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We construct a superconformal theory of higher spin fields in a space-time of dimension
D = 2+ 1. The construction relies on the infinite-dimensional superalgebra shsc (N /3) with
the superconformal algebra OSp(N/4) as a maximal finite-dimensional subalgebra. The
invariant Chern-Simons action for the higher spin superconformal theory is an extension of
the usual conformal supergravity action for particles with maximal spin two.

1. Introduction -

In recent works,'® new infinite-dimensional Lie superalgebras have been
constructed which extend the usual supergravity superalgebra for the anti-de
Sitter space adS,, and as such, allow one to construct interacting higher spin
fields in adS;. ’

The most transparent way of constructing these superalgebras is achieved when
one uses an operator realization in terms of arbitrary order polynomials in the
Heisenberg operators viewed as generating elements.* This is an extension of the
usual presentation® for the finite-dimensional superalgebra in terms of the
polynomials of order = 2. The d = 4 action can be written down as a generalized
MacDowell-Mansouri functional.'® The interaction of higher spin gauge fields is
non-analytical in the cosmological constant which plays the role of an indepen-
dent dimensionful parameter of the theory, thus allowing the inclusion of new
terms, of higher order in fields and their derivatives, into the action and the field
transformation laws.

This may lead to an infinite rank theory, in the terminology of Refs. 11 and 12.
The proof of the existence of a consistent interaction to all orders appears as a
highly non-trivial problem. Consistency of the cubic interactions was shown in
Refs. 5 and 6. The essential non-analyticity precludes one from a transition to the
flat limit, which rules out the possibility of constructing an analogous theory in a
flat background. The situation is quite different, however, within the conformal-
invariant approach to the higher spin theory.

In the conformal invariant theory of spin s, the kinetic terms are ¢ [ p'¢ (Bose)
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and ¢ [0’ 2@ p*y (Fermi),"? involving higher order derivatives. The dimensions of
the fields differ from those in the usual Poincaré-invariant theory. Conformal
invariance implies the absence of dimensionful constants, which considerably
restricts the possible form of the interaction. Let us note that the existence of
higher spin conformal invariant theory is not ruled out by the results of Refs.
14-17. In these works, the incompatibility of the higher spin conformal
invariance with the interaction with gravity was shown. The main reasoning
invoked the appearance in the gauge variation of the higher spin action of the
terms involving proportional Weyl tensors. These terms cannot be cancelled by
adding new terms into the metric transformation law. For the conformal theory,
the terms involving the Weyl tensors can be eliminated by corresponding
alterations of the metric transformation law, thus bypassing the “no-go”
statements of the abovementioned works. To construct a complete theory, one
has, first of all, to construct a superalgebra which would be a higher spin
generalization of the conformal superalgebra SU(2,2/1). Such a superalgebra,
shsc(1/4), has been obtained by us, and its form in four space-time dimensions
will be published elsewhere. In the present work, we construct the infinite-
dimensional superalgebras shsc(N/3) (super higher spin conformal) which
extends the superconformal algebra in D = 2 + 1. Conformal superalgebras in
D=2+ 1, and the adS,superalgebras are well known to be isomorphic.
Analogously to that, it turns out that shsc(N/3) is isomorphic to shs(N/4), and
our generators and those of Ref. 4 differ by a choice of basis in the spaces of irre-
ducible representations of SO(3,2). ’

Briefly, the program of constructing the infinite-dimensional conformal

superalgebras and the gauge theory for higher spins is as follows:

1) A suitable operatorial realizatioh of the finite dimensional conformal
superalgebras is to be chosen. ‘

2) An infinite-dimensional associative algebra of all order polynomials of the
generating elements chosen in step 1 is to be constructed and the associative mul-
tiplication in conformal basis is calculated.

This will be the basis of constructing the conformal infinite-dimensional Lie
superalgebra and its localization.

The aim of this article is to realize this program of constructing the global
superalgebra shsc(N/3) and its localization to obtain the gauge theory of
conformal higher spins in D = 2 + 1. ‘

The action invariant under shsc(N/3) can be written down as a Chern-Simons
functional. It is noteworthy that the higher spin superconformal theory can only
be constructed when all spins are involved, and it is only when spin is not higher
than two that the finite-dimensional version occurs (this is the usual conformal
supergravity). The three-dimensional conformal theory of higher spins is
interesting for the construction of the four-dimensional conformal theory, as well
as from the adS, higher spin theory point of view, and another possible
application of the proposed theory is to the spin membrane model.'8
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2. The D = 2+1 Conformal Superalgebra OSp(/N/4)

The superalgebra OSp(N/4) admits a simple operator realization in terms of
second order polynomials in the Heisenberg-Clifford algebra generating elements
(for the notation, see Appendix A).

