve = 0
(2.86) | Barede = '»ogg g:;:o. (&, §)(— 1)%ea,8w,

(2'8,7) Uz.lnﬂ. = ooolp.,y.a. ﬁ’ 4) )‘w'ln"’ ’
whereas the C,C, terms produce‘

(2.88)  [Zy%, Top) — k050, Zylo(— V)"t = — JilidT5, Urnly + 62,5, U2, »

where

(2.89) Ul =U%55 9,

2.90) L 08 =005, 0).
The O, terms give .

(2.91) - ‘ - Z 22‘;; = -%17,‘1‘,% Ok,

where

(2.92) 0Z:’° = ﬁ""f"“”'(ﬁ,

Under the multiplication of eq. (2.84) by TO% on the left-hand side, its
right-hand side disappears owing to (2.76), (2.85), and one has

(2.93) T, (105, o) — kU5, Uhs )(—1)50fo0 4

+ cyel. perm. (8o, ¥o; 8o)} = 0.

Bove?

. Equation (2.93) is nothing but a necessary condition for the compatibility
of involution (2.76). It is a consequence of the cyclic Jacobi identity (1.4)
for the operator of constraints

(2.94)  [(Pog, Toy,ls Tas](— 1) - oyel. perm. (By, y, d) =0.

Thus eq. (2.84), to be referred to as the lowest Jacobi relation, provides
the formal fulfilment of the necessary compatibility conditions for the invo-
lution relations (2.75) for the constraints.
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Now multiply (2.88) by TOtx, on the Lh.s. Again in virtue of (2.76), (2.85),
the right-hand side of (2.88) does not contribute and we get

(2'95) Toa‘o[zlz:’ Toﬁo] I"ﬁTO“n ﬂo‘hAZlZ: - 1)‘”‘ ‘nﬁo =0.

This relation is necessary for involution (2.75) and eq. (2.76) to be com--
patible. Indeed we obtain from (2.76) that

(2.96) [Pya, Zi32, Top ] =0,

whence (2.95) results, in virtue of (2.75). Therefore, eq. (2.88) guarantéés the
formal fulfilment of the necessary compatibility conditions of involution
(2.76) and eq. (2.76). ‘

At last, eq. (2.91) shows that Zz‘;: are « weak » right-handed. operator-
valued null vectors of the operators Zlﬁg. We bear in mind that in the classical
limit (2.91) leads to \

(2.97) Zy2 2o\ pym0=0.
The conditions for compatibility of egs. (2.91), necessary in view of (2.76), are’
formally fulfilled owing to (2.85).

Equations (2.84), (2.88), (2.91) saturate the contents of (2 81). Now turn
to eq. (2.40), at n = 1 in the sector 4, = (0, o): -

(2.98)  [Polxo, U] — [O0ls, B,] + zﬁ%i 0olte — if; %’?olﬂ»—

l%o |
—_ ?/ﬁ aavﬂ 'Vllﬁx__ q,ﬁ) Wa U voolﬁnyo = —-21,ﬁToﬂ voolﬂ-“o

)‘u" ’
where 7

(2:00) VU= Vil (B, 9) O O (— 1) + Pif3:(8, 9) on,

(2.100) (_ 1)‘311.“ ?Ooll‘nva — i 00 g:;: 0go Ogo( )eoa + % ?’ooll‘n"’n(ﬁ’ 4) 0‘;1;

the (% terms in (2.98) give

C(2201) [P, Doy ) — (P52, Dop l(— 158+ [0, Bol— V505, +
+ it05,, Vi — zﬁl@“;"ﬂ.?'ﬁ:(—1>""’-""-=%sifi o Vit — h 2,3 v,,,,,

where
(2.102) Vioz = Voolen(s, 9)

(2.103) 25, =Vorlmis, (8, ) -
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.The 01 terms in (2.98) give

(2.104) [ZI;-;,HOJ—M-I?;; 2fe = Yitdze, Vit — k2,5 T7Z ,
where o '

(2.105) Phore = PYla(8, 4),

(2.106) Ve="ia6 0.

By multiplying (2.101), (2.104) on the left by To% we obtain relations
that guarantee formally fulfilling of the conditions necessary for (2.79) to be
compatible with (2.75) and (2. 76) For (2.79) and (2.75) the indicated com-
patibility conditions are

(2107)  [(Pog, Toy)s Bol =— [(Ho Top)s Toy ] +1[Hoy Ty )y TopJ(— 1) 50 =
= k[P, 0%, Bol = kD0, [05:,,, Ayl — i#[H,, Tou 1050, -

The conditions for (2.79) to be compatible with (2.76) have the form '
(2.108) Toa,zm, -Ho] = Toa,,[Zm, Ho] - [Hm Tooc,,] Zm,

Equations (2.101), (2.104) saturate the contents of (2.98).

Thus we have completely clarified the meaning of the lowest equations
out of (2.36), (2.40), which correspond to » =1 in the sector 4, = (0, a).
These equations bear information of two kinds. First, they contain the lowest
Jacobi relations (2.84), (2.101) which provide the formal compatibility in the
involution (2.75) among the constraints and in the involution (2.79) between
the constraints and Hamiltonian, as well as the lowest Jacobi relations (2.88)
and (2.104) that provide the formal compatibility of eq. (2.76) for the null
vectors (2.72) at s = 1 with involutions (2.76), (2.73). Second, they contain
eq. (2.91) for the subsequent weak, in sense of (2.97), null vectors (2.72) at s = 2.

The information contained in the higher-order equations (2.36), (2.40) is
of the same two kinds, namely, they include the necessary compatibility
conditions for the previoms equations, i.e. the higher Jacobi identities, and
equations for the subsequent weak null vectors (2.72) at =3, ..., L. Forn =1
all the equations for weak null vectors are contained in (2.86), whereas for
higher sectors A, = (8, ,), s =1, ..., L— 2, these equations are '

2109) 2, o fi =1, U5 O(F),

!0:,

where s =3,..., L,

(2.110) ’ . (Zai‘:,_)= s—la._1+ 8o *
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In the eclassical limit the right-hand sides of (2.109) vanish on the hypersurface
of constraints T, =0.

Thus eqs. (2.36), (2.40) form, generally, an infinite set of structural relations
of the operator-valued gauge algebra created by the first-class constraints
T’Oa and the Hamiltonian H The set of structural operators (2.56), (2. 57)

-forms ‘a basis of the operatorial gauge algebra which corresponds to the .9’0
normal form chosen for the ghosts.

In the general case the gauge algebra generated by the first-class constraints
is open and reducible. The opennes (or unclosedness) of the algebra manifests
itself in the appearance of nonzero terms that contain operators (2.86), (2.102),
in the r.h.s. of the lowest Jacobi relations (2.84), (2.101). The reducibility of
the gauge algebra is in the presence of nontrivial (see below) operator-valued
null vectors (2.72).

