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The irreducible Racah basis for SU(N + 1| N) is introduced. An analytic continuation
with respect to N leads to infinite-dimensional superalgebras su(v + 11 v). The large-v limit
si(eo + 1 | =) is calculated. A higher spin Sugawara construction leading to generalizations of
the Virasoro algebra with infinite tower of higher spin currents is proposed, and the related
WZNW and Toda models as well as the possible applications in string theory are discussed.

1. Introduction

Recently a nice continuously-parametric family® of infinite-dimensional (inf-dim)
associative Lie algebras, namely, quantum operatorial algebras of quantum sys-
tems with spherical S? or hyperbolical S ! phase space, has attracted some attention
in various contexts.’ In the classical limit these algebras are contracted to the
algebras of symplectic (area-preserving) diffeomorphisms of §2 or §*!, which have
been studied extensively in the context of relativistic membranes.®’ They can be
viewed as natural generalizations of the classical Lie algebras.

In the present letter we will discuss the supersymmetric versions of the above
algebras and their applications in 2D QFT. Particularly we obtain complete
manifest expressions for their structure constants. Our strategy will be the
following. We start with the fin-dim classical superalgebras su(N + 1 | N) and in-
troduce for them a special SU(2)-irreducible basis supersymmetric generalization
of the SU(2)-irreducible Racah basis for su(N), and calculate the su(N + 1 IN)
structure constants in this basis. Then, after a redefinition of the generators rep-
resenting the structure constants as polynomial functions of N, we perform an
analytic continuation from integers N to all non-integer real v and obtain a con-
tinuous family of inf-dim superalgebras su(v + 1 | v). Then we are able to pass to
a limit v — o and calculate the structure constants of the resulting superalgebra
su(ee + 1| o0), based on the general properties of the 6j-symbols. The resulting
superalgebra su(ee + 1| o) may be viewed as an ‘algebra of orthosymplectic
superdiffeomorphisms of the coset supermanifold SU@| 1)/U(111), and su(v +
11 v) as its quantum deformations.

* Note that one member of this family (as well as its supersymmetric extensions) came from Refs. 8
and 9 in the context of gauge theories of higher spin fields.
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Among the various possible applications we propose a systematic way to con-
struct higher spin generalizations of the Virasoro algebra involving an infinite
tower of higher spin generators based on higher spin Sugawara construction for
su(v) and su(v + 1 | v) and their large-v limits. A crucial point here is the existence
of an infinite tower of independent Casimir invariants for these inf-dim
(super)algebras. It allows us to build up an infinite number of the Casimir currents
from the affine su(v) chiral currents. In principle, WZNW models on the inf-dim
group manifolds may serve as origins for such Kac-Moody currents. Special reduction
by means of certain constraints may give rise to the Toda models with an infinite
number of fields and the above described Casimir algebra in the place of W-algebra
with a finite number of the higher spin currents. Possible applications in string
theory are discussed in conclusion.

2. The Algebras SU(N), SU(v), and SU()

Let T, be some basis in sl,and C be the quadratic sl, Casimir element. The uni-
versal enveloping algebra U(sl,) is an associative algebra with a unit 1 and gener-
ating ‘elements T, obeying sl, commutation relations. U(sl,) contains a center
Z(sl,) generated by C. By considering a family of ideals #(4) = (C — A1) U(sl,)
(A is an arbitrary number), one can define a family of factor-algebras U(sl, |2) =
U(sl,)/t(A). The commutator AB-BA transforms all the associative algebras into
Lie algebras [U(sl, [2)]).

As has been shown in Refs. 2 and 3 these algebras are pairwise non-isomorphic
at different values of the Casimir element A. The algebras U(4) and L(4) = [U(A))/
(one-dimensional center generated by 1) are simple for the general position
values of A. It is a remarkable fact that at the exceptional points A = — (N2 - 1)/4
with integer N there exists an ideal x, in U(A) such that the following isomor-
phism takes place

Mat , = U(- (N*-1)/4)/x, . ‘ 1)
and for the Lie algebra,
slN:L(—(Nz—l)/4)/xN - 2)

(Mat, is an algebra of all N x N matrices).