(@, bp] = 2ig,, Wi} = 25:,;‘, 1

al=a, bl=b, Y=y @

(all other commutators vanish).
The generators of OSp(N/4) have the form

1
Mn(Z) = 4_1 (aaba + baaa)s (3a)
1 1 .
Pa(2) = 4—1 a.a,, Ku(2) = 4_1 baba, ’ (3b)
=— (a b"+ b%a), - (3¢c)
1 1 1 E
Q.= 5 a.vi, Sai = E b, Tipy= Z\Pi\l’i- ' ‘ (3d)

. ,
The operators (M, P, K, D, Q, S, T) are those of the Lorentz transformations,

- translations, conformal boosts, dilatations, supersymmetry, special conformal

supersymmetry and the internal SO(N) symmetry, respectively. The generators
are of the usual statistics.

All the Bose generators are anti-Hermitian, while the Fermi generators are
Hermitian. Recall that the OSp(/N/4) generators have definite conformal weights
in the adjoint representation

adD (T =[D, T°] = cT". 4)

The conformal weights of the generators are, respectively, (0,—1, 1, 0, —1/2,
1 /2 0).

3. The Associative Algebra aq(/N/4) of the Weyl Symbols of Operators, and the
Representations of SO(3, 2)

In Sec. 2, we have given a realization of OSp(N/4) as the algebra of quadratlc
polynomials with the generating elements a, b, . :
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Our aim now is to extend this to higher order polynomials. We shall work with
the Weyl symbols of the operators (see Refs. 20, 21, 4). Now, let a, b, ¢ be the
symbols of operators®

[@x» bs] = [, G5) = [Ba» Bgl = Wi, ¥} = O. Q)

The Weyl symbol of an operator is derived when one substitutes the symbols (5)
for the operators (1). The Weyl symbols are multiplied according to

a 9 ,
(4* B) (2) = exp <a— a—> A(2)B(2) |y = 1, 2> (6a)
Zy

d o > ( d 9 a 9 ) 9 61
—_—— )= + + = (a,, b., ¥ 6b
<622 3Z| 8012., ab? abla aa‘lx a‘IJZI £ ( 'p ) ( )

The polynomials in the variables (5) furnish a representauon of SO(3, 2). The
representation is given by

() =[T,A]* = T*A—A=T, (7

where T stands for the symbols of the SO(3, 2)-operators (3a—c). Irreducible
components of this representation are furnished by spaces of definite degree of,
homogeneity in a, and b,. '

Let us introduce a conformal basxs in these irreducible representation spaces.
The Casimir operator 6 —M,,(z) M of the Lorentz algebra SO(2, 1) and the
operator will be diagonal in this basis.

The basis monomials are of the form (throughout this section, we consider a
non-extended version withy =0, Q, = 1/2a,,S,=1/254,)

m(;l) d(s,c,l)a.q- c)ba(H-c)(aa )(’_l)- (8a)

It is convenient to set the overall coefficient equal to

dis,c,l) = \/ @+ 1! . (8b)

=D+ NUI—)(s+I+1)!

(This amounts to normalizing the basis with respect to the bilinear form
tr (4 * B), see (27) for the definition of the trace.) The conformal weight (4) of the

* From this point on, we work with symbols only and thus do not distinguish our notations for opera-
tors and the corresponding symbols. All commutators{ , }* are understood in the sense of (7).
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generator (8) is easily verified to be equal to ¢, while the homogeneity degree, to s;
the operator (8) is seen to tran} rm according to the representation (/) of
SO(2, 1). The operators o2 and P ;) raise and lower the conformal weight by
one, respectively. We denote this basis as SO(3, 2) — SO(2, 1) ® SO(2).

The values of (s, ¢, /) ran over the following set

s=0 ,00} c=—s5,—s+1,...,5 l=|c||e]+1,...,5. (8¢c)

1
TR

Note that in Ref. 4 the basis was considered in which the four-dimensional
Lorentz algebra Casimir operators were diagonal. The generating elements of
Ref. 4 are related to ours by

1 i~ -
e = —F= I'a,+1 ‘b, 9a
\/5( ) . (9a)
1 —i% i :
ra= _ﬁ(l ‘a,41%), dl=r, () =gq. (9b)

Now we are going to derive the associative product of the symbols (8). Direct
application of (6) leads to rather cumbersome expressions. The derivation is
simplified when one uses new generators, related to the old ones through the

unitary transformation -
4. = ‘—/—— (a.tb)
(10)
1
r.=—(a
Np
New generations satisfy
ql = o rl =Ta [qa’ rﬁ]* = 03
(11)

[ra, rﬂ]* = —2i£qp, [qa, qﬁ]* = 21.8“,.