It is said that a gauge algebra is of L-th stage of reducibility if, in the clas—
gical limit (1.14), one has the following relations:

(2.111) T2y =0,

(2.112) Z, 525 g =0, T sg=29,.., L,
(2.113) (2= €y oy, + Cray | |
(2.114) ' rank, a‘az‘;“' romo = yo(L)s , "= (p;, @)
(2.115) rank, 2,5 gm0 = vilL)s , L 8=1,..,L,

where y,(L),, 8 =0, ..., L, is defined as (2.6)-(2.8).

Equations (2.111), (2.112) are just the classical counterpart of (2.76), (2.91),
(2.109). Therefore, the essence of the above definition of the L-th stage of re-
ducibility is in fixing the values for the ranks (2.114), (2.115) on the hyper-
surface of constraints. The rank (2.114) fixes the gennine number

(2.116) W(L) = ny — po(D);

of the physical degrees of freedom in the theory The ranks (2 114), (2:115)
indicate also that the quantities

01 Toq,

(2.117) Bge 7

Zw. y ooy LIog
form a perfect sequence on the hypersurface of constraints.

Consider now the first iteration steps for finding the structural operators of
the gauge.algebra within the framework of the lowest-order equations (2.35),
(2.39), (2.81), (2.98).. Let the operator-valued original. Hamiltonian and con-
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straints Toa be primordial quantities. Assume that these operators do gen-
erate a gauge algebra. Then the structural equation are iterated as follows.
Involution (2.75) determmes operators (2.77), while eq. (2.76) determines
operators (2.72). at s = 1. Next, operators (2.89),” (2.90) are determined by
eq. (2.88), while operators (2.92) by eq. (2.91). Similarly, the involution (2.79)
determines operators (2.80). Operators. (2.102), (2.103). are then to be found
from eq. (2.101) and operators (2.105), (2.106) from (2.104). This process
goes further on within the higher-order equations (2.36), (2.40). Certainly,
the structural operators (2. 56), (2.67) are not determined by the respective
equations (2.36), (2.40) in an unique way. The natural arbitrariness here is due
to the possibility of the canomcal transformations

(2.118) 0. %10, %, A.,->%'Hy ﬁ

‘where 9 is an unitary operator

(2.119) A1 =9,

,,dependmg .on (2.16).

 Besides, there is an arbitrariness msnie, the definition of the opera.tor H
owing just to eq. (2.17):

(2.120) e = B 4 @814, Ol

where the operator A depends on (2:16) and possesses the properties

(2.121) &M =1, ghd)=—-1, At=-4

— Unitarizing Hamiltonian.

Now consider the new operators
B1) 1) Gk, 1) Cun PPy %=1, ., my; 8=0,..., L
and also

3.2) i) @, A, i) Ch, P,

o =1,...,m; 8=1,...,L; 8=¢,.., L.

.Operators i) and ii) from (3.1) are. Lagrange multipliers and ghosts, re-
gpectively, of an auxiliary sector. Operators (3.2) form the extra-ghost sector.
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The statistics of operators (3.1), (3.2) is a8 follows:

(3.3) EH) = ) =80+ 8,

(3.4) 8C,.) = P =8, +5+1,

3.5) EH) = EX ) =&, 5— &,

(3.6) E0%) =8P =&, +s—s+1.

Their ghost numbers are defined as

(3.7) gh(#,,) =—gh (1) =—3s,

(3.8) en(C,)=—gh (P =—(s+1),

(3.9) gh(AL) = — gh (™) =— (s— ),
(3.10) gh(Cr)=—gh (P = — s— #'+1).

Operators of each pair i) and ii) in (3.1), (3.2)’a.re subjected to the canonical
equal-time commutation relations, so that the only nonvanishing commntators
among them are

(3.11) e d,5] =6, 007,
(3.12) C [P, 0,,,,] = i#d,, 857,
(8.13) . LA™, #55] = k3,0 837,
(3.14) Y S AT T

At last, operators (3.1), (3.2) transform under the Hermite con]uga.tlon
in the following way, -compatible with (3.11)-(3.14):

(3.15) (Ba)t = Ty, (ot = Je(—1)%0
(8.16) (@)t = 5”.(_1):(%.;,)’ (Pt = P,

@.17) =1, (A=)t = 2= 1)f
(3.18) Ot =07 (— 1)# @) , (P a.)f e

Together with (2.16), operators (3.1), (3.2) form s complete get I of operators
of the extended (rela.tlwstlc) phase space

(3.19) F= (PM,Q”),
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where , o
(3.20) PM = (ﬁia g_jm.y ﬁaa,i 6.::,’ ﬁ:;.’ 0:;.) ’
(3.21) Q" = (g, O, i, P, 2/, PV™) .

Operators (3.20), (3.21) evidently satisfy the equal-time commutation rela-
tions (1.10). '

In the preceding section we have studied in every detail the construction
of the fermionic, Qm, and bosonic, Hmm, generating operators of the gauge
algebra. Now these operators will, in their turn, serve as a basis for eonstructing
an operatorial version of the unitarizing Hamiltonian. As a preliminary step,
define an extension of the operator .Qmm involved in (2.17), (2.19), (2.23):

L L L
(3.22) Q= len + Z ﬁca.g’:' + Z 2 ﬁ:«.‘?za‘ .
8=0 §'=1 =8’
For (3.22) we have

(323) 2, Q1=0, D=1, gh(A=1,
(3.24) , ‘ - =0

Define ¥, a gauge fermion operator (*), as possessing the properties
(3.25) =1, gh(P)=-1, Pt=-9,

and depending, like (3.22), on operators from the complete set (3.19).
The unitarizing Hamiltonian is determined by the following basic equation:

(3.26) By = A, + @)1, 21,
where @ is defined by (3.22) and Hm,n is the generating operator involved in
(2.18), (2.20), (2.24).

It follows from definition (3.26) that

(3.27) (Ao, M=0, &Hp)=0, ghflg=0,
(3.28) |  (@et=Hs.

The unitarizing Hamiltonian (3.26) is the basis for the operatorial'descriptibh
of dynamical systems subject to first-class constraints.

" {*) The admissibility conditions for the classical limit of the symbol of the gauge
fermion operator are given in appendix. :
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The destination of the gauge fermion operator ¥ is to generate a set of ad-
missible gauge conditions that remove the degeneracy from the dynamies.
A «minimal » version of the gauge fermion that produces linear gauges is

(3.29) i Pt + 8o +.§ §_ L B + T A,

where

(3.30) . fo = 0+ fai, |

(3.31) i =w 0m, : s=1,..,L,
(3.32) G =g BT, =

(3.38) T =0, atom, O = 5

are linear gange operators.

