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Constructed are conformal higher spin superalgebras in one and two dimensions, which
contain the Virasoro algebra as a subalgebra. The general structure of these superalgebras is
investigated.

1. We have considered in Ref. 1 higher spin theories in one and two dimen-
sions. The theories are based on the little conformal higher spin superalgebras
shs(N|2)in D = 1 and shs(N|2), & shs(M|2)_ in D = 1 + 1, which generalize the
little conformal algebras so(2,1) in D = 1 and so(2,1), ©so0(2,1)_inD = 1 + 1).
However, the full conformal algebras in one and two dimensions are infinite
dimensional algebras Vir and Vir, @ Vir_ respectively (Vir — abbreviation for
Virasoro). They contain the little conformal algebras as subalgebras. In the
present paper, we shall investigate the general structure and construct conformal
higher spin superalgebras containing the Virasoro algebra as a subalgebra. For
these superalgebras the notation shsc (super higher spin conformal) is used (as for
the higher spin superalgebras generalize the conformal algebras so(D,2) in D> 2).
In Sec. 2, we consider the general structure of conformal higher spin
superalgebras and their central extensions. In Sec. 3, the algebra of the pseudo-
differential operators is considered (in terms of symbols). In Sec. 4, N-extended
conformal higher spin superalgebras are obtained on the basis of the Poisson
brackets. They generalize the SO(N)-superconformal algebras to higher spins. In
Sec. 5, an one-parameter family of conformal higher spin algebras hsc, (1) is
described. It extends the family L, (S1(2)) in the same way as the Virasoro algebra
extends sl(2). In Sec. 6, some physical applications of the above algebras are
discussed.
2. Consider the general structure of the superalgebra that extends the Virasoro
algebra to higher spins. The basis can be chosen in this superalgebra as
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TS

mas @=1,...,0as. 2.1)
The conformal spin, s, of a generator defines a representation of the Virasoro

algebra (without the central extension)
[Ln,Tr:x,a] = (Sn - m) T:+m,a . (22)

Our definition of the conformal spin differs by one from the usual definition. >
The corresponding currents have conformal spin s + 1. In this case the Virasoro,
supercharge and Kac-Moody generators have conformal spin (1, 1/2, 0),
respectively (the corresponding currents are of dimensions (2, 3/2, 1), respec-
tively). This definition looks natural from the standpoint of restricting the
Virasoro algebra representations to the little conformal algebra so(2,1). The
generators T,,, m = —s ,..., s span a finite-dimensional representation of
s0(2,1) of spin s (for s = 0).

The generators of conformal spin s = — 1, — 1/2 correspond to the fields of spin
s+ 1 = 0, 1/2. These one-dimensional scalar and spinor fields can be viewed as
singletons of the adS, -algebra so(2,1),** similarly to the Rac and Di singletons for
s0(3,2). :

The index » pertaining to the spin-s representation space of the Virasoro
algebra, runs over Z for integer s and over Z + 1/2 for half-integer s.

_ Theindex @ = 1,..., a, ranges over different representations with the same
spin s, «, being the number of such representations in the algebra.

Superalgebra commutation relations with respect to the basis (2.1) are of the
form

s s —_— " a¥ rs”
[Tn,aaTn',a’} - z .f.;,n,a;s‘,n’,a’; e Tn",a” + Cs,n,rx;.v'.n’,q' > (23)

where the Grassmann parity of the generators is defined by
II{T*) = O(1) for s (half)integer. 2.4)

The dependence of the structure constants f and the “central matrix” C on n,
n’, and n” is determined by transformation properties of the generators (2.2). We
assume that the generators 7,., span a subalgebra isomorphic to the Virasoro
algebra (accordingly, 7., is sometimes denoted as L,).

The dependence of the central matrix in (2.3) on n and »’ is easily found with
the help of the Jacobi identities with so(2, 1)-generators Ly, L. :

Conwsar = 8(n+n) (s —5) Cow X [ [ (14D, Coe = Cope 29)

p=—s
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This expression generalizes the well-known central terms for spins 0, 1/2 and 1:

nC® (n2 —i—) C"” n(n*—1C".