The transformation (10) on generating elements gives rise to a unitary
transformation of the representation generators

!
TSH@n = di,c( ) T&N0b,a), (12

c= =
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where the matrix elements of the transformation are given by the Wigner
function?? with § = —n/2. As a consequence of (11), the *-multiplication (6) with
respect to ¢ and r are calculated independently in the new basis.

To obtain a final form for the associative product in the initial basis (8), one has
to: (i) perform the transformation (10), (ii) notice that the new basis elements are

of the form

TSNa,r) =

1

C
Je+RiG—R

Bls+k),y(s— k)

dpis+ 0y -k

(13)

(see Appendix B for the spinorial C... Clebsch-Gordan coefficients), and
calculate the product following (6) with the use of the expression (B.8) for the
spinorial Clebsch-Gordan coefficients; (iii) perform the inverse transformation
to the basis one has started with, the inverse transformation matrix elements

being given by d.., (n/2). This, finally, gives

N
et = i
st
I
X 8QQu—I1—1 +1")6QV—I+1V

with the number coefficient

/

sl
CI
1!

S”
C”
l”

o(c+c' —c")

s & 5
lo+s—g—k—
¢ ¢ ¢ | =JRIFDIF+ DI CAr,P) D, Iy
P ror Lk
( s+k s—k /
(GG (5) |l
2 ’ ’ YN
% ) s+k,s k,l'
A(s+k s—kl)A(s’+k’ s —k 1,) 2 2
2’ 2 2 0 2 Sk -k,
2 7 2

(C(l, I', I"y and A(/,’,I”) are given by the formulae (B.4), (B.9)).

We have expressed the structure constants of the associative algebra aq(0/4)

P

- l”)J(Zt - ’, + 1_ 1”)811(2u),ﬂ(2u) T‘(,:z':;)’(zo .

(14)

(15)

through the 9j-coefficients and some particular values of the Wigner d-functions.

-
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The summation in (14) goes as, formally,

1
uuts" " =0,-1,..., o C=—,...,—

1
) ,0,-2-,...,00.

N o=

However, due to the extension of the definition of the coefficients (15) and
J-functions, the region of the summation gets restricted non-trivially.

We extend the definition of the coefficients (15) by putting them to zero unless
at least one of the following conditions is sa}isﬁed:

Sells—|..., stk Pelll=Fl.., I+l et +or=6;

le{lc), - .., s} re{lc’l,...,s'} re{lc”),...,s") (16)
lel=s;  |e|=s || =s".

(In(15), the summationindexk = —I, —/+ 1, ...,/ and similarly for ¥’ and k”).
Note that due to the symmetry of the 9j-coefficients, the coefficients (15) are
symmetric under the interchange of two first columns (the coefficient
(_ l)s+s‘ +sHi+r+ arose).

4. The Algebra shsc(N/3).

Let us now build the Lie superalgebra shsc(N/3), starting with the associative
algebra of the previous section.” To do that, fix the Grassmann parity of the
generations by

P(T{)ey) = 1(0),  2s—odd (even). (17)

The shsc(N/3) gauge fields are

| "
- =25 i(klo2]) is,
w, = Y z R ) T (18)
! selk

See (8¢) for the range of the summation parameters.

We choose the Grassmann shell of the second class'® (the i™* factor is
introduced for convenience, as in Ref. 4, and consider only T with even-2s+ k
(ag® (N/4) in Ref. 4)).

b We will not describe in detail the features specific to the extended version N > I, as the sector of tﬁc
v, variables coincides with that of Ref. 4. The extended generators are T, ... = (1/kD¥i... .
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The Hermitian conjugation is defined as

kk—1)

= i(k),a (2Nt 2 i(k),
o= -, (@@= @R5®, (19)

where (—1)**~"2 arises due to the anti-commutativity of the generating

elements ;. : .
The super-commutator in shsc(N/3) is defined by the general rule,

(A, B = A*B— (—1/*"" Ba 4, (20)

where * is the associative product (14).
The shsc(N/3) curvatures

R: = 8,07 — 3,0} + ficw 0y (21)
are given by

Rf.’:?m.,(u) = apw?}(ck)),a(zl)_(ﬂ‘*v)

k §'s"s .
+ 2 ST st ‘ ' ' cee ) o +¢"—o)
(s’,s",c’,c",l’,[’) uiolr! I
wo.Lrog

LS

X d(k—u—0v)Qp—1V'—I"+Né6Qq—I'+1I"—1)6Q2t—1"+1I'—1)
X 8(j4s's” +s' +s" —s+tuw+r(utv)+1))