The minimal gauge fermion (3.29) produces the so-called singular gauge
conditions which correspond to d-functionals in the path integrands. To cover
nensingular Gaussian gauges, one should add the fo]lowmg terms to (3 29):

(3'34) !i’ % z C:zx. “.ﬂ'ﬁaﬂ- + % Z z O:a:l Z‘“’ a' ‘@‘ ﬁ. ﬁ:ajl Q;ﬁa:'j",ﬁ.) .

. A a—a
ﬁsiﬁg (3.22), (3.29), (3.34), we obtain ‘thér following expression for the unitarizing
Hamiltonian (3.26) corresponding to linear nonsingular gauges:

. L
(3.36) Hj 9, =H,,+ z () [ D P 1] + ga,,,,@“'
+ Con 1, Do) + R 5+ 8, KoPdlp) +
L I , '
+ 33 (B F P - O (i) B, AL ] P

8'=1 g=s5"

+ A ,(zﬁ)‘ Pt B AT 2 4 @) PR

4. — Operatorial dynamics.

Now assume that we have at hand a unitarizing Hamiltonian (8.26) with
an admissible gange fermion. The time evolution of operators (3.20),
(3.21) is governed by the Heisenberg equations of motion induced by the
Hamiltonian (3.26):

(4.1) #8, Py = [Py, Hp], #0Q" = [Q™, A;).
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Hence by virtue of (3.27) we have
(4.2) #0, 2 =1[0,As]=0.
In other words, operator (3.2) is an integral of motion.

Let (PM,QM)g‘; denote a solution of the operatorial equations of motion
(4¢.1) with the gauge fermion ¥. Let A¥ be an admissible (finite) form va-
riation of the gauge fermion. The varied solution of (4.1) determined by the

same initial data, but a different Hamiltonian y: 8 +ad corresponding to the
varied gange, is written as

. . R .
(4.3) (Pas @9 a0 = Ona( Py, @)8Gae

where G,p(t) satisfies the equation

(4.4) #8,Gap = (i) [(De, (AP)$]Cas,

and coincides with the operatorial unity at the initial time moment. The
designation (F)s here indicates that the operator P is considered as a function
of the operators ( Py, @M)s.

Equation (4.3) states that the gange variation ¥ >¥ 4+ AP is mdueed
by a canonical transformation whose generating operator is @A,,, Since at the
initial moment @A.p =17, it follows from (3.27), (4.4) that
(4.5) (g, Gapl =0
and hence, owing to (4.3), also that

-1 A .
(4.6) (Do a0 = Fap(D)eGrs = (Do .

Define a class of operators Eg which commute with Q,

(4.7) [Bs, B1=0,

whose dependence on the gange fermion ¥ is entirely governed by a law, sim-
ilar to (4.3):

(4.8) Bo,ao= @ sB9Gae .
Due to (4.5), it follows from (4.8) that

(4.9) [Bo,ae, Q1=0.
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(We have taken (4.7) into account.) The infinitesimal form of law (4.8) is - -

[

The physical states of the theory
(4.11) [Phys), <Phys|= (|Phys))t
are subjected to the conditions
(4.12) Q[Phys) = 0 = (Phys|2.

Now it follows from (4.10), (4.12) that

(4.13) 89<, Phys|Bg|Phys, 5 =0,

¢.6. the physical matrix elements of the operators involved in (4.7), (4.8) do
not depend on the gauge.

We proceed in an usual way. For each operator P in the initial representa-
tion, we put into correspondence an operator #” in the representation depending
on external sources J(t), K¥(1):

(4.14) Fr(t) =27, — o) Pt)Z(t, — oo)
with the genera,ting' funetional @(t, — oo) obeying the equation

(4.15) 2,8 = — (I, Q" + Py K2, 2|, __. =1.

Operators P,,, §'* obey, in the new representation, the equations to be
obtained from (4.1) by the replacement

(4.16) By > By — J,Q%— P, KX,
For the operator £’ we have in the new representation, in place of (4.2),
(4.17) #0,Q' = [(J @Y + Py, EY), O].

Equation (4.17) is nothing but the operatorial Ward relation.
Operators Pj',, Q'™ depend upon the gange ¥’ according to the law

. -~ I_1
(4.18) (Pary @™oy apr = Gap- (Py, §™)e.Cng,
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where @'A~,(t) is given by the.equation
(4.19) : #8,Gpp = ()T [(2)e, (AP)e1G0s. .
v In place of (4.8), we have in the new representation
0.20)  (##0,1 — () UD g, AP (D )e-, Gao) =
= [ + Py E*p, (D51, Gage] -

5. — Generating functional. Path integral.
The generating functional is defined in the usnal way as
6.1)  Z(J,E)= 0, Phys|£(+ oo, — oo)[Phys, 0,

where |Phys,0) is the ground state of the unitarizing Hamiltonian (3.26),
which simultaneounsly satisfies eq. (4.12).

Starting from the equations of motion for the operators in representation
(4.14), which depends on the external sourceé, and exploiting (1.21)-(1.23), we
obtain via the standard methods [17-20] the following variation derivative
equnations for the generating functional (5.1):

M T
(5.2) {atQ 3_1 aPM

P=(Bi)E/BK), Q=SSN
-Z(J,K)=0,

& la(P(t +2),00) _ JM(t)}

(5.3) {S;PM —+ sl—il-:f-lﬂ aQM

P=(hfi)3:/8K),Q = (Ri)By/87)

Z (J , K)y=0,
where Hgz(P, Q) is the PQ-symbol (111 the sense of (1.11) of the unitarizing
Hamiltonian (3.26) considered as a function of operators (3.20), (3. 21)).

The solution to egs. (5.2), (5.3) obtained by the functional Fourier transfor-
mation has the following path integral form: . »

(5.4) # — lim |exp [% S(e)] ar,

&= +0

where S ig the «action »

(5.5) 8 — f (Py Q™ — Ho(P(t + ¢), Q) + Ty Q" + Py K¥) &,
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and dI" is the phase volume element

(5.6) dI'= (eonst) [ [T d———PM 1) 4Q™(2)
t M

The normalizing factor (const) is fixed by the condition
(5.7) ZJ=0,K=0)=1.

The inversion of the operator in the quadratic part of action (5.5) is defined
a8 the caunsal propagator.

Since the phase variables P and @ enter into Hgz in (5.5) at nonequal time
moments, ¢ + ¢ and ¢, the functional integral (5.4) contains the full information
about the operator ordering in Hamiltonian (3.26). The e-regularization in
(5.2), (8.3), (5.5) conforms to the type of the symbol. It is this conformlty
that provides the correctness of the result.