In terms of the OPE the superalgebra (2.3) reads (T:(z) = Z 3.1z

n=—o0

T (2) T%(w) ~ z Z s "W TEW) + ., (2.6a)

)s+:

where “structure operators’ have the form

., . d
Fora™ @M = D o (D) 2—W) P38 =—.  (2.6b)
pHq=s+s —s" dw
p=1

The first term in the rhs (2.6a) generates (2.5) for the central term.

Assume now that the superalgebra (2.3) is represented in the Hilbert space of
states of a physical theory. Then, according to general rules, one can build®® a
Fermi generating gauge operator Q. The nilpotence condition Q* = 0, which
secures gauge invariance, fixes the values of central terms, which are in this case
interpreted® as quantum deformations in Wick’s involution.

In Ref. 6 explicit formulae are given which express the quantum deformations
through the structure constants f of the algebra with which one has started. In
particular, for the superalgebra (2.3) (assuming that (7;:,)' = T=,.) it follows that

* —_— ra ,n",a” rs A% a” s
[T:,a’(T:',a’)T} - 2 [fs,n,a;s’,n’,a’;r " T:’:’,a" +f:’,n’,a';s,n,a;f e (Tn',a")T]
ot

n"’zo
+ C—'S,n,a;s',n',a' ’ (27)
where
fs,n,a;s’,n’,a’;s”,n”)a’ = 9 (n - n,)fs,n,a;s’,—n’,a’;s".”"an (28)

® (n) = 1(0) for n> (<) 0 and 1/2 for n = 0) and in accordance with Eq. (6.17) of
Ref. 6 '
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C, _ _ 1)4s334f S4,n4,a4f’ $3.13,03
5y 0y, .0 ( 51,0y, .83, M3, a3, S9,My,00;54, 4,04}

53,3 n3=0
54,04 1g=0

(2.9)

- CS|,II|,¢!1§32, —np,ap”

To calculate the complete “central matrix” C one should know all the structure
constants f. However in order to calculate the conformal anomaly (central term

151,

states in the algebra (the range of summation over s and «), since in this case only
structure coefficients from Eq. (2.2) enter in (2.8)

Fintwma ™™ =(ns' +n')8 (n — n') 63 37 6, . (2.10)
The sought anomaly is then

Crmtstms = 6(n—m)2(—1)’-’a,6(sn) @.11)

where the spin s contribution is
Clsn) = D 8 ()8 (n — n') (ns + n') (nls + 1) — n') (2.12)

(the multiplicity e, arises when summing Z;°, 67). Doing the sums in (2.12), we
arrive at (omitting the term linear in n, since it can be absorbed into a redefinition
of Ly)*

. n’
C(s,n) = Z(GSZ + 65+ 1). (2.13)

Thus, the conformal anomaly assumes the form

Crniimt = J(n—m)—Z(—l)Z‘as(6s +6s+1). (2.14)

oM L5k

In the case of the Virasoro algebra (a; = 1,a, = 0 when s # 1), the Neveu-
Schwarz algebra (o, = oy = 1, ¢, =0 when s ¥ 1, 1/2) and N = 2 super-
conformal algebra (o, = ap = 1, &y = = 2, otherwise a, = 0) we get

Vi 13
Com= d(n —m)?n R (2.15a)

* This term is (— #/6). After summation over s the contribution of this term in C is equal to zero in the
supersymmetric case (2.16), (2.17) (this is a “graduate number of degrees of freedom™).
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26—11 5
Cr.S= 6(n—m)n (———2=5(n—m)—n3, (2.15b)
12 4
- 26—22+2 3
CNr2= §(n—m) n3(———1—2———) = 6(n—m)n?. (2.15¢)

These values of the central charge (i.e., the coefficient in front of n®)coincide
with the values of conformal anomalies calculated by other means in Refs. 9 and
10 for the bosonic string in D = 26 dimensions and N = 1 spinning string in
D = 10, and in Ref. 10 for the N = 2 spinning string in D = 2, To calculate the
conformal anomaly (2.14) one is to do the summation over the contributions of
all spins. This requires choosing an appropriate regularization (the {-function
one, for instance).

