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With any semisimple Lie algebra g we can associate an infinite-dimensional Lie
algebra AC(g) which is an analytic continuation of g from its root system to its root
lattice. The manifest expressions for the structure constants of analytic continuations
of the symplectic Lie algebras sp, are obtained by the Poisson-bracket realizations
method and AC(g) for g = sl_and so, are discussed. The representations, central
extension, supersymmetric and higher spin generalizations are considered. The
Virasoro theory is a particular case where g = sp,.

#

1. Introduction -

Infinite-dimensional Lie algebras play an increasingly important role in modern
quantum field theory and quantum statistics. The most important known algebras
are the affine Kac-Moody algebras,! the higher spin algebras,? and the Virasoro
algebra.’ It is of curiosity that the Virasoro algebra containing sl, as a finite-
dimensional subalgebra is usually considered separately, but not as a member of
some class of the infinite algebras. Physically the cause is that only in one and two
dimensions, the conformal group is infinite-dimensional and, on the other hand, in
more than two dimensions, the conformal algebra is finite-dimensional. The theory
of the Virasoro algebra and its representations is a corner stone of the algebraic
theory of exactly solvable two-dimensional conformal models. At the same time,
the functional theory of D-dimensional models (D >2) has been rather elaborated.*
However, the algebraic theory of D-dimensional exactly solvable models has not
been constructed yet. What is the analog of the Virasoro algebra in D-dimensions?
This paper gives a mathematical answer. In the first part of the paper general
theorems are given, and in the second part the concrete algebras are considered.

2. The General Theorems

Let g be some arbitrary semisimple complex® range-n Lie algebra, & its Cartan
subalgebra with the basis {H, i = 1, ..., n}, A its oot system, and E_ the step

» All algebras are supposed to be complex, however, all the results can be formulated also over R.
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generators of g (@ € A, we denote the roots by small Greek letters e, 8, % ...). Then
commutation relations in the Cartan-Weyl basis {H,, E_} have the familiar forms

[I:[i’ flll = O’ [Hi’ Ea] = a’iEa ’
[E,E =0 H( H=oH), | (1)
[Ey Egl =N, B E, . 0%-B,

where N(a, B) = -N(B, a) are the structure constants of g defined by the root system
up to a redefinition of E .

Let A(g) be aroot lattice of g defined by the root system A, i.e., A(g) is an infinite
set of vectors A = A'x;, A’e Z (we denote vectors from A(g) by capital Greek
letters A, B, T, ... and @, i =1,.., n are the simple roots). For convenience, let us
denote all the generators of g as E; so that fori=1as0and Ei =E,, and fori=
1,...,n,4=0and E('; = H; (we have included the zero-root 0 in the lattice A(g)). The

commutation relations in these notations are
S . -
[E;, E{,] = Ni(a,p)E!, . @)
Lemma 1.

There exists a unique (up to the equivalency) non-decomposable infinite-dimen-
sional representation p of the complex semisimple Lie algebra g containing a given
irreducible finite-dimensional representation of g in its invariant subspace, such
that its weight diagram under # c g is a n-dimensional lattice generated by the
weight system of p.

This lemma follows from the results of Ref. 5. Such infinite-dimensional repre-
sentations are members of the basic non-unitary series of representations of the
group G (exactly, they are their infinitesimal forms). They are often referred to as
elementary g-modules or Harish-Chandra modules. The matrix elements of these
infinite-dimensional representations are obtained as a straightforward analytic
continuation of the matrix elements of the finite-dimensional g-representations in
some suitable basis. Let gadg (g-quasi) denote such a representation which con-
tains the adjoint representation adg in its invariant subspace. We call it a quasi-
adjoint representation or an analytic continuation of adg. The basis in gadg can be
chosen in the form E i, where A € A(g) is a weight under / and I is an index in the
weight subspace V(A). In these notations, the finite-dimensional subalgebra g gen-
erators are Ei when A = a € A and r first generators H, = E; whenF=i=1,..,n.

We define an infinite-dimensional Lie algebra associated with gadg as follows,

|EL. B3] = N2(A,B)EE, €)

where it is supposed that when both E‘: and E; belong to g, the structure con-
stants coincide with the Cartan-Weyl ones (1, 2), and when only one of them
belongs to g the structure constants coincide with the matrix elements of gadg
(these are the "initial conditions"). We call such an algebra an analytic continu-
ation of g and denote it by AC(g).
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Theorem 1.

For any semisimple finite-dimensional Lie algebra g there exists an unique
analytic continuation AC(g).

In order to prove this, it should be shown that, from the Jacobi identities for (3)
and the "initial conditions" for the structure constants, all the structure constants
are obtained in a unique way (up to a redefinition of the generators' normaliza-
tion). However from the Wigner-Eckart theorem for the basic non-unitary series it
follows that the structure constants are the Clebsh-Gordan coefficients® for the
tensor product of two quasi-adjoint representations (gadg ® qgadg = qadg + other
terms). Hence they may be found in a unique way up to a generato‘rs' renormaliza-
tion. Later the manifest expressions for the structure constants of AC(g) for the
symplectic Lie algebras will be obtained from the Poisson-bracket realization.