X @& io,aaren @50, a20" - (22a)
In this formula, the summation extends formally to the following values of the
parameters

. .
{s',s",0l',\l",p,q,t} = 0,5, l,...,0; {uv,r}=0,1,2,...,00;

(22b)

However, the region of the summation is non-trivially restricted due to the above
extension of the definition of the coefficients (16), the presence of the d-function
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and the factorials in the denominator, and the anti-symmetry with respect to
internal indices. : '
The &(|...}) factor has emerged when taking into account /—(—1)" =

24(|n + 1],), due to the Grassmann parity of the fields (s’ s”), the anti-symmetry
with respect to the internal indices (uv + (u + v)r), the property x, ¢* = —x° @,
and the symmetry of the coefficients (15) (s’ +s” —s). '
The curvatures (22) transform homogeneously under the gauge transforma-
tions
St = 3¢ + facwler, ' (23)
OR;, = fscRue", (29
and satisfy the Bianchi identities

e (0,Rp + facwiR)=0 (25)

with the structure constants 3¢ given by (22).

5. The Chern-Simons Action and the Equations of Motion for the D=2 + 1
Higher Spin Superconformal Field Theory ~

The action of the shsc(N/3) invariant theory in three dimensions can be written
down in the form of a Chern-Simons functional®

' 2
S=ftr(wAdw+§w/\w/\w), (26)

,
where w = w, dx" and d is the exterior differential.
The trace is defined by

tr (w(a,b,¢)) = w(0). (27)
The equations of motion read
Rff;fZMu) =0. (28)

These equations are invariant under the gauge transformations (23) and (24).

*AAB = (A,*B,— A,%B,)dx,dx,
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Some of the fields (the ‘auxiliary’ fields) can be excluded with the help of (25),
by expressing them through ‘physical’ fields which satisfy the equations of
motion with higher derivatives. These equations, however, do not admit non-
trivial (i.e., other than the pure gauge) solutions and do not describe physical
degrees of freedom (spin s = 1 massless fields are trivial in three dimensions on
the mass-shell). The massive version of the theory becomes non-trivial on the
mass shell. It would be interesting to construct a model with the higher spin field
mass acquired via a spontaneous symmetry breaking (through the interaction
with the singleton?).

Let us show now that, within the sector of fields with spin s = 1, 3/2, 2, the
above equations generate those of the usual OSp(N/4) invariant conformal
supergravity.

The terms in the decomposition of the gauge field w, that correspond to the
maximal finite-dimensional subalgebra OSp(N/4) of shsc(N/3), are of the form

—_— (1, I) 0(2) (1,0)
o, = (wn(l b TS " + 0 TS + iy T
1
. d-b &b
+ 0,00 T + 0/R0 Tigy— i0™, \TE ¥ — iw" 4 ! T,,’, %), 29)

26— 4G,

It is not difficult to notice that the T generators are related to the generators (3)
by the transformation (see (8))

T, 7D 1 70 -I_T(m) 1 709 T(z -2 ;Tfé’%))

1
(Zﬁl a(2) J— 0(2) ’ 21 a(2) s 2‘/51 s 2 1(2) > 2

= (P, «(2)> Ka(Z)’ Ma(Z)’ D, Ti(z), Qia> Sia)- \ (30)

The conformal supergravity curvatures

Rry(P) = Dyl — 28 l[/m,-lpmi, (31a)

Rypuy(K) = Dyufyray — 20 ¢,,,,-¢wi, (31b)

Rypn(M) = 8,0y, T 2(0,,,,.0),,’ + Ly Sord — ¥ YipaiPria » (3lc)
R(D) = dubyy + by P — i Vi (31d)

Rio(T) = Ay 2ApikAvki —2i YipiPy'is (_313)
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Rmm(Q) = 6]n¢v]ai + I[m¢v]7i + A{pik\(’v]ak» (3lf)
pm(S) a[y¢v]m + fmy'l’v]‘ + A[;dk¢v]a 3 (31g)
D, @y = 8,05 + NWuyin—sy’ + Chu0 0 (31h)

follow from the formula (22) by the identification
1"(2) N @ wa(z) by Auirys Buais Vi)

2 ( )
= (\/—2_0’:((21),—1), \/-iw;((l),l)’ (10)\/_wp(| 0)> lw,(u(z), w,fuz s wma )) (32)

and similarly for the curvatures. The fields (e, f; w, b, A, ¢, ¥) are, respectively, the
drei-bein, the connection for the conformal boosts, the Lorentz connection, the
dilatation connection, the SO(N) Yang-Mills field, the connection for the
conformal supersymmetries, and the gravitino. These furnish the adjoint
representation of OSp(N/4). The set of fields w9 with fixed degree of
homogeneity with respect to the spinorial generating elements a_, b,, describes

spin S+ 1 (additional 1 is due to a vector index).