We have thus seen that egs. (5.2), (5.3) for the generating functional and
the effective «action» in the path integrand. contain the e-regularized PQ-
symbol of the unitarizing Hamiltonian (3.26). If an explicit expression for
operator (3.26) is, in fact, at our disposal, its symbol may be, certainly, im-
mediately found. Bearing in mind, however, the symbol-to-operator corre-
spondence (1.6)-(1.8), it is evident that, in order to create a gauge algebra and
to build the unitarizing Hamiltonian, one may handle directly the symbols.
The counterpart of eq. (3.26) may be written for the corresponding symbols
in the form

(5.8) Az =1, + H [P, O,
where
L L L i ,
(5.9) =04+ 37, Po+ > 3 ab, P
8=0 §'=1 g=38"

The symbols O, H . of the operators 3., A involved into (2.17),
(2.18) satisfy the equations

(5.10) [P Fonle =0,  gh(B)=1,
(5.11) Aoy Gk =0, gh(A)=0,

in- the minimal sector I,

Equations (5.10), (5.11) for the fermion .Qmm and the boson Hmln may be
solved directly using the power series, obtained from (2.23), (2.24) by replacing
every operator by its symbol in them. This results in equations for the symbols
of the structural operators that are obtained from (2.35)-(2.41) by replacing
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every operator product (and commutator) by the corresponding *-product
(and *-commutators) (1.12), (1.8), with the order of factors unchanged. For
instance, there are the following invelution relations for the symbols of the
constraint operators and the original Hamiltonian:

(5.12) Lou,s TopJo = T, % Ulig, s

(5.13) By, Tosdo=#T, + Vi,

and the following equations for symbols of strong operator-vained null vectors:
(5.14) Tou# 250 =

Following the correspondence principle, we restrict the class of solutions of

the operatorial equations (2.17), (2.18) by imposing the requirement that the
symbols of the solutions should admit the series expansion in powers of %

(5.15) Qo= .Q,,,,in + 2 v oS0
n=1

(5.16) g, =H, + Z #rH®
n=1

Substituting these expansions into (5.10), (5.11) and using (1.17), we obtain
the following relations for the coefficients:

(6.17) {Poinr P} =0

2
(5.18) ?""‘{leny Quin}a + 2'i{9mm’ Qixlxi)n} =0,

(5-19) '—{-lem Qmin}n + z '—'2{-le117 Qfm; m

n—1 m— 17,

+ z tz l'{ gni;l)"gg‘l;m)}l=0, n>3,
a8 well as |
(5.20) {(H iy Qo = 0,
;2
(5.21) ';_i{Hmi.n, gmj“}2 + "/({Hm]n, ‘Q(l)} + {Hgi)ny ‘len}) =0,
(5.22) 1{Hmin; len}n + Z {Hmim Qﬁ{,‘;”"}m + {Hg‘;”‘.)’ -Qmin}m) +

a—1 m— 11’11

+ z lz 112 {H(m—l) Q’(n m)l_l_ {H(»—m)’gm;l)}l)=0’ : n>3.
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Here {4, B}= {4, B}, is the Poisson superbracket (1.20), and {4, B}, is the
binary operation defined as (1.18), (1.18). .

Consider in more detail the lowest-order equations (5.17), (5.20), which
generate the classical gange algebra. Substituting the expansion

(5.28) Q=T+ 3Py ey Py T4

n=l

into (5.17), we obtain the classical analog of (2.35)-(2.37)

o: Uy
004

ar UA1 An
“oa Ut

+ (Xggm)4r4r = —(n + 1)

UA

(5.24) %{Uu, Uo} =

(5.28)  {U4i-4s, T} +

O U° Udds...4n(—1)%

where
n—1 -

(5.26) X4:=0, X4 A= 21(_ 1)&.. (% {UA,...A..,, UAm.H-..A.n} +
=

3, UAr-..4m

4+ (n—m + 1) ~—ga— UAAu-n...An)_

In the same way, the expansion
(5.27) Hop= Vot 3B,y Py Vhreda,

when substituted into (5.20), leads to the classical analog of (2.39)-(2.41)

o Uo

(5.28)  {Vo, Uo} =553

VA

Oy VA1 4a 0, Utridn
(5.29) {VA,...A,.’ Uo} — {UA]-.-A»:’ Vo} + ~50d UA___aOT_ V4 4

+ (Tauoerte = (n 1) %0 padar— 1)
Whgre

n—1
(5.30) Y4 =0, YAdr...dn = z ({VA[...AM’ UA”H-"A"} +

m=1

S, VA1 dn oo O Udr 4

4+ (n m + 1)(—804— UAAM+1 cdn (_1) et VAA".H...A.)).
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Using the classical analogs of (2.46), (2.48), (2.73), (2.74) in the. lowest-
order equations (5.24), (5.28), one comes to the relations

(5‘31) ' {To«xo’ Toﬂ. = TOVo U"‘nﬁu
(5.82) {Hoy Top} = Loy, Vie»
(5.33) Ty 25 =0,

which are the classical Limit of (5.12)-(5.14).
Consider the classical limit of action (5.5) at ¢ = 0:

(5.34) - f (Py @ — Hy + J,Q™ + P, EM)dt,
where
(5.85) ‘ Hy= H,, + {¥, 2}

is the classical unitarizing Hamiltonian, and

(5.36) Q=0Qu.+ Zn,,,,g‘"’“ + 2 Z A

g’=1 8=8"

$0 that, in virtue of (5.17), (5.20), we have
(5.37) (Q,Q=0, {Hy Q}=0.

Owing to (5.37), the external-source—independent part of action (5.34) is
invariant under the canonical BRS transformations

(5.38) 8Py = {Pyy D,  3Q¥ ={QY, Q}u,

where u is a fermionic parameter.
If one uses action (5.34) to define a formal analog of (5.4)

(5.39) o = [exp [ S| a7,
one is able to show, by choo-sing M in (5.38) as
(5.40) b= %fb‘l[fdt,

that the formal S-matrix which corresponds to- (5.39) does not depend (on
the mass shell) on the choice of the gange fermion ¥ in {5.3b). ’
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The formal expression (5.39) for the generating funetional (or the 8-matrix)
accomplishes the concept of naive guantization via the path integral in the
phase space. The first step in developing this gunantization is to form .the
classical action (5.34) under the assumption that there is a classical gauge algebra
that operates on virtnal trajectories in the phase space, and is generated by the
classical constraints T, and the Hamiltonian H, according to the eqs. (5.17),
(5.20) or, equivalently, (5.24)-(5.26), (5.28)-(5.30). Then, using the classical
action, the formal expression (5.30) is constructed.