In the supersymmetric theory it is natural to sum over the contributions of each
(finite-dimensional algebra) supermultiplet as a whole. The conformal anomaly is
then

Crmtstms = 6(n = m)? D € (Sma) @™, (2.16)
Em) = D, (1™ (6574 65+ 1), (2.17)

where s,,, is the maximal spin of the supermultiplet, a™* are the multiplicities of
these supermultiplets, and C (s,.,) is the contribution of the supermultiplet
(& = Spin» - - - » Smax are the spins which constitute the supermultiplet, and o™
their multiphcmes in this supermultiplet).

Using this natural prescription for the calculation, the conformal anomaly can

be seen to vanish in some of the extended superalgebras without resorting to a
regularization, since the contributions C (Sma,) Of each supermultiplet vanish
- separately one by one (see further Sec. 4).
3. The most appropriate method for building up superalgebras of the type of
(23) is through the operator realizations. Following the general strategy of
constructing infinite-dimensional higher spin algebras,!'-'* one is to choose first
an appropriate operator realization of the subalgebra which corresponds to
lower spins, and then to extend it to the full higher spin algebra containing
representations involving higher spins.

There are two ways of building up such operator realizations. The first one is to
consider the infinite-dimensional Heisenberg algebra generated by infinite
number of oscillators. Generators of the higher spin algebra are realized as
infinite formal series, bilinear in creation/annihilation operators. It is in this way
that the Virasoro algebra is usually realized in two-dimensional field theory and
string theory. '
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In this case one actually deals with an embedding of the higher spin algebra into
the infinite-dimensional algebra sp(co; C) (or osp(N| o0 ; C)). We hope to return to
these realizations in the future.

The other way to build up higher spin algebras is to extend the operator symbol
construction '®!® to the case of non-analytical dependence of symbols on their
arguments. In that case one deals with an embedding of the higher spin algebras
into the algebra of pseudodifferential operators. >

Consider formal pseudodifferential operators of the form

. d
Px,0) = Y, Fomx"8", 8 =— (3.1)

b
n,mel dx

where 7' is the inverse of the derivation . It is required to satisfy the following
rules for commuting through multiplication with a function

a7 Ux)= i (—1)@U)- o, (3.2a)
n=0
Ux)-37' = i " (@"D). (3.2b)

n=0

Define a'asymbols of the pseudodifferential operators (3.1) (with x — at

80— d4,[4,41=1)
Fpo= D, Hama™a". (3.3)
n,mel

These symbols are formal Laurent series in the variables a and a'.
The transformations

B 18 9 14
Lw = €xp Y Lo (3.4a)
PR {—ii}f (3.4b)
ad’ Xp aaTaa da N

allow one to go over from the afa-symbols to the Weyl and aa'-symbols. The
commutation relations'(3.2a,b) easily follow from the transformation (3.4b). The
relation (3.2a) describes a transition from the aa'-ordering to the a'g-ordering.
whereas in terms of symbols this transition is given by Eq. (3.4b). The relation
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(3.2b) follows in terms of symbols with the help of the transformation
inverse to (3.4b).

The multiplication formulae for these symbols are defined as usual, |

1) Weyl symbols

193 93
A*B=Aexpi-|————— B; (3.5a)

2) aa'-symbols

ERE]
A*B=A - ——1B,; 3.5b
(- 2) o
3) a'a-symbols
EN]
A*B =Aexp (5— ‘87‘*) B. (3.50)

Note that the inclusion of symbols which are non-analytical in g and a', does not
spoil the associativity of the algebra of symbols, since the proof of the
associativity of the *-multiplication does not involve the explicit dependence of
the symbols on their arguments.

We will be working below with the Weyl symbols, which corresponds to using
Eq. (3.5a) for the *-multiplication.

Define the commutator and the super-commutator of two symbols as

[4,B,=A*B —B=*A, (3.6)
[4,B},=A*B — (—1)""®) B 4 3.7

with the Grassmann parity defined by the relations (for the elements with fixing
degree of homogeneity)

A(—a, —a") = (-1 A(a,a"). - (3.8)

The brackets (3.6) and (3.7) endow the associative algebra of symbols, A,, with
two distinct algebraic structures, that ofa I:ie algebra and Lie superalgebra (these
will be denoted, respectively, as [4,] and [4,}).