In conclusion, let us note that it is possible to carry out, following Ref. 11, a
generalized canonical quantization and find the S matrix for our superconformal
theory of arbitrary spins with first and second class Fermi-Bose constraints. The
structure of the S-matrix corresponding to the action (26) is the standard one for
rank one theories'' (ghost sector of the Lagrangian is analogous to that of the
Yang-Mills theory with our choice of indices of the fields and structure

coefficients taken into account).
)
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Appendix

A_. Notations and Conventions

. We follow the conventions of Refs. 1-8. The two-component spinorial indices
are raised and lowered by means of &,; = —&,, €%, 8, = &' = 1,25 4" = e? 4,

Ay = g, A, The internal SO(N) indices (i, j, k, . ..) are raised and lowered by -

6,6, . ‘

A symmetrization (anti-symmetrization) is implied for any set of upper or
lower spinorial (internal) indices denoted by like letters. The usual summation
convention is understood for each pair of a lower and an upper index denoted by
the same letter. We use notations such as 4;,,) = 4,y — Ay,

Ap o= AumpAi i = Ainys Eap.. Eag = Euir), piny>
(W] [—— N
n n n
(A1)
qa...qa = qa(n)’ ra...r-x = ra(n)s 5::6: = 6:}"3’ etc.
[N [S——)

A
n n n

The three-dimensional world indices 4, v, ... = 0, 1, 2. The metric has the
signature (+, —, —). :

For a change of notation from the Lorentz indices (a, b, . . .) to the spinorial
ones the matrices 0%? = (I,a,,0;) are to be employed. (g, and o; are the Pauli
matrices.) We often use the notation d(n) = 1(0), n = 0(n # 0);

|nl, = mod,(n) = n— [g] 2. T (A2)
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B. The Spinorial Clebsch-Gordan (C.-G.) Coeflicients
A spinor sz,, par)can be decomposed into irreducible symmetric multispinors

according to*
Tunson= D, 6Qu—I—1+1"6Q2s~I+F =)
’ /N ’
X 6(2’ + 1_ I, - l”) Cdu)’p(zl), (ZF)T;I(Q s (B.l)
T%l') Cy(zr)’dm’mw T, scrys (B.2)
where the spinorial C.-G. coefficients are
Ca(?.l),ﬂ(2l')3y(2’.) = C(l’ l,)l”) 8r.\(Zu), Bu) 5.?4(;.:’;,)3(2:) 1} (B'3)
INEHIRE + 1)
car,in= (2121 L , (B.4)
(+V =M+l =mwr+r-ndi+r+r+1
u, s and ¢ are defined through the d-functions.
The symmetry properties are expressed as
Coan p(zl'),’w') = (—1*F-F Gean), a(ﬂ)ay(z ), (B.5)
and the orthogonality properties as
2 Cutany.pany " COIPCD o, = 85606500 (B.6)
3 [
-(B.7)

20), B2l v 20 — 5p20)
Cr(ﬂ')’“( g Ca(Zl),ﬁ(Zl')’p( —57(21')'

2
These formulae are analogous to the corresponding usual relations for
Cl r. -2 The spinorial representation analog of the intertwining formula for five

cltr . coefficients?? reads
e

ACh), pG) 8(2ky), 22k )
Ca(zj) ’ Cﬂ(Zk) s Cl(Zjl) ,6(2ky)> Cp(ij) ,&(2k9)

X Ceapy tam™™ = V(@ + 1) (2/3+ 1)Qj + 1)(2k+ 1)

JiJa J
X kl kz k Ca(zi),p(zk),y(zj') (B.S)
Jiga J



744 E. 8. Fradkin & V. Ya. Linetsky

where { } are the 9j-coefficients.?? The triangle coefficients A(/,/, /") is

(+r-mi—-r+mywr+r-n

ALY = B.9
( ) (+r+r+1o ( : )
Note that the shs (1/2) commutation relations*? can be rewritten as
Z jlrr-r-1
[Tty Tparp = S(|4lr +1+0V =1 +1)2)
o Toend = 2 AP | |
X Caany,par”® Tyar (B.10)

or, in the weight basis, as

jirr-r-ioire
[Th, Th} =D mm Sl + I+~ P+ 12) T, (B.11)
S J@PFDAGT, T