The functional integral (5.39), generally speaking, depends essentially on
the way of calculation—the choice of a finite-dimensional approximation of
the virtual phase trajectories. The arising ambiguities are due to the loss of
information about the ordering of operators in the Hamiltonian (passing to
the formal limit ¢ = 0 directly in the action).

It was shown above that the consistent operatorial quantization leads to
an accurate expression (5.4) for the generating functional (S-matrix). The
structure of action (5.5) in the modified funetional integral (5.4) shows
that it is a quantum, not classical, gauge algebra that, as a matter of fact, is
operating on the virtual phase trajectories, being generated by symbols of the
operator-valued first-class constraints and the original Hamiltonian, When
£>>0 the functional integral in (5.4) does not depend on the way of calenlations,
it being the conformity of the e-regularization and the type of the symbols
that guarantee that the information about operator ordering inside the
Hamiltonian is accurately taken into account (this has been explained above).

Formal expression (5.39) cannot, in fact, be applied to systems with a
finite number of degrees of freedom, due to ambiguities which it contains in
this case. However, in the relativistic quantum field theory the noncom-
mutativity of the equal-time operators in the Hamiltonian gives rise only to
noncovariant power divergences like 3-dimensional d-function or its derivatives
in coinciding points. It is thought that these contributions are inessential as
long as a Lorentz-covariant ultraviolet regularization is used. As for the gauge-
invariant dimensional regularization, it automatically annihilates any power
divergences altogether. It is, therefore, considered that, at least within a certain
class of ultraviolet regularizations, the naive quantization through the formal
phase space path integral (5.39) is justified as applied to relativistic field theory.
One should not, however, forget that the formal expression (5.39) itself has
no firm foundation in terms of the standard first principles of quantum me-
chanies. Before the adequate operatorial formulation presented above was given,
this expression might have been taken seriously only as far as one believed
that such a formulation was in principle possible. On the other hand, the
accurate expression (5.8) is a direet consequence of the standard first prineciples
of quantum mechanics, namely the operator equation of motion induced by
2 Hermitian unitarizing Hamiltonian, and eanonical equal-time commutation
relations.
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6. — Closing and abelizing the operatorial gauge algebra.

It is known in classical mechanics that one may locally abelize first-class
constraints—in other words, make them commute among themselves—if
one appropriately rotates the basis, nsing to this end areversible matrix, which,
generally, depends on the phase variables. In a more general context it is
natural to treat the corresponding rotation as an effect of the canonical trans-
formation in the minimal sector which leave invariant the form of eqgs. (5.17),
(5.20), generating the classical gauge algebra. It is the dependence of the canoni-
cal transformation generating funetion on the ghost variables that is responsible
for the efficient rotation of the basis of constraints. One may state, therefore,
that the closure and abelization of a gange algebra induced by classical first-
class constraints is accomplished by a ghost-dependent canonical transfor-
mation of the corresponding generating equations.

An ‘analogous situation is to be expected in quantum mechanies. Here
one has eqs. (2.17), (2.18) generating the operatorial gauge algebra. We ghall
look for a unitary transformation in the minimal sector (2.16) that would
make the fermionic genersting operator £, , involved in (2.17), linear in the
ghost canonical momenta, thus providing the closure or abelization to the
commutation relations of the operator-valued constraints. The same trans-
formation—this time, however, accompanied by a form transformation of
the gange fermion—makes also the bosonic generating operator A, involved
in (2.18), linear in the ghost momenta. This corresponds to the closure or
abelization of the commutation relations for the new operatorial constraints
and the original Hamiltonian.

Let the operator 9, such that

(6.1) ed)=0, gh()=0,
be unitary

(6.2) At — Qifit—1
and obey the equation

(6.3) QoA =003%,
where

(6.4) O = U+ 7,0%4,

within this section the asterisk marks operators in the new representation.
~ Due to (2.17), it follows from (6.3) that the fermionic operator (6.4) satisfies
the equation ’

(6.5) (0%, O5.1=0, gh(%)=1,
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5o that the- coefficient operators in (6.4) are subject to the structural relations

(6.6) _;5 (0%, O%1 = —id ggﬁ 04,
(6.7) | [O%4, (7:;] = %{B— U*z

6.8) [O0*4, 0*31=0.

On the other hand, it follows from (6.3), nsing (2.19), (6.2), that

(69) ', ‘  ' (QF = 0% |
whence

. =4yt
(6.10) U = (Ut + ma'(—am—)
(6.11) ' L (=1 = (O,

There take place the following Taylor expansions in powers of ghosts for
the coefficient operators from (6.4):

(6.12) - : Uy =Tt (8,90,

(6.13) =S 3 SU"Mpwa s 005 O,

m=1 {B}=ph m!

where the set of values g}, is defined as (2.50) at n = 1, 4, = A; the signature
is given by (2.55), the structure operators acquire the signature factor (2.61)
under the permutation of any two neighbouring lower indices B, ,, B;,. We
are also using the corresponding designation

(6.14) Zim = U1,

L1

for the operator-valued null vectors in the new representation.
-~ Thus operator (6.4), linear in the ghost momenta, is—by definition—a
fermionic generating operator of the closed gauge algebra. We assume that
this gauge algebra is of L-th stage of reducibility in the sense of the definition
(2.111)-(2.118) formulated in the application to the constraints invelved in
(6.12) and the null vectors (6.14).

Therefore, eqs. (6.2), (6.3) give the unitary transformation Whlch relates
the fermionic generating operators of the open basis of the gauge algebra to
those of the closed one.
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Let us expand the transformation operator into the ﬁ@-normal series in
powers of the ghosts (2.15):

(6.15) § =P, + .9*?;", vy Py e

uM8

where the coefficients
(6.16) B, P4 n=1,..,

possess the same statistics, ghost number and generalized symmetry prop-
erties with respect to the upper indices as the operators (2.26) for the same .

Substituting expansion (6.15) into eq. (6.3), we get the following relations
for the operators (6.16):

6.17)  O.F, + ik T =F,U0¢,

(6.18) Uds-cdn By 4 Oy F4r-4n(— 1Y% 4 (n + 1)ik QEQS’FAAI —1)%

o Dot

+ z m)ka — 0 FuBe | (M, )41 40 = Par 0¥

+ ik Q!%%;'_A" O%4 4 (M2, )4 4n

where

619) M4=0, M*=F 0%,

n—1 - P _ k !
(6.20) WA 4n Emgl(_1)€ﬂ(ﬁAl...AmﬁAm“,,.An + g (";'C!(nﬂ_b——l;n) !) .
(’lfﬁ) %"U-—l—a— FBI BrAmsy . An)’

(6.21) *4r A — frdre. An (¥ 4n
(see also (2.33), (2.34), (2.38)).