The associative algebra A4, contains aq(2, C) as a subalgebra'’ (in the
mathematical literature this is called the Weyl algebra A,); the Lie algebra [4,]
contains the [4,] algebra, and the superalgebra [4,} contains shs (1]2; C)."
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In A, we introduce the following basis
I =(@")"@™", (3.9)
where s, neZors, neZ + 1/2.

The associative *-multiplication, the commutator and super-commutator of
two basis elements (3.9) are given by,

Tial5 =D USLTS, —w<s"<s+s and(s+5 +s")eZ,  (3.10)

nn’n”

s”.n"
T5TiL =D o(s +s —5" + 1) Ui T, (3.11)
s”.n*
[T5,T5, = O 8(/dss’ +s+5'—s"+1]) Ui T, (3.12)

s .n"

where (|n|,) = 0(1) for n odd (even), and .

Usso=o(+n —nry Y (=) mytmy!

my+my=s+s —s"
% (s+n) (s—n) (s’+n’) (s’—n’) , (3.13)

pip—1...(p—n+1

forn>0,
( p) _ n!
n 1 forn=0,
0 forn< 0.
The algebra A,, as a linear space, can be expanded into a direct sum A =V, ®

V,_®V_, ®V__, where subspaces V consist of following sets of the symbols:

V., . (V__) - symbols (non-)analytic on both « and a?,
V. _ — symbols (non-)analytic on a'(a),
V_. - symbols (non-)analytic on a (a').
Subspace V,,, V__ V.. ®V,_ V., ®@V_., V__@V,._V__®eV_,,V,_,
V_, form subalgebras in 4, under *-multiplication. Subspaces of polynomials
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(only a finite set of the coefficients %, ,in (3.3) is different from zero) form subal-
gebras only in the algebras® V, ., V,, ® V,_and V., &® V_,.

4. Consider now a Poisson-bracket version [4, }p of the superalgebra [Al} For
functions of the variables a and a' with a definite Grassmann parity, the super-
Poisson bracket is defined by

24B, m(d) = n(B) =
[A,Bles = { 04 0B 94 OB .1

— — — ——, otherwise.
da da' 9da' da

Introducing the notations L; = — 1/2T%,,s,neZand G, = — 1/2T,,s,neZ
+ 1/2, we write down commutation relations in the superalgebra [.;i itpm

(L3, Lyl = (s'n — sn') L5571 ' (4.2a)
[L;,Grles = (51 — sn)) G571 (4.2b)
{G.Gdes = — L4 - (4.2c)

Generators with s > 0 span a subalgebra in [4,}ps Which we call the conformal
higher spin superalgebra in D = 1 and denote as shsc* (1|1) (* for PB, as in Ref.
11 for shs*). Its real form is specified by a natural Hermitean conjugation
(r rf )T = r—{w )

This superalgebra extends the N = 1 conformal superalgebrain D = 1, i.e., the
Neveu-Schwarz superalgebra (its generators being L, and G)?). The generators
L., oand G/} /> span osp (1|2) - the little conformal superalgebra in D = 1. The
generators L, n € [—s,s] and G, n € [—s,s] span the superalgebra shs* (1{2).'"%*
The N = 1 superconformal algebra in D = 1 + 1 consists of two D = 1-super-
algebras, shsc* (1|2) ~ shsc* (1/1) @ shsc* (1]1). The superalgebra shsc* (1]1)
gives us an example of a superalgebra of the type of Eq. (2.3). It contains all spins
s=1/2,1,...with multiplicity one (a, = 1).

In order to bmld N-extended superalgebras introduce Clifford generating
elements ¢,

{‘;i’@j} = 261]9 l’] =1 L :N' (4'3)

The basis in the extended superalgebra is chosen in the form (Grassmann
variables y; are symbols of the ¥, operators):

b An isomorphism V., @ V._ ~ V., ® V_, takes place (I'; —~ (—1)°'TL,).
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) 1 tys—n s+n
Luww= 3 @y @ ", ¥, 4.4

We shall be considering a superalgebra generated by generators of even degree of
homogeneity, kK + 2 s = 2 with kK + 2 s even. Denote this superalgebra as
shsc*E (N]1) (E for even).