Conjecture 1.

The algebra AC(g) for any semisimple g admits a unique non-trivial central
extension AC(g).
We expect that the corresponding cocycle is given by the general Batalin-
Fradkin formula’ (see Ref. 6, pp. 16-19)
C"(A,B)=0,

+B, 0 L

x 3 T O6T)A-T)NHA,-T)NK(-B,T-A), (4)

K,L TeA

where 6(T") = 1(T" > 0), 0(T" < 0), 1/2(T' = 0), (we have introduced usual ordering in
A(g))-

3. Representations

Theorem 2.

There exists a unique analytic continuation of each of the finite-dimensional
irreducible representations of g to the infinite-dimensional representation of AC(g).

The proof is based on Lemma 1 and the Wigner-Eckart theorem for the tensor
product of gadg and the non-decomposable representation from Lemma 1 contain-
ing the given irreducible finite-dimensional representation in its invariant sub-
space. '

4. A Manifest Construction for the Simple Finite-Dimensional Lie Algebras of
the Classical Series '

Here we give the Poisson-bracket realizations of AC(g) for g = sp,,.

Let {a,, az, k = 1, ..., n} be a set of 2n variables and V2 be a linear space of
quadratic polynomials on these variables. Then V2 becomes a Lie algebra isomor-
phic to sp, after introducing the Poisson brackets
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df dg o
= -1 5
Lf- 8] = {a da; Baz da, ' )
To perform an analytic continuation to AC(sp, ) it is convenient to choose the
following basis in sp, (dim V? = dim (sp, ) = n (2n+1)),

Bty h-my

H(a) 2 a) 2, . (6

wherem=(m,, ... m ), I=(,, .., 1), m e Z,1 e Z and the following conditions
are satisfied, ’

NS =2, ' (7a)
k=1 : .

i), 20k=1,..,n, (7b)

i) (1) = L,k =1,..,n, (7¢)

) |m|<l,k=1 ..,n. (7d)

The basis (6) is related with the reduction sp, — sp, @ ... © sp, (n times). The vector
1 defines irreps of sp, © ... @ sp, and m labels basis elements in each irrep defined
by L. Evidently only the following vectors 1 satisfy conditions i and ii,’

o = 0 k%h 0) (n vectors) , (8a)
_ n(n-1)
b , = (0 ...k}h,..p}h... 0), k<p( 5 ,vectors] . (8b)
Only the following vectors m (root vectors) satlsfy conditions iii and iv for a given
fixed 1,
Ly m(*k)= (0... :tk%h... 0), 0 (3 vectors) , | (9a)
| m(i;t,p) =(0... i-k}h ip}h... 0) (4 vectors). (9b)

The commutation relations for sp,_ in this basis have a form

E., EL| = _z(z mj, — l’mk)E”_"") (10)

m+m’

Here E;"" = H, are the generators of the Cartan subalgebra and all the other
generators are step operators:

[Hk, E;] = mkEl'l;. (11)

® To prevent misunderstanding, note that /, are components of the arbitrary vectorl {4, ... 1), while
1, are the vectors with 2 on the kth posmon ie,l,,=28,,
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The generators E:"’ form a subalgebra in sp, which is isomorphictosp, ® ... @

sp, (n times):
(B0, B0 )= m; B, —m, B, 1)

Now let us perform an analytic continuation from A to A (sp,,), i.e., revoke the
condition (7d). Now m, € Z, (-1)**™ =1

It means that the monomxals (6) now contain both the positive and negative
powers of their variables. Along with the revocation of (7d), the condition (7b)
should also be revoked because in the r.h.s. of (10) both the positive and negative
values of [ + I’ - 28, (components of the vector I + I’ - 1,,) may appear. The
algebra obtamed in th1s ‘way is isomorphic to AC(sp,, ) owing to the non-decom-
posibility of representation of g and the uniqueness Theorem 1. The generators of
AC(sp,,) E. are defined by the two vectors | and m, so that Z I=2,(- 1)kt =1,
and the structure constants in (10) are straightforward analytlc contmuatlon of the
sp,, ones.

The commutation relations (12), when m, € 2 Z (even numbers), give an algebra
AC(sp, ® ... D sp,).

The manifest expression for the cocycle (4) over the algebra AC(g) will be given
separately.

The case g =sl (n>2as 311 = sp,) can in principle be obtained from the case
g =sp,,. Note that the embedding sl_c sp,, takes place and the subalgebra sl is
formed by the generators commutative with the "particle number” operator

N=3H, = EE"“) 1)

k=1 k=1

except for N itself. In this way, the generators

E:n —_l 5m0 N
n ™
with
xm, =0 (14)

form the subalgebra. The analytic continuation to AC(sl)) and AC (sl ) again
consists in revoking the conditions (7b), (7d), conserving the conditions (7a), (7¢)
and (15). However, the algebra obtained in this way does not coincide directly with
AC(sl ), but contains it as a subalgebra. The case g = so, (n > 5) is obtained by the
embedding so, c sl,. The so, subalgebra in sl is formed by the generators

[ =E -E_,m>0,3m, =0, ‘ (15)

k=1

and the so, commutation relations are

[, 1s )= —z (G, ~Lm ) LEE20 4 (L + Em ) E2M0]. 16)

k=1 ll+ll
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The analytic continuation of this formula, as in the sl case, does not coincide with
AC(so,) but contains it as a subalgebra (this is due to the basis (15) which is not the
Cartan-Weyl basis for so, ). The basis in which the analytic continuation can be
performed directly for sl_and so, will be considered separately.