In virtue of (6.2), the following conditions must be fulfilled by the op-
erators (6.16):

(6.22) PF,=1,
(6.23) FoﬁAl---ﬁn + FA)-..AnﬁO +

E(zh 2 j By | (Nopym) A2 4s = 0
A 50 e} de = 0,
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where
. P k FB,....Bt 1
(6.24) Fo= (P 'f+2 “i(if) a—g,,—w);,
(n + k) . ak(FA...‘A, B;...Bz)‘r
(6.25) it = (Pl Alurkg atet - T

(6.26) N4 =g , NAs...40 E”Si (F:A,...AmﬁAm,...A,. +
Ok fas... 2
+ z —m —E’—n)k!) (‘!ﬁ) 803 — 0 FB:.. .BkAm+1-..An)

(see also (2.33), (2.34), (2.38)).
Besides, also in virtue of (6.2), the relations must be held which are obtained
from (6.22), (6.23), (6.26) by the replacements

(6.27) FOHﬁ07 FAI---An(_)ﬁA:L--.An

The following expansions in powers of ghosts take place for the oper-
erators (6.16):

(6.28) F = Fo(ﬁ’ 4),
o 1) 3,,, 3.
o P s EOER g onon

(see (2.51)-(2.55)). The structural operators in (6.29) have the same statistics
and the same generalized antisymmetry with respect to the upper and lower
indices as the operators (2.57) for the same n, m.
The solvability of eqs. (6.17), (6.18) under conditions (6.22), (6.27) is
guaranteed by eqs. (2.35), (2.36), (2.42), (2.43), (6.6)-(6.8), (6.10), (6.11).
Consider in more detail the lowest equations out of (6.17), (6.18). Equa-
tion (6.17) gives

(6.30) To«x,Fo + 'mToﬂ.,Fg: = FOT:% ’
where .
(6.31) Pho=Filis, ).

Now turn to the lowest equation out of (6.18) at » = 1 in the lowest sector
A4, = (0, a):
(6.32) Dol Fy— Uy Foluo(— 1) — 2Dy, Foolﬁ»“o
0, U0l
—1)boxe | ifj = > fols, + ik Fllﬁl +
=1 o0k —c?—

+ (i#)? %F%%_Foolﬁm—ma_jgl_ ﬂ*olﬂn+ Fol« * Fo %0l
0
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The Gﬁ-component of eq. (6.32) gives

6.33)  Ugty o+ 05 B — B0 Fio(— 178+
4+ Tounpi:(_ 1)&.,%3011, — TO‘V"F::: (Jo,, +&u )80, __ _]2,%% i HFVuﬁn -+ ’I/ﬁzlﬂlﬁﬁzvn
+ P, — oDy, (— 1)l = B, 0%, _I_,Lﬁpanﬁ*ﬂo

Ou, Ho¥o ?
where
(6.34) | Feole = FS%'{;‘;?:(ﬁ, d),
(6.35) O = Uolin (8, )

(see also (2.72), (2.85)).
The Ol-component of eq. (6.32) gives

(6.36) 220 R, — yikIly, Frfe + #2500 = Fo 2550 + #Fy Zj‘fg

where
(6.37) b= POSfrobop, g,
(6.38) Fﬁ‘: 1 p, 4)

(see also (2.85)).

‘Equation (6.30) gives the transformation law for the constraint operators.
Equation (6.33) gives the transformation law for the struetural operators of the
involutions of constraints. Equation (6.36) gives the transformation law for
the operatorial null vectors of the constraints. - :

Now agsume that the transformation operator (6.15), subject to (6.2), (6.3),
is known, and define the operator .9?:“ by the equation

(6.39) A =%, .

Then we have, owing to (2.8),

(6.40) 2%, O 1=0.

Unfortunately, this does not imply ye.t thét ﬁ;“ﬂjn ié the bosénic operator gen=
erating closed gauge algebra since it may, generally, contain arbitrarily high

powers of the ghost moments.
Expand the operator J?ﬁﬂn into the -#C- normal series in powers of ghosts

(6.41) . ,9?:““ =7+ 3 37,4,. ?Aapml...‘q“
5 . .
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where

(6,42) 'f‘*ﬁ-pnAn — (»f:ym)dz...An

(see also (2.33), (2.34)).
Substituting (6.41) into (6.40), we have

6.43) 175, 0 —in S 08 pova,
(6.44) [17*1:, U1 — [0, 93] +
—|— 'LhT- U z (’I:ﬁ) a?f)—l‘?—aaﬁ Y *Bi...Bx — 21]’1, %g'—* ’f‘*AA!(— )‘g’1

(645) [P rhertn, OF) 4 8 2L V(;l— 04+ Tl ay... 1=

= ifi(n + 1) %’gg Fhddy..dn(1)85
where n>2 and

(6.46)  F*dr.dn= rf}*Al...A.._, O#dn]

® 1+ -+ k! - ok [*4 Fem..
g 0 (— 1)"(%5)"8?——0—

«Brd,...An

Let us next define the operator

(6.47) B, = f*m + (h)~U[A, B0,
where '
(6.48) EMNH=1, ghidy=—1, At=-—A1,

and A is a function of operators of the minimal sector. For (6.47) we have

(6.49) (A%, 8t.0=0, gh(f*.)=0,
(6.50) (B* )t= g*

Expand the operator A into ﬁ@-notmal power series in ghosts
(6.51) — Z j ﬁAl WAx...A.n

where

(6.52) (WM)A,...A,. — TAseAn
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The properties (6.48) impose the following conditions on the coefficients
n (6.51):

(6.53) E(WAr4) = i 0¥ +1,
i=1

(6.54) gh (W41 4%) = 3" gh (O%) —
i=1

(6.55) (= 1) WA dn — (Wda..anyt

Of(WAn... 41 Br... Bryt
+ 8, s

(see also (2.38) at m = 0).
Let us subject the operatorial coefficients of expansion (6.51) to the fol-
lowing equations:

(6.56) %E@QWA + vE= V¥,

(6.57) 2 —0— WAAl(_ )6+ T x4

z‘ﬁ)-I[Wﬂx, ¥ P = Pras
3, %

(6.58) +18 S Wksdn(— )% ——a@—~ iy
(i)~ [ WA 4, U%] + (i#)—17% )45 4n ofHAy. A — () , n>2,
where
(6.59) Prdsdn = [WAr 4o, U*4n) (—1)% 4
S —1+B! & Oxts - Bedyedn
+2 Fimonr D(R) 5, aOmWB’ Prdandn,

and the r.h.s. of (6.56), (6.57) obey the conditions

6.60) &(FPH=0, gh(P5=0,
6.61)  &(P*4)=&C4, gh(P*)=gh(0Y),
6.62) [V3, 051 = m—g—* Pra,