The Poisson-bracket is defined in this case by

d4 8B 04 4B + a4 ¢,B

-, 4.5
da da' 9da' da W *:3)

For two basis elements (4.5) the Poisson-brackets reads
[qu,i,...ik:L:",jl...jk»}PB = (s'n —sn’) L;r,;:il,...ikj,...jk,
+ kk' alt (6, Lft-:-sr;',il...ik_,jz...jk») , (4.6)

where alt means anti-symmetrization in all i- and j-indices separately (alt (4, B,,)
=1/2 (Ai, Biz —AizBil))-

Note an important special feature of the N-extended superalgebras
shsc*E (N|1). When N > 2 they contain generators with conformal spins 5 = 0.
These generators enter supermultiplets with highest spin s, =(N¥N—1)/2 (the
{Smaxt-supermultiplets).

The superalgebra spanned in shsc** (¥|1) by generators of degree of homo-
geneity two in @, a' and ¢ has the basis

Ly L2 Ly, o Lai - (47)
This subalgebra is isomorphic to the so(N)-extended conformal superalgebra (see
Refs. 21, 22). The corresponding composition law follows from the general
expression (4.6).
In particular, for N = 2 we have the usual N = 2 conformal superalgebra with
the generators L, = L., GL = LY¥ T, = 1/12¢" LY

[Ln’Lm] = (n— m)L, .,
: . n .
[Ln,G:n] = (5-— m) G:l+ms

[Lna Tm] = —m Tn+m,
(4.8)
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{G;’Gjm} = _i(n—m)euTn+m+6uLn+m9

[TnaG:n] = ejiG{;-km (81’ = 8jk5ki),
(7,,T,]= 0.
With the help of the general formulae (2.16), (2.17), it is possible to calculate the

conformal anomalies for the above N-extended superalgebras. The results of the
calculation are presented in the table (C' is the coefficient at »* in (2.16)).

Table.
N 0 1 2 N>2
fwithout u(1)- | with u(1)- )
C'  |Kac-Moody | Kac-Moody —2—54 ' —% 0

Here for N = 0 two algebras are considered; one with generators L, (s = 1,2,...)
and second with adding u(1)-Kac-Moody generators L}. For calculations with N

= 0, 1, 2 the {-function regularization has been used. For example, for N =0
(with u(1)-Kac-Moody, s = 0) we have

3 ®
Coim = S(n— m)% Zo (652 +65+1)

3

ﬁgd(n—m)%(l+6C(—1)+C(0)+6C(—2)) =0. (4.9)

It turns out that all superalgebras with N > 2 have zero conformal anomaly. It is
interesting that no regularization was required to establish the vanishing of the
conformal anomaly. Each of the contributions of supermultiplets with maximal
spin s, (i.e., a set of generators with degree of homogeneity 25,,, = 25 + K, Smax
= 1, 2, ...) is separately equal to zero. The contribution in (2.16) of each
{Snax J-supermultiplet is given by

X Yo k\? k -
C(s,pp) = ;(—1) ck (6(smax—§) +6 (s,,;,x—-i)+ 1), (4.10)
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where C% = N!/k!(N — k)! is the number of components of a totally antisymme-
tric rank-k tensor (with the internal indices i(k), i = 1, ...,N), and it has been
taken into account that 2s,,, = 2s+ k.

The expression on the rhs of Eq (4.10) vanishes when N > 2 due to elementary
relations for the binomial coefficients

N N N
D (—1FCE =D (—1FkCh = D (—1}KC =0 (4.11)
k=0 k=0 k=0

forall N> 2.

These results hold true, besides the shsc*E(V |1) superalgebras with N > 2, also
for all N-extended superalgebras with the same spectrum (as we have already
mentioned, only transformation properties (2.2) of the generators (2.1) are used
in the calculation of conformal anomaly).