Equations (1) and (2) have been obtained in Ref. 5 by calculating the invariant
symmetric bilinear forms. It turned out that at the exceptional point the bilinear
form becomes degenerate and y,, is just its null-space. Taking into account (2),
we also introduce the notation sl(v) = L (- (v? - 1)/4), where 0 € v < = is a con-
tinuous parameter (v and - v define the same eigenvalue Aof C). Thensl(N) =sl(N)/
Xy and sl(v) can be called analytic continuation of sl(N) with respect to the pa-
rameter N. Correspondingly we also use the notations 4 , and su(v) and sl(v; R)
for compact and non-compact real forms ( 0 < v < o).

The composition law in sl(v) may be obtained from the composition law of
si(N) in the Racah basis.! Let E, i,j=1,..., N, be the usual basis in Mat, with the

composition law E E, = &, E,. It was Racah® (see also Ref. 11) who introduced in
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Mat,, a new basis

2s+1 i,
Sty ceM B ., G)

N m.m”  mmm jm"+Lj-m’'+1

TS =

s=0,1,..., N-1, Im|<s, j=(N-1)/2, where C are the usual Clebsh-Gordan co-
efficients (all our notations and conventions concerning the angular momentum
theory follow Ref. 11). Calculating the commutator of two matrices (3), one arrives
at the Racah commutation relations for gl, :

(T2, T2 I= 2 f(ss STINYC TS 4

mm’'m”

F5,5', 8" IN) = (1= (1)) (A1)

X /(25 +1) (25" +1) {”js]}, j=ﬁ—2‘—1, (5)

with the 6j-symbols appearing in the structure constants. The crucial feature of
the Racah basis is that all the generators T, with fixed s < N —1 are transformed
under irreducible spin-s representation of the total angular momentum subgroup
generated by sl, generators T .. The trivial representation T, ~ 1 forms a center in
gl, and sl, = gl, /C1. Compact real form su(N) is extracted by means of the
Hermman conjugation (7:)' = (-1)" T . The Racah basis in SU(N) was applied
in the studies of the relativistic spherlcal membranes in Ref. 6. The invariant
bilinear form in the Racah basis reads as follows,

(T, T)=u (T T)=(-1)" 6*'8,__ ., (6)
where tr is the usual matrix trace. After redefinition of the generators

T,: _ \j (N + s)! T )
@s+1)(N —s—1)!

the structure constants in Eqs. (4) and (5) become polynomial functions on N
and now we are able to make an-analytic continuation from integers N to all real v.!
The resulting commutation relations have a form

[T, T51= 2 (A=D™") foos (NC e Tt ®)
where the reduced structure constants are expressed through quantities given in
(A1) (k= k’ = k”= 0 in this case). They are the generalized 6j-symbols.

In Eq. (8), apart from the analytic continuation from integer N to real v, it is
necessary also to abolish the restrictions s < N — 1 and now all higher spins up
to infinity are involved in the inf-dim algebra. The generalized 6j-symbols
fO‘;O‘ (-v)= fosgos (v) (due to (A3)) are in fact functions of an eigenvalue A = - (v
—1)/4 of the sl, Casimir operator, and consequently Eq. (8) gives the commutation
relations in s_(v) (and in su(v)).! -
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The invariant symmetric bilinear form in sl(v) is given by

rs sty P sty (_1)m 5,8° d
(T.,1,,)=u(T,-T.,) ———(2s+ D 68, . p]l(v+ D). 9
As we have already noticed, at the exceptional integer point (when v = N is
integer) the bilinear form (9) becomes degenerate and its null-space is just the ideal
Xy formed by T, with 5 > N * Restricting on the factor-algebra by modulo y,, the
tr becomes the usual matrix trace. .
Further one can pass to a limit v — e. After redefinition 1-',; =-y~H f‘; , arTe-
sulting algebra sl(ee) (su(e))?® is given by (4) with the reduced structure constants
obtained in the limit v — oo,

f(s,5", 8|0y = (1= (-1)""™")

-1/2, s"-1/2, 5"
X \/s s'(s+5"-s")(s+s"+s"+1) C:/z,-u;.o £ (10)

(see (8), (A7), and note that C;;O’ =0 for odd s + s’ + s”). This limit has been
evaluated in Ref. 6.

