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HIGHER-SPIN SYMMETRY IN ONE AND TWO DIMENSIONS (I)
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Higher spin theories in one and two dimensions are considered. The analysis of the ghost
sector is carried out and a possible analogy with the ghost sector of the superparticle and the
Green-Schwarz superstring in the covariant gauge is discussed.

1. Introduction

Considerable progress in the construction of theories of massless higher spin
fields which interact among themselves and with gravity has recently become
possible due to the introduction of a new class of infinite dimensional higher spin -
superalgebras. The algebras shs(N|2M), which generalize osp(N|2M), were
constructed in Refs. 1-3. The superalgebra of higher spins and auxiliary fields,
shsa(1), was constructed in Ref. 4. Based on these superalgebras, the theory of
massless higher spin fields in adS, was developed in Refs. 1-10. In particular, in
Refs. 5 and 6 the cubic self-coupling and coupling with gravity of massless higher
spin fields were constructed which turned Qut to be non-analytical in the
cosmological constant. The theory beyond the cubic approximation was consi-
dered in Ref. 7. Conformally invariant higher spin theory has been developed in
Refs. 11-16. The Chern-Simons conformal higher spin theory in D=2 + 1,
which generalizes the D = 2 + 1 conformal supergravity, was considered in Refs.
11-13. It is based on the conformal superalgebra shsc(N|3) (¢ for conformal)
which by construction is isomorphic to shs®(4|N). New superalgebras shsc”(N|4)
and shsc”(4|N) which generalize the D =3+ 1 conformal superalgebra
SU(2, 2|N) were constructed in Refs. 13-15. In Ref. 16, hsc™ (4) (a generalization
of SU(2, 2)) was used to build the cubic interaction of conformal higher spins
among themselves and with conformal gravity. The corresponding lagrangian
generalizes the Weyl lagrangian C2. The supersymmetric version of Ref. 16 will
soon be published.
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The present paper is devoted to higher spin theories in one and two
dimensions, which generalize one- and two-dimensional supergravity. Though
these theories by themselves, similarly to the D = 2 + 1 theory, do not possess
physical degrees of freedom on the mass shell, yet they may play an important
role in understanding the theories involving matter fields® in D=1, 2, 3.
Representations of the corresponding higher spin superalgebras can be reahzed as
symmetries of the space of states in such theories.

The conformal algebra is infinite diménsional in one and two dimensions. .
However, it contains a finite-dimensional subalgebra, the little conformal
algebra. In this paper we consider an extension of the little conformal algebra
(and also of the adS, and P, superalgebras) which involves higher spins in D = 1
and D =1 + 1. The higher spin extensions of the Virasoro algebra (and the
superconformal algebras) will be considered in a subsequent paper.

2. Conformal Higher Spins in One Dimension

The little conformal algebra in one dimension,
so(2, 1) = SU(1, 1) = sl(2; R) ~ sp(2; R)

admits a simple oscillator representation in terms of Heisenberg operators

(4,4 =2, )

2 1-f~1 3 1 sta+aaty 7 gy
T+=Zaa, o=§(a a+aa ),T..=Zaa, (2)
(To, To1= £ T, (T4, T} = — 27, )

where T, = D, T, = K, T_ = P are dilatation, conformal boosts and translation
generators. The so(2, 1) algebra admits a number of extensions which were
classified in Ref. 17. We shall be concerned only with th€ superalgebra osp(N |2).
The osp(1|2) superalgebra follows by adding the following generators

. 1, . 1
Ty =EaT, T p= ‘ia 4)
to (2).
The infinite-dimensional extension of the osp(1|2) superalgebra follows by

considering polynomials of arbitrary degree in the generating elements a and a’."’

* Interaction of the scalar field with higher spins in D = 1 and 2 was considered in Ref. 37.



Higher-Spin Symmetry in One and Two Dimensions (I} 2637

For calculational purposes it is very convenient to go over to Weyl symbols A of
the operators 4 and work with the associative *-multiplication of symbols (see
Refs. 3, 4, and 18-20)
R ]
A*B=Aexp\—— ———})B
éa da' da' da

(5)

The basis in shs(1]2) is naturally chosen as

Hys+m s—m .
1, =@ ©

2 Js+m)(s—m)!’

where s =0, 1/2; 1, ... is an so{2, 1)-spin, and m = —s, —s + 1,...,s can be
interpreted as conformal weight ([D, T;,] = mT;,).
The associative multiplication takes in this basis the form

55°5” s
Tfn * Tfn' - z a(s, S,’ S”) Cmm’m+m' Tm+m’9 (7)

s
where the reduced matrix element is defined by

5.5, 57) [ (s+s +s"+1)! 12 ®
AR ¥ =
as G+s —s)(s—5 +5)(s +5"—3)!