To conclude this section, note that the construction proposed here can be

generalized to induced the Laurent polynomials in a set of variables a,, al,
p=1,..., M. This would give new infinite-dimensional algebras which extend
shs* (N|M) similarly to the way the Virasoro algebra extends the little conformal
algebra so(2,1). We will consider these superalgebras in separate publication.
5. In the present section we shall describe Virasoro-like generalizations of the
algebras L, (s1(2)) which extend si(2). Firstly, let us consider operator realizations
of these algebras. There exists an embedding of the algebras L, (s}(2)) into V..
For extending it to Virasoro-like generalizations of the algebras L, (sl(2)) the
algebra V., , @ V_, should be used. The non-analytic dependence of the symbols
on one of their arguments make it possible to extend sl(2) and its representations
to Vir and its representations.

Let the basis T, , T, in sl(2) be chosen so that

[TOaT:t]= + T:’
(5.1)
[T:,T-]1= —27T,.

The universal enveloping algebra U(sl(2))? is defined as an associative algebra

with generating elements T, , T, which satisfy the relations (5.1).
The Casimir operator

1 .
C=—-T2+ ST T+ T_T.) (5.2)

generates the centre of U(sl(2)).
By considering an ideal _Z, generated by the element of the form
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C2 - }.1 (5 '3 )

with A being an arbitrary number (the value of Cin the same representation), it is
possible to construct a family of factor-algebras

Ui(sl(2)) = U(sW2))/A.- (5.4)

Endowing U,(sl(2)) with a Lie algebra structure, one obtains a one-parameter
family of infinite-dimensional Lie algebras which extend sl(2). This construction
is described in Ref. 23. For a certain special value of A this produces, in
particular, the hs(2) algebra. '

The family of Lie algebras, U,(sl(2)), admits the following operator realization.
As is well-known (see, for instance, Ref.25), si(2) can be realized by the
Heisenberg generators in various ways (i.e., there exist a number of distinct
embeddings si(2) — [4,]). The Schwinger realization,

1 N
at, T,= Z(afa +aah, T_==4, [a,d"1=1 (5.5)

has been used in Ref. 11. In this case the value of the Casimir is A = 3/16. Thisis
the value of the Casimir operator in the representation (5.5) of sl(2) in the Fock
space with the basis

@hlo), n=0,1,.... (5.6)

However, sl(2) has a one-parameter family of representations in the Fock space
(5.6). These are the so-called Gelfand-Dyson representations. The operator
realization in this case reads

T,=ata+p, T_-=a,

(5.7)

T, = a%a+ 2pat.

The value of the Casimir operator is equal to
=—pl—D. (5.8)

Note that p and 1 — p determine the same value of the Casimir operator.
Now, let us go over to the Weyl symbols (see (3.4a))

T,=da+p, T-=a
(5.9
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1
T, =a%a+2p4d, p=p —3
The symbols (5.9) satisfy the relation
1 , 1
—TO*T0+5(T+*T_+T_*T+)=—— p’ /) (5.10)

In order to construct the infinite-dimensional algebras L,(sl(2)) it is necessary

now to extend the construction (5.7) to the case of polynomials of higher order in
a and a' (the way to carry out the extension is described below).
Highest vectors of finite-dimensional representations of sl(2) have the form

Ts=Ty*...*T, 5=0,1,2,..., (5.11)
[T4,75L =0, [To,Ts]=sTs. (5.12)

Acting with the lowering operator 7_ one obtains other basis elements in the
spin-s representation

|

S0
T (s — m)

(r-,... T, TL... L

l s—m

The elements T,5 define a basis in the Lie algebra isomorphic to the L,(s1(2)).
Relations (5.9-13) define an embedding of U,(sl(2)) into the Weyl algebra A,.
Note an important difference between the realizations (5.5) and (5.7). Only
second order polynomials in the generating elements enter the realization (5.5),
whereas the polynomials up to the third order are involved in the realization
(5.7).