The generators 7, with odd spins s form a subalgebra in sl(v) owing to the
presence of the factor 1-(-1)"*~"in Egs. (4) and (8). We denote it by spo(v)
because of the following isomorphisms, so(2n + 1; C) = spo(2n + 1; C)/x3¥ |
sp(2n; C) = spo(2n; C)/ x5 (x%is formed by T* with s 2 N and s odd), and
similarly for the compact and non-compact real forms. The algebra so(N) (sp(N))
is an odd-spin subalgebra of sl(N) generated by the Racah generators T, with s =
1,3,..., N-2(N - 1) for odd(even) N. In this way the classical series B, and C, are
combined into one continuous family of algebras BC, and can be obtained as
factor-algebras in odd and even exceptional integer-v points. Note also that in
this construction the series B, and C, have a joint large-N limit spo(e) < su(eo).

The above algebraic construction has a number of physical and geometrical
realizations.

(i) Compact su(v) and non-compact sl(v; R) real algebras are the quantum
operatorial Lie algebras on the sphere S?and the hyperboloid S served as phase
spaces.’* The parameter v in this realization is an inverse quantum deformation
parameter (v ~ 1/ k). In the classical limit v — e (% — 0), one obtains an algebra
SU(e<) of area-preserving (symplectic) diffeomorphisms of S2 (or S ! in non-com-
pact case). _

(ii) The algebra U(sl,) can be embedded into the Weyl algebra generated by
four (twistor-like) Heisenberg generating elements a,, b, where a = 1, 2. It
gives the oscillator-like realization of sl(v) (see Appendix C of the last reference
in Ref. 4).

(iii) sl(v) can be realized in terms of the differential operators on the circle*! S

® In the literature, various algebras are denoted by SU(). In this paper SU(0) is just the algebra of
symplectic diffeomorphisms of the sphere §2.
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oot g 2o @) ay
m k=0 | p=k+1 (p+5)(p-s5-1) dz*

(iv) A rather unusual realization was obtained in Ref. 5 in terms of polynomials
of two spinorial generating elements g, (o= 1,2) and the Klein operator Q(Q*=1),
{Q7 qa} =0.

(v) In Ref. 2 the algebras U(slz| A) and sl(v) were realized as algebras of
infinite matrices. _

With the Lie algebras su(v) and sl(v) one can associate the corresponding
infinite-dimensional groups. Certainly in the inf-dim case the correspondence
among algebras and groups is not so direct, but in this case the definition of the
groups may seemingly be given correctly owing to the geometrical realization as
quantized symplectic diffeomorphisms. Quantum mechanically, the algebra su(v)
is realized as an algebra of (anti)Hermitian operators in the Hilbert space of
states of the quantum system with S as a phase space (1/vis a quantum deforma-
tion parameter). Then the corresponding group SU(V) can be interpreted as a
group of unitary operators in this space, ie., formally SU(v) = exp su(v), and
similarly for the non-compact case of hyperboloid. In the exceptional points the
Hilbert space has an invariant fin-dim subspace and the restriction of operators
on this subspace is equivalent to the transition to a factor-group SU(N) =~ SU(N)/
exp %, where exp %, is a normal subgroup corresponding to the ideal %, in the
algebra. Such special quantizations on the sphere were considered firstly by
Berezin? (see also Refs. 5 and 1). The group of symplectic diffeomorphisms
SDIFF(S?) is a classical limit of the groups SU(V) at v — o (% — 0).