Thus we have obtained the manifest construction for analytic continuations of
the classical simple Lie algebras. The exceptional algebras can be embedded in sl
(for some suitable n) and we expect that their AC < AC(sl ).

It should also be mentjoned that one can make partial analytic continuations
only for some of the parameters, i.e., revoke the conditions (7b), (7d) only for some
values of the index k. Then we obtain a series of partial analytic continuations of g
PAC,(g), where K is a set of the values of k for which an analytic continuation in
the formula (10) has been performed. Evidently all the partial analytic continu-
ations are contained in AC(g) as subalgebras. The weight diagrams of PAC are
subsets of the lattice A(g). The PAC form a composition (or Jordan-Gelder) series
of gadg.

To conclude this section, we note that the realization presented here was pro-
posed in Ref. 8.

5. An Analytic Continuation of the Lie Superalgebras

oo b
Here we present an analytic continuation of osp(1 |2#). In addition to (10), we
introduce Fermi generators

Q' = I’-’I (a Yarm2 (g Yh-m2 (17
m Paie} k k
where instead of condition (7a), the following condition is now satisfied,

lk =1 s (18)

M=

k=1

and the other conditions remain in force. The osp(112n) is then defined by the
commutation relations (10) and

{or.on}=2EM (19

{£n 0l )=

(here {Q, Q} =2Q is an anticommutator, i.e., simply the product of two functions).

Similarly AC(sp,,), AC(osp(1 |2n)) are defined by revocation of the conditions
(7b), (7d) both for E and Q generators. Thus the theory proposed here may be
expanded with slight modifications on the superalgebras.

2 am; - gm0 (0

N|H

6. Analytic Continuations of the Higher Spin Algebras

The infinite-dimensional higher spin algebras hs*'(2n) (* is for Poisson-bracket
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version)’ containing sp, as a subalgebra can be defined as a Poisson-bracket
algebra with the generators (6) in which the conditions (7b - d) take place, but
instead of the condition (7a), we require only

$ 1 =25, s=12,.. (21)

k=1
(in the higher spin algebra s takes all the integer values > 1). This algebra under
the representation of sp, (generators with 3/, = 2) can be decomposed into a
direct sum of the "higher spin" representations B (adg), ((adg), = adg), where
the irreducible sp,, representations with maximal dimensions in the decomposition
ad(sp,, ) ® ... ® ad(sp,,) (n times) = (ad(sp,,)), + other terms. Revoking the
conditions (7b) and (7d), we obtain an analytic continuation of hs'(2n) -
AC(hs"(2n)), the "higher spin" representation (adg), being continued to the infi-
nite-dimensional representations of AC(sp,, ) (see Theorem 2).

7. Analytic Continuation of sp,: The Virasoro Algebra

When g = sp,, formula (10) becomes the usual formula[ E7, E)]l=(m-n)E.
(I = 2 in this case) for the algebra diff(S') and the central extensmn is defined by
the Gel' fand-Fuchs cocycle (which is given by Eq. (4)). Thus AC(sp,) = diff(S') and
AC (sp,) = Vir. The representations from Theorem 2 become the spin-s repre-
sentations of Vir and the Verma modules become the Verma modules for Vir. In
this way the theory of the Virasoro algebra and its representations is an analytic
continuation of sl, theory; the general theory expounded here is an analytic
continuation of the theory of the semisimple algebras and their representations.
An analytic continuation AC(hs*(2)) is a higher spin generalization of the Virasoro
algebra® (the Poisson bracket version of W_ algebra). In the supersymmetric
case the algebra AC(osp(1 |2)) is isomorphic to the Neveu-Schwarz superalgebra.
Note that our algebra AC(sp, ® sp,) (see (12)) does not coincide with the algebra
Vir @ Vir but contains it as a subalgebra. It may be possible that in two dimensions
- AC(sp, @ sp,) plays the role of some "extended" conformal algebra.

8. Applications

In our opinion, the theory proposed may play the role of algebraic basis for
exactly solvable D-dimensional quantum models similar to the Virasoro theory in
two dimensions. In particular, the algebra AC(so(D 2)) might be considered as a
hidden extended conformal algebra in D-dimensions similar to the Virasoro alge-
bra. The algebra AC(sp4) (sp, = SO(3, 2)) (sl1(10), n = 2 ) may be of importance
in the D = 3 phase transitions theory.

Among other possible applications, we may mention the relation between these
algebras and the p-branes.

An important mathematical question that remains consists of constructing Lie
groups corresponding to AC(g) and making clear their geometrical meaning (some
subalgebras in the diffeomorphism algebras on the manifolds).
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