25%+1)

and C are Clebsch-Gordan coefficients.?! The super-commutator is defined in
shs(1{2) by

4,8}, = A*B—(—1y""" Bx4, ~ 9
where the Grassmann parity of generators is o(1) for s (half) integer:

a(T) = |2s), = =,. (10)

The super-commutator of two basis elements assumes then the form'""

[T%, ol = D, 8(|dss’ +5+5"—5"+11)a(s,5,5") Commsm X Tonsms (1)
. s

where 8(|n|;) = 1(0) for n even (odd).



7 2638 E. S. Fradkin & V. Ya. Linetsky

The superalgebra shs(1|2) admits invariant multilinear forms:

Tr(d*B+...*C), (12
Tr (A(a, a*)) = 4(0, 0), (13)

Tr(T5* To) = (= 1) 8% 6w (14)

for A, B, ..., C being the elements of the Grassmann shell of the first or second

class.??? l

Gauge fields and parameters of shs(1|2) in D = 1 are of the form

o= o Tin( )6 = D e Toli ™). (15)

Gauge transformations are defined in the usual way, as =0
5&)0 = @06 =&+ [wo, 8],, (16)

where @, and & are elements of the Grassmann shell of the second-class by
definition, i.e.,

(= 1) @5 T = T 0y O @ = (— D OF e Wi -
With the field transformation law (16) at hand, we can write down the

Lagrangian for ghosts which correspond to the shs(1]2)-symmetry.
We introduce ghost fields

C =) CTh n(Ch) = n(@hm) + 1. (17

ré

In accordance with the general theory,?>-¢ the ghost lagrangian is of the form

Fn=T (6,‘1‘*@ C+5'T*C*C) | (18)
I Sw, dc ’

where the gauge fermion is equal to

y=> f dt C3,¥5,, a(¥) = 1, (C}) = n(C) (19)
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and
¥ 0¥
— = T, (=17, 0}, = (Wom> Ch)- (20)
d¢ Zm 505 R
Choose the gauge in which all fields except for wg -, = 1/ \/5 are set to zero

(e= \fi wg -, is the einbein, and T, = \/5 P is the translation generator). Then

=) f dt G, (wg,,,, - —J—E—'a(s— 1)6(m+1)) : @1)

The ghost lagrangian becomes in this gauge a sum of quadratic terms

Ln= D, Co(Crnt anCius), (22)

where a;, = \/(s—m) (s+tm+1).
The lagrangian (2.2) can be brought to the form

L= 2, T Con (232)

where C3, = C5, + as, [ dt C3,,,.
Consider now an extended version based on the superalgebra shs(N + 1|2).* It
follows by adding the Clifford generating elements

{‘p‘i’ 'J;J} =26U9 ls.]= 1:"~aN- . (24)

The gauge and ghost fields which correspond to shs(N + 1|2), are of the form

N N
Wy = z wgk)’ !Pi,...%(, C= Z Ci(k)¢il,__‘pik> (25)
k=0

k=0

where (i) @, and C*™® have the structure given by Eqgs. (15) and (17) and are
antisymmetric tensors with respect to the internal indices; (ii) ¥, are the
symbols of ;.

The structure of the ghost Lagrangian " is the same as that in Eq. (15) with the
s-multiplication and the trace now being defined with the y;-saccounted for. The

ghost Lagrangian (23a) in this case takes the form
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= i, @36)

where « is an index ranging from 1 to 2V (@ = {i(k), k=1, ... ,N}).

3. Conformal Higher Spins in Two Dimensions

The little conformal algebrain D=1+ 1is glven by a sum of two conformal
algebras for one dimension

s0(2, 2) ~so(2, 1), ®so(2, 1)-

which act, respectively, on the coordinates x* and x~. The super-extension
involving conformal higher spins is of the form

shs (1|2), @ shs(1]2)_. (26)

The corresponding gauge fields take the form'
I - * — t, .5 x s - X
w,= " ot w, u= z Opm Th(i ), 27
where *T%, are the generators (6) with the substitution

(a,a") = (*a, *a').

The gauge fields ], represent tensor and spin-tensor (for half-integers)

components in the light-cone coordinates.
The curvatures of the superalgebra (26) have the form

R,=*R,+ R, *R,, 2 R T (™, (28)
+R:4v,m = a: w:,m_av +w;,m
+ Z 8(|4s's"+5' +s"—s+ 1) a(s’,s",5)

X Coltem * Ot O (29)

and similarly for "R.
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Now, choose the invariant action as®
Sy = fTr(l *R), (30)

where A = t1 + "4, *A=X( ™*A,*T°,(—1)"™ are the Lagrangian
- multipliers, and R = 1/2 R, dx" ndx’.