The representation (5.9) of sl(2) can be easily extended to a representation of
the Virasoro algebra,

T, = (@'Y a+p (n+ 1)@, neZ, (5.14)

where negative powers of a' are also presented.
In terms of differential operators this representation has the form

T'=Z"+l£+ n+1)z" (5.15)
" dz P ) :
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Now we construct an extension of L,(sl(2)) which would contain the Virasoro
algebra as a subalgebra. To do that, it is necessary to extend the spaces of
the finite-dimensional irreducible representations of sl(2) with the bases {7,
m = —s,...,s}toinfinite-dimensional representations of the Virasoro algebra
with the bases {75, m e Z} (see the Appendix). The missing basis elements T, for

m > s and m <— s are constructed with the help of the raising and lowering
operators T}, and 7.,

Tsﬁl ~ [TZ1 L] Tss—lL ’

(5.16)
Tis—l ~ [T—IZaTIS—sL L \\_/
T~ [T, . [T, T5L. .. lom>s+ 1,
[ ——
m—s—1
(5.17)

Ts~ Ty, T T2 .. lam< —s— 1.
| S —

—-s~—1-m

We thus get a one-parameter family of hsc, (1) algebras extending the Virasoro
algebra to the case of higher spins. Among these there is an extension of hs(2)
(which occurs for 1 = 3/16).

A more detailed description of the above construction (i.e., the explicit form of
the basis elements and structure constants) will be given elsewhere.

6. In conclusion let us discuss the possible physical applications of conformal
higher spin superalgebras.

In the paper?® devoted to conformal theories in D-dimensions, considered are
composite operators with higher spins which arise in Wilson operator product ex-
pansions of the type j,(x,)/,(x;) and T,,(x,)j,(x;) and T}, (x,) Tj5(x2).

These composite operators are in fact conserved higher tensor currents; they
allow one to obtain?® a complete set of equations to be satisfied by Green
functions in certain models, and use these equations to find a conformally
invariant solution of the theory. With this symmetry is associated a higher spin
conformal algebras which in two dimensions must be of general structure as given
in (2.3). It would be important to know this algebra in order to be able to find a
solution for the Green functions from group-theoretical considerations.

Fields with conformal higher spins frequently appear in the current two-
dimensional conformal theory.?* The symmetry algebras of such theories contain
spin generators of higher conformal spins along with the Virasoro generators.
When considering these models, one usually limits oneself to first several values
of higher spins (spin 3 for example). The corresponding algebras are referred to as
the W-algebras.? On the rhs of the commutators in the W-algebras there emerge
new terms nonlinear in the original generators. These nonlinear operators can be
considered, for instance, as new generators; hence they should be included into
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the algebra on equal footing with the original generators. This new algebra will
involve on the rhs of the commutators the powers of the generators which again
can be treated as new generators with higher spins, and so forth (see Ref. 3).
Proceeding in this way, one ultimately obtains an algebra containing all higher
spins of the type of Eq. (2.3). Such algebras might occur as symmetry algebras of
conformal models involving all higher spins.

The models with N = 3 and N = 4 conformal higher spin superalgebras are
particularly singled out because, as we have demonstrated, conformal anomaly
cancels for these algebras.

When quantizing the superstring, these arises, as a result of the reducibility of
generators, an infinite system of higher spin ghost fields. This might be a
consequence of a hidden higher spin symmetry in string theory. In that case the
theory should allow a formulation with higher spin fields present from the very
beginning which would require the theory to have an infinite-dimensional
symmetry with irreducible generators.

Conformal higher spin superalgebras should play in this formulation the role
played by the Virasoro algebra in the conventional theories without higher spins.

One may expect that conformal higher spin algebras and their representations
play an important role in the second-quantized string theory, i.e., field theory of
string.

Appendix
The structure of the N = 1 conformal higher spin superalgebras in D = 1

.2 Y R ‘ L [ -‘T 1 "% 2 n

SP{2) 0SP (1/2)

S - is the conformal spin of the generators 7,0 (S = 1/2, 1, .. .), n-is the Ly-eigen-
value ([Ly, T3] = nTS) (ne Z(Z+ 1/2) at Se Z(Z + 1/2)), (S, n) - is the generator
TS {1, +1), (1, —1), (1, 0), (1/2,1/2), (1/2, —1/2)} - OSP(1|2) - superalgebra
(little conformal superalgebra) {(1, n), ne Zand (1/2,n),ne Z + 1/2 } - Neveu-
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Schwarz superalgebra {(S, n), n e [—S, S}, S = 1/2, 1...} - little conformal
higher spin superalgebra (it contains only finite-dimensional representations
SO(2,1) ~ SP(2)).
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