A 3, U4
(6.63)  [P*4, O3] —[0%4, V81 + it g U*P—ih =y P*2 =0,
(6.64) [P*4, 0*3] — [P*E, O*4](— 1)3(04)&(03) =0,

o5 T = (Pt + (—npeonin Tt

(6.66) P4 = (P*4yt
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The solvability of eqs. (6.56)-(6.58) nnder conditions (6.52)-(6.55) is pro-
vided by eqs. (6.6)-(6.8), (6.10), (6.11), (6.60)-(6.66). If eqs. (6.56)-(6.58) are
satisfied, eq. (6.46) takes the form

(6.67) A =1 3,0,
This is linear in ghost momenta. Thus eq. (6.67) is the bosonic operator

generating the closed gauge algebra (see (6.5), (6.49)).
The following expansions in powers of ghosts take place:

(6.68) Vs =858, 9,
(6.69) pra3 5 SUEMpwt s 408 Com,
m=1 {Bi=vh m!

where the set of values of v}, is defined as (2.5) at » = 1, A, = A; the signature
is given as (2.58); the structural operators acquire the signature factor (2.61)
under the permutation of any two neighbouring lower indices B, ,, B;. We
are also exploiting the concise notation

(6.70) Proe = P*|a(5, 9) .
This completes the proecedure of closing the operatorial gauge algebra.

For the new constraint operators, involved in (6.12), for the original Hamil-
tonian in (6.68) and for the operatorial null vectors (6.14) we have

(6.71) [T4s,, Tos) = it Ty, U%
(6.72) (Y, T3, = T, V5,
(6.73) ToZie=0, Z¥ GZin =0,

where s = 2, ..., L. The coefficients in involutions (6.71), (6.72) are given by
(6.35), (6.70), respectively. The eclassical limits of the symbols of the new
operatorial constraints and null vectors are subjected to the conditions

a] ngxo a i
(6.74) ranky || == o =yo(L)x, ¢*=(Pi, ) »
. @ T*=0
(6.75) ranky |Zys | |lze=o = ve(L) x » §=1,..,L,

which fix the L-th stage of reducibility.
A closed gauge algebra is called Abelian if expansions (6.13) contain only
those terms which are linear in ghost operators, while all operators (6.69)
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disappear. In this simplest case we have
(676) (‘len Abe]ln.n z T:‘zx.oal

(6.77) ( :.ﬂn)Abella.n = ﬁ;‘;(ﬁ, 4),
where Tg‘% are the operators involved in (6.12),

(6.78) T =P, 2k, s=1,.., L.
For every operator T%

vy 8§ =0,.., L, from (6.76) the following relations
hold in the Abelian case:

(6.79) (2%, T51=0, [Af,T%1=0,
(6.80) T¥ 1o, 282 =0. ’

Henee, the r.h.s. of (6.76) may be naturally understood as the sum of con-
tributions coming from the Abelian firgt-class constraints T:a, of the (L — s)-th
stage of reducibility for each s = 0, ..., L. At s> 0, these constraints defined
as (6.78) depend on the ghost moments &, _, and are thereby able to produce
a gauge variation of the ghost co-ordinates 08_1. The simplest example of the
Abelian constraints has thus made explicit the fact that at every stage of
reducibility some of the ghost variables of the preceding stage acquire the gange
arbitrariness and thereby behave as gange variables.

Our last task is to consider how the dynamies is affected by the closure of
the gauge algebra. Define the transformed unitarizing Hamiltonian ;. by
the equation

(6.81) A% = 9A%. .
Using (3.22), (3.26), (6.3), (6.39), (6.47), we have
(6.82) _ b= A%, 4+ ()P, 0,

where H*, is given by (6.67),

L L L VA
(6.83) &= Z + 3 2 I
5=0 8’=1 g=3’
0%, is defined as (6.4), P* is given by the equation

(6.84) (P + Ay =PI,

A is defined by (6.51)-(6.68).
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Obviously, we have for (6.83), (6.82)
(6.85) [Q*, O¥1=0, [HS,Q91=0.

To the operators (3.20), (3.21) we put into correspondence the transformed
operators P}, g*¥:

(6.86) Prdl = 9P, QM9 =3%00".
Then the transformation law
(6.87) Hy(P,Q) = H3.(P*,Q%), P, Q)= 2P+ @

follows from (6.3), (6.81), (6.83). Owing to (4.1), (6.87), the time evolution of
the transformed operators defined by (6.86) is governed by the equations

#o Pt = [PY, A%.(P*, 0%,

(6.88)
HOQH = (@, B5.(P%, @M1,
taken together with the canonical equal-time commutation relations between
the transformed co-ordinates and momenta. )
Due to (4.12), (6 86), the restriction on physical states may be presented in
the form

(6.89) Q*(P*, Q*)[Phys) = 0 = (Phys|Q*(P*, @*) .

Thus the dynamies of the transformed operators P, §*¥, eq. (6.86), is governed
by a Hermitian Hamiltonian to be obtained from (6.82) by the formal sub-
stitution

(6.90) P, P, QY Q.

The bosonie, eq. (6.67), and fermionic, eq. (6.4), generating operators of the
closed gaunge algebra enter into the new unitarizing Hamiltonian in the very
same way as the generating operators (2.24), (2.23) of the open gange algebra
enter into the unitarizing Hamiltonian (3.26). In place of the gange fermion ¥
involved in eq. (3.26), there is the new gange fermion ¥* in eq. (6.82), defined
by (6.84). In virtue of (6.85), (6.89), however, the physical dynamics does not
depend on the choice of the operator ¥.

Bearing in mind the above-formulated way to elose and abelize the gauge
algebra, one should conclude that the qualities of being non-Abelian and un-
closed are not intrinsic for the theory, but have rather originated from an
improper choice of the operatorial gauge algebra basis. For systems with a
finite number of degrees of freedom the choice of the basis of the gauge algebra
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is quite arbitrary. By using the canonical transformation (6.3) one may always
find & new basis in which the gauge algebra is closed and even Abelian. In the
field theory, however, we just deal with an «improper » choice of a, generally,
non-Abelian and unclosed basis, since the latter, within the relativistic context,
is made imperative by the four-dimensional locality and covariance of the dy-
namical description. The closedness and Abelianness may be indeed referred
to as intrinsic properties of the theory in the conventional sense when they
oceur in a local covariant basis of the gauge algebra.

From the general point of view, the fact there is a regular procedure for
closing and abelizing the algebra is of basic significance and is an important
aspect of the operatorial quantization of gauge systems,.