By the invariance of the bilinear form, the action (30) is invariant under the
gauge transformations

0w, = de+[w,,el, = D¢,

(€2))
oA = [A,¢&). '
The ghost lagrangian in this case assumes the form
% —T(J'W*@C+5"P*AC +5’T~C*b) (32)
o= Tr\Gg, " 2 T " A b5 ‘
Yo=Yy Yy = z fd’x SO S (33)
s,m .
Now, choose the light-cone gauge
' _ 1
Y = 2 f d’x [+Cf,, (+wi_m——\/—5—5(s—l)5(m+l))
_ _ 1
+ C:,,( w’.,,,,—j_z—a(s— 1) 6(m+ 1))] 34)

(with "', _, and "' _, being the nonzero components of the flat zweibein, see
the Appendix). In this gauge the total action can be brought to the form (which
follows upon integrating out *@? , and “@* ,):

® Note that our equations for S = 1/2, 1 *Rj, » = 0, "Ry m = 0 (*@jm = 0 for s> 1) differ from the
equations of Ref. 29. Namely, instead of the constraints fiuy = ¢y = 0 we have imposed the
constraints R(K) = R(S) = 0.
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S = 2 f dlx[+;‘-.:n(a+ +ws—.m + afn+ws—,m+l)
+ T (0-T Wt an @ )
+ TCh(0,7C5+ ay " Cre)+ ~Ch(o- TChtan, Gl (35)
By the transformation

+ ~ — +,.5 K ++ 5
ajs—,m_ w—.m+amfdx W im+1s

— o~ = s ——
a’i,m - w+,m+afn f dx ws+.m+l>

(36)
G, = tCi,+al, f dx**Cs,y,.
G, = Chta, f dx™ " Chy
the action (35) can be brought to the form
S= z f d*x[* 25,0, 1@, + AL @, ,+ T8, C,
+ 7C%9.7C%,] (37)

which is similar to Eq. (23).
The above gauge, similar to any axial gauge, leaves a residual symmetry with
parameters obeying certain differential relations such as
9, Te5,=0,8_"&,=0.

The (N, M)-extended conformal superalgeb{a in two dimensions is a sum of
two superalgebras for one dimension

shs (N+ 1{2), @ shs(M + 1]2)_.
The most interesting case is N = M. When N = M = 2k,

shs(2k + 1{2), & shs(2k + 1|2)_ ~ shs(2k + 2{2).
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The Clifford generating elements ¥, (i = 1,...,2k+ 1) are split into two sets>

= ML g, T, = (19,6 = 90 e (38)

B | =

with I1, projecting into the ‘right’ and the ‘left’ subalgebra.
Let us write down the expression for curvatures in this case
+Ruvm 1(k) a wv m,i(k) av+w;4,m,i(k)

!
+ 2 Z 3(|4s’'s” +5 +s5" —st+r(utvy+uv+1}) ——

wlplr!
(u,0,7) (s’ .5".m’.m")

r—|r L +,.8 + .5
X i a(s',5%,5) Crpmem Ok—u—0) X " e snjr~ O oriimrion (39)

and similarly for "R.

4. Higher Spins in adS,

The adS,-superalgebra osp(1}2) is defined by the commutation relations

[P+,P-]= —ZAZM,[M’P11= iPt’

{Q+12, O-12} = M, {Q.i12, Qi102} = Ps, (40)

1
M, Q.inl = iEQ:ma [Py, Qzin]l = F Qiin2s

where A is the inverse adS, radius. Gauge fields and curvatures of the
corresponding infinite-dimensional higher spin extension, shs(1|2), are of the
form

W=D o Tin i), (41)

Ryym = 0,05, — 0,05, + z 3(|4s’s” 45" 45" — 5+ 1]) A iHmim+m)

X (8’5" ,8) Crrtrm Oy s Oy (42)

A flat space limit 1 — 0, which gives rise to d(|m’|+|m"|—|m’ +m”|), is
available in Eq. (42). The corresponding curvatures generalize the D =1 + 1
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Poincaré supergravity curvatures, and the superalgebra shs/(1]2) (f for flat)
extends the D = 1 + 1 Golfand-Lichtman superalgebra.

The action for these theories has the form (30) and the ghost Lagrangian
coincides with that in Eq. (32), with all quantities now taking values in shs(1|2). -

5. Conclusion

Let us note that the conformal higher-spin infinite-dimensional symmetries in
one and two dimensions considered above generate the ghost sector (23), (37)
analogous to the ghost sector which emerges when covariantly quantizing the
superparticle’””® and the closed Green-Schwarz superstring.%%3! Note at the
same time that while the superparticle and superstring theories involve reducible
generators and, accordingly, ghosts of each generation are ghosts for ghost of the
proceeding generation, in the higher spin theory, on the other hand, the infinite
dimensional symmetry with irreducible generators is given as a whole from the
very beginning and all the ghosts arise just as ghosts for this symmetry.