3. Supersymmetric Racah Basis in SUN +1|N)

Now we are going to construct manifestly a supersymmetric extension of
the above construction. First of all we will build up a superanalog of the
Racah basis. As a starting point let us take Mat,, . with some integer N and
the usual basis E, , [,/ =1,.... 2N+ 1, E, [E, = 6, E,,. Let us divide the set E ,

L LJ 7KL JLKTLL

into four subsets:
E =E (ihj=1..,N+1), (12)
E‘f,i = Ei+N+1,j+N+1 (i,j=1..,N), (13)
E,;=E (=1, N+Lj=1.,N), (14)
E,=E, g, (i=1.,N,j=1..,N+1). (15)

Evidently, E, and E;; forma basis in the subalgebra Mat o © Mat, c Mat,,, .
In each summand we can introduce a new basis:

s /23 +1 Ni2sNi2
Tn= —1-\7: m',zr'mcm’mm" ENIZ—m"+1,N/2—m’+1’ (s=0,1,...,N), (16)
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s _ (25+1 (V-1)12 s (N-1)f2 —
Um - N mZ:.n_Cm mm” E(N—l)/z—m"+1,(N—l)lZ—m’+1 » (s=0,1,...N-1), (17)
— 2s5+1 CN-D2sN2 _13 1
Qm = N + 1 m’zr“n" m’ mm” ENIZ—m”+1,(N-1)/2—m'+1 ’ (S - -2-, E,' o N - E] ’ (18)
s 2s+1 Ni2s(N-1)12 _13 1
Q, = N mz:‘n,, Cm mm” (N-1)2-m"+1,Ni2~m'+1"’ [s - —2' ’ 5 e N = EJ ’ (19)

and | m | < s for all the generators. Now let us introduce a Z,-grading by means of
the Grassmann parity function P(T)=P(U)=0, P(Q)=P(Q)=1,i.c., T and Uare the
Bose generators (in fact, the Racah basis in Mat ,, & Mat, ) and Q and Q - the
Fermi ones. Then Egs. (16) — (19) define a Racah basis in Mat,, . viewed as an

.algebra of the supermatrices Mat .. Introducing a supercommutator

[A,B)=AB —(-1)"#*® g4 (20)

for any two supermatrices A and B (with defined parity) from Mat, ., one
transforms Mat . into the Lie superalgebra gi(N + 1 | N; C) with the even part
gl(N + 1; C) ® gl(N; C) formed by T and U respectively, and the odd part formed
byQand 0.

The non-zero supercommutation relations in gl(N + 1| N) in the Racah basis
take the following form,

[T:.T5]= E f(s, s’ s”|N+1)C”‘ TS, , (21a)
[w:.u:, ]— Z f(s, s’ s"|N)C:m’m U:., (21b)

{Q;,Q::}:SZ (g (s, s’ s”|N)T* +g,(s,8 s”|N)U’ ), (2Ic)

* m” mm’'m”

(T:,0 ]— Z h(s,s’ s”lN)C;smsm o, (21d)
[U:,0: ]— Z hy(s,s',s"|NYCZS Q7 ' (21e)
(T3, Q1= L (D™ hys. s, s"INY Lo o, 21)
,.0;1= 2( —1 by (s, 8, s NYCEY Q0 (21g)
where f(s, s’,s” | N) are given by Eq. (5) and the other reduced structure constants

are expressed through the 6j-symbols as follows,

”

§

s 5
gl(s,s',s”|N)=(—1)’+"*N‘1,/(25‘+1)(2s'+1) N N

2 2

f—

) (22a)

™o
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s s’ 57
gz(s,s’,s"lN)=(—-1)"+N J@2s+1) (25" +1) -1 N-1N¢, (22b)
2 2.2
i - s sl s’l
h(s,s",s"|N)= (1)1 [(2s+1) (25" +1) {N -1 N N¢, (22¢)
2 22
, s s s
hy(s,s",s"|N)=(=1)"*""2 [(2s+1) (2s'+1) {N N-1 N-1;. (22d)
2 2 2

To calculate the structure constants of the superalgebra gl(N + 1| N) in the
Racah basis we have used the inverse transformation for Egs. (16)—(19)

25+1 N12sNR2
Enp-m 1, NR-m"+1= ): \} Cm LT (23a)
_ 25+l (N- 1)/2s(N /2 .15
E(N D2-m "+ (N-1)/2-m’+1 m N C,.. mm” U ’ (23b)