7. — Conclusion.

The main result of the present paper is a general method for constrncting
the unitarizing Hamiltonian operator for dynamical systems with first-class
constraints. The unitarizing Hamiltonian, eq. (3.26), is built using (3.22)
out of the three building blocks of the theory: fermionie, eq. (2.23), and bosonic,
eq. (2.24), generating operators of the gauge algebra, and the gauge fermion
operator, eqs. (3.29), (3.34). The gauge algebra is accomplished in the minimal
sector (2.16) (see also (2.115)), using eqgs. (2.46)-(2.49) within the structural
relations (2.35), (2.36), (2.39), (2.40) that follow from the generating equations
(2.17) and (2.18).

The time evolution of operators (3.20), (3.21) of the relativistic phase
space is given by the Heisenberg equations of motion (4.1), determined by the
unitarizing Hamiltonian, with the canonical commutation relations (1.10) for
the operators taken in coinciding time moments. The generating functional of
quantum Green’s functions is defined in the usual way with the help of egs. (5.1),
(4.15). Then the operatorial equations of motion (4.1) give, in a standard
way, rise to differential—with respect to external sources-equations (5.2), (5.3)
for the generating functional (5.1). Solution (5.4) to these equations is written
as a path integral in relativistic phase space. The effective action (5.5) in the
path integrand contains the symbol of the unitarizing Hamiltonian operator
(3.26), wherein the time arguments are displaced apart. This allows for the
order of the operator factors in (3.26). The symbols of the unitarizing Hamil-
tonian operator (3.26) and the generating operators (2.23), (2.24) of the gauge
algebra obey eqs. (5.8)-(5.11) which are the counterparts of (3.26), (3.22), (2.17),
(2.18) in the sense of the «symbol« operator » correspondence (1.6)-(1.8).
The quasi-classical expansions of eqs. (5.10), (5.11) for the symbols of the
gauge algebra generating operators are presented by eqs. (5.15)-(5.22). In the
classical limit the generating equations (5.17), (5.20) prodmce the structural
relations (5.24), (5.25), (5.28), (5.29) of the classical gauge algebra.
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An important aspect of the solution given to the problem of operatorial
quantization of systems snbject to first-class constraints is in the formulation
of a regular procedure for abelizing and closing the operatorial gange algebra,
valid for the general case of any stage of reducibility. The following points
are of basic significance here. Equations (6.2), (6.3) give a unitary operator (6.15)
of canonical transformation that reduces the fermionic generating operator (2.23)
to the form (6.4), linear in the ghost canoniecal momenta. Next, eq. (6.39)
determines the transformed Hamiltonian (6.41). At last, eqs. (6.56)-(6.58)
reduce operator (6.47) to the form (6.67) linear in the ghost momenta.
Then eqs. (6.6)-(6.8), (6.12), (6.13), together with (6.62)-(6.69), generate a
closed gaunge algebra. The transformation of operators (3.20), (3.21) of the
relativistic phase space, accompanying the closure of the gauge algebra, is
given by (6.86). The time evolution of the new operators defined in (6.86) is
deseribed by the Heisenberg equations (6.88) which contain the new unita-
rizing Hamiltonian (6.82) corresponding to the equivalent dynamical system
characterized by the closed gauge algebra.

APPENDIX

Admissibility conditions for the symbol of the gauge fermion operator.

The admissibility conditions, when imposed on the classical limit of the
symbol of the gauge fermion operator, must provide removing the degeneracy
of the functional integral (5.4) if caleulated using the stationary-phase method
(the loop expansion).

We face, therefore, the following conditions:

1) admissibility in the sector of initial variables:

(A1) ra,nki“{{g”g“, ¥}, 99"}“ = ra.nki“{{.?g", Fh Top | = volD) s »
9" = (9, 4);
2) admissibility in the algebraic sector of ghosts:
(A2) rank, [{{#F, ¥}, P, .., }| = rank  |{{Z2, P}, T} | = D)
T,=2 Z3,

80, 8—10g 80g

where s =1, ..., L;

3) admissibility in the sector of Lagrange multipliers:

(A8)  rank,|{{Zi*, ¥}, 7, _,, }| = rank ||{{#3, ¥}, T} = »(D)..,
Tga‘ = ns_la,_lz',z:" ,

where 8 =1, ..., L;
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admissibility in the auxiliarity ghost sector:

ranki”{g’;":{, it “:ﬂ.}}” = ra,nki“{Ti"", {7, ﬂ:ﬂ.}}“ =7y,
Tioe = Zloe Ppoos

80s_y* 8—17

where § =1, ..., L and also

(A.5)
(A.6)
(A7)
(A.8)

5)
a)

(A.9)

Z}Z;{{g’ﬁ", T}v ‘Pa} =0, ' ¢ = (p;, qi)’
Zi (P, P Py e, 3 =0, 8=2,..., L,
éB(Z:;:_l) = gs—loc,_, + (gmx,a gh (Z_lau ) = 0 ’

80s_y
rank, | Zi2

80654

= (D)4

admigsibility in the extraghost sector:

rank , H{{g’i'%’ i, 7":’——1}&,-1}” =rank U{{95%7 7, :ﬂ.} = y(L)y

T =gat 75
80 — YVB0tg_y 3805 2

where &' = 2,..., L, s = §,..., L, and also

(A.10)
(A.11)
(A.12)
b)
(A.13)

{9 :'——22%_5’ {T1 7‘5'—_1}:;._1}} Zi =0 y

8o

EZE ) = 1o, + Conyy  E(Z) =0,

&g

rank, | 235 = y(L).

rank ”{gg'—_f“m’ {¥, n:m,}}“ = rank H{Tssla'a {7, “:ﬂ,}}” =9(D) s

s’ oe __ 778 % 8’ — 1oe,_
T, =Zy P07

where ¢’ = 2,..., L, s = ¢, ..., L, and also

(A.14)
(A.15)
(A.16)

Zes (e W i 1 =0,
EZE ) =81y + Eryy  BH(ZL) =0,

805y

rank, 252, = 7D -

80y

Conditions (A.1)-(A.16) must be fulfilled at least together with the equations

(A17)
(A.18)
(A.19)

{)‘:‘67 Hgt =0, {H% nsrx.} =0,
{g:.7 H'I’} = 0 1 {‘HQU észx,} == 0 b}

{0:",H,F}=0, {H.p,?_, }=07

&g
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where 8 =0, ..., L, and also together with the equations

(A.19) {}*ss'a" va} =90, {H'I-” n::x,} =0,

(A.20) (P Hy} =0, {Hy, C}=0,

where s'=1,...,L, s=¢/,..., L.
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