This supports the idea that a formulation of superstring and superparticle
exists in which gauge fields of all spins are present and the gauge algebra
described in the configuration space by an infinite number of irreducible
generators. '

It may be hoped that in the open string theory the adS,-higher spin symmetry
plays an important role. Both in the open string theory and in the adS,-higher
spin theory, the little conformal group in two dimensions, so(2,2), gets broken
down to so(2,1). In that case the dimensional constant of the open string theory,
the strings’ length parameter, is related to the cosmological constant of the
adS,-higher spin theory.

Extending to three dimensions the analogy between the ghost sector of higher
spin theories in D = 1,2 and superparticle and superstring theories, it may be
conjectured that the ghost lagrangian of the supermembrane theory in the
covariant quantization has the structure of the type of Tr(C * 3C), similar to the
higher spin theory in D = 2 + 1 in the axial gauge.'>!3

It may be conjectured that the adS;-higher spin theory is related to the
supermembrane without Weyl invariance’>* whereas the higher spin super-
conformal theory corresponds to the Weyl-invariant supermembrane.’*-3¢

We hope to return to these problems in the future.
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Appendix

Spin s+ 1 in D = 4 was described in Refs. 10, 38, and 39 by the following set of
gauge fields:
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(1) for integer s,

D pnaert =0, 1,...,5, (A.1)
L, ji-naas = 0, SG—1) @y 1) Ceas—y = 0 (A.2)

(2) for half-integer s
1 (A.3)

w“‘b(,)‘a(s_%‘).‘a, t = O, l, P ,S—'Z',

twu,b(l—l)a,a(s—é);nr =0, 7, ﬂw/t,b(t),a(s—3/2)r:,ﬁ =0, (A.4)
where o and f are spinor indices and {y%, y*} = 21*. Consider this set of fields in
D=2° .

In the light-coordinates the only nonzero components are

(1) integers .

[ ®_ - 4. 4,5=Zm>0
PRatiS A
s—m 5
P w - _,—5=m<0
wp,m - * #,h’—’4;+m+,‘~—’s ’ (A‘S)
—_ ’ 1Y —
W e+ =0 4 - -(—1,m=0
" | S—— e,
- 5 s s s
(2) half-integer s
= >3
w . §=MmMm=—
o Bt 2
s s—1/2
3
@+t ms 0 —s<m<-—5
s B Em s’ A6
Oym = | (A.6)
w _ - m == e
“ ...1,+...+'+”29 2
-4 s—*_
1
@ . _ = - =
“ ',i'_;'i,—n/z’ 2
s=4 s-ﬁ

° Our notations for two dimensions are: a, b, ¢ = 0, 1 (tangent space indices), 4, v = 0, 1 (world
indices), 1 = (+, =), x* = (x° £ x)/{2,9*t =77 =0,7"" = 1,6, = —¢&+- = land the two

dimensional Majorana Spinor is ¢ = :“’2)_
-2
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Thus, in the spin-tensor formalism the shs(1|2)- (and its flat contraction
shs’(1 |2)) gauge fields have the form (A.1-4) with s = 0, 1/2, 1, ... . Further, the
two-dimensional supergravity fields are, in our notations,

(e:: wpabs ‘Ppﬂ) g (w;ll,tl ’ w,l;,o, w;ltft l/2)' (A7)
Gauge fields of D = 1 + 1 conformal hlgher spin superalgebra are given by a
double set of fields (A.1-4).
The conformal algebra in D = 1 + 1 reads
[Py, K_]= D—M,[P_,K,]=D+M,
M,K.]= +K,,[M,P,]==*P,, (A.8)
[D,P.]= —P.[DK,]=K
where, P, K are light-cone components of the translation and conformal boosts

generators, and D and M are generators of dilations and pseudorotations.
The *7 and ~ T generators, which are given by

1
T, =K, *T_=P_,*T,= 5 (M+D)
' (A.9)
1
“T,=K_,T. =P, Ty = (D—M).

Span the so(2, 1), and so(2, 1)_ algebras respectively, the fields of the conformal
gravity are, in our notations,

¢
. . . +,.,1 - 1, +,..1 -
(e:, wuaby buaf:) g ( wu,—l, [l, 13 + (1) wy,Os wp,0+ wu,o,
1 P |
+ W, @) (A.10)

because /2 T, = T1,\J2 T_ = T',, 2T, = T} (cf. Eqgs. (2) and (6)).
The flat zweibein is e, = J,, or,

(A.11)

i/ \/-f comes from the normalization \/5 P, =*T.).
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