- 25+l (N-D2 lez
EN/2 —m L (N-1Y2-m'+1 om YN +1 Cm mm” s (23C)
_ +1 N2 :(N 172
B Dnm i naem = ol \} Crrmm® P (23d)
and allowed for the intertwining formula for three Clebsh-Gordan coefficients,

(A9).
The compact real form U(N + 1 | N) is extracted by means of the Hermitian
conjugation of the supermatrices,

T)'=()"1s,, U)'=(-)"U,,
(Qm)T - (_1)m-1I2 Q—m , (Q_".: )’r =(__1)m+1/2 Qjm . (24)

The unit matrix 1 = VN +1 7 ++/N U generates a center in gl(N + 1 |N; C) and
one has si(N + 1| N; C) = gl(N + 1| N; C)/C1. The generators

L, = (XD (Nr2 T NSO,
6

L,= M—ll\%l (WN+2 T, +VN-1U})

form a basis in the total sl, subalgebra (or in SU(2) when (24) is supposed to be
satisfied and A"=-A for any A € su(N + 1 | N). All the other generators are
transformed under irreducible representations of this “total angular momentum
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subalgebra.” This is a peculiar feature of the Racah basis (16) (19). The genera-
tors L, accompanied by 02, 0 *? and U =N T ++N +1 U (str U = 0) form a
basis in the total superalgebra sl(2 |1; C) (or su(2 | 1)).

Under an invariant symmetric bilinear form (A, B) = str (AB), where str is the
matrix supertrace, the Racah supergenerators are normalized as follows (all the
other pairings are equal to zero),

(T, T)=(U3UL)=(-1)"&'s _ .,
Q5,00 =(-1)"" 88, .(Q:0Q5)=(-1)""?875 . . (25)

4. The Superalgebras su(v+1) and su(e + 1)

Now, similar to the purely bosonic case, we can perform an analytic continuation
of sI(N + 1| N) with respect to N and obtain as a result a continuously parametric
family sl(v + 1| v) of infinite-dimensional superalgebras. Precisely, after redefini-

tion of the Racah generators

Ts:\/ (N+s+D! . ﬁs=\/ (N+s)!
Cs+DIN=-s) " " N@s+DYN -s-1)!

{N+s+l]! ' [N+s+l)!
~ 2 = 2
Qs = . Q=
(2s+1)!(N—s—%J!

) s
(23+1)!(N—s—5]!

abolishing the restrictions s<N,s <N-1/2,s <N -1 for f";, Q_"f, U ., Tespectively
and with analytic continuation from integer N to real ve R, v20 we arrive at the
inf-dim superalgebras si(v + 1| v) with supercommutation relations of the form
(21), where the reduced structure constants are now given by (N is replaced by v):

Q.. (26)

£(5,57,5"IV)= (A= (A1 )f oo (), (272)
8.5, 5" IV) = (CLPP I (v, (27b)
8,(s,5",s"|v)= —fjlslzsm (V)5 (27¢)
h (s s’ S”IV)__ 0:.;,2:“2(‘,) (27d)
hy(s,5",s"|v)=(-1)"" s fosiljz -112 (v+1), (27e)

(see Appendix (A1l)).
An invariant bilinear form for sl(v + 1| v) has the form
(@, 7y = S0 5urs e T (pHv), (28a)
2s+1 p==s
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- -, -1nH"- , 5
@:,07)=D 5005 T (p+v), (28b)
2s+1 =
N _1ym-12 ) s
@8- s, i [,H v+%} , (280)
s p=—s
= e s 1
(Q"j,Qm,)=.(ﬁ_3’ 5 pgs(p+v+5]. (28d)

This bilinear form is non-degenerate for all non-integer values of v. However,
at the integer point v = N it becomes degenerate. The corresponding null-space
is formed by the generators f";, Q~,‘"‘1’2, Q7 U STwiths=N+1,N+2,...

Factoring out this null-space (which is an ideal superanalog of y,) we come
back to the fin-dim superalgebras sl(N + 1 | N) and su(N + 1| N). This result is
in agreement with that of Ref. 5 obtained in another way.

Now having a continuous family of superalgebras at our disposal, we can pass
to a large-v limit and obtain a supersymmetric version of SU(«), namely SU(e +
1} ). To evaluate the limit, first let us make a redefinition of the generators:

L =-v (T340, Vi=-v*(T;-0;), (292)
T:=- %vs-l(i; +vW2), Us=-v" %(Em— W), (29b)
Q' = Vs-1/2Q"’s'I , a':z Vs—1/2é": ) (29c¢)

Then after calculating the commutation relations in the new basis (see Eqs. (21)
and (22)), taking a limit v — o (with the help of (A7)), and again redefining the
generators,

L =1 - %(s—l)V; , (29d)

we arrive at the following commutation relations for su(ee + 1 | o),

(L. Ly, 1= 2 f(s.5s"] w)CE LY, (30a)
(L, Vil= 2 f(s,8%s"|=)Cont Voo, (30b)
[v:,veil=0, * (30c)
[V 01 = Z . Coiivn o @t » (30d)
[Var Qi1 == 2 Ci i Cotrr Qo » (30€)

¢ We have also obtained the N-extended supersymmetric versions of SU(e) by quite a different ap-
proach (calculating the Poisson superbrackets on the twistor superspace, to be published).
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[L,,0,1=2 % f;:,:m[ 1)6;’;:;" Q. (306)
(L Qi1=2 2 170 ( ;] "o, (30g)
{Q Q }" Z C:nsmsm {lezsmo L,

ss's” 11 s
- 2f-1/2 i) 0( 5’ 2] V. } (30h)

where the reduced structure constants read

f::':: (p, p’):-;-\/(s—c)(s'+ c)(s+s'—5")(s+5"+s"+ 1)

CEls sy 1 \f(s+c) (') (s+s'=s")(s+s"+ 5"+ 1)

c+1/2, =172, ¢
172, s°-1/2,
X Cl s o +[(P = s)e-(p-s)c’ICL L (31)

(in particular, f(s,s’,s"| )= fo‘os(;’" (p, p’) does not depend on p, p’). Such quan-
tities originally appeared in Ref. 32 in the role of structure constants of certain
inf-dim Lie algebra.

Looking at Eq. (30), it is easy to see that the generator L° + U, ? forms a center in
U(ee + 1] e0). L’ (s21) form a basis in su(e) < su(ee + 1 foo) L; form a basis in
su(2) and all the other generators are transformed under 1rredu01ble su(2)-repre-
sentations.

The above considered superalgebras have a number of physical and geometrical
realizations. So su(e + 1| e0) may be interpreted as an algebra of orthosymplectic
superdiffeomorphisms on the coset supermanifold SU(2 [1)/U(1 |1) (like $2= SU(2)/
U(1) for su()). Then su(v + 1| v) may be viewed as its quantum deformations
(quantum operatorial algebras on this supermanifold serving as a phase space of
certain quantum Bose-Fermi systems).

The other realizations of the bosonic algebra listed at the end of Sec. 2 may also
be extended to the supercase. The realization (iii) for sl(v+ 1 | v) can be constructed
in terms of differential operators on the supercircle S'2 The realization (iv) of
Ref. 5 describes directly both Bose and Fermi generators. Also it would be interest-
ing to realize sl(v + 1 | v) as certain factor-algebra of the universal enveloping alge-
bra of sl(2]1), as in Refs. 1, 2, and 4 for sl(v).

5. Higher Spin Sugawara Construction and Related WZNW and Toda Models

Now with the families of inf-dim (super)algebras at our disposal, we are going to
discuss extensions of various physical models involving classical Lie (super)algebras
to the inf-dim case. Recently the large-N limits have become rather popular. At
the beginning there is a discrete series of models based on the classical fin-dim
algebras (su(N) for example). In the large-N limit one obtains a model based on inf-
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dim algebra (e.g., su(>)). However, apart from integer N and N = oo it is also
worthwhile to consider a whole continuous family of models, when N is an arbitrary
real number. They may be based on the algebras considered in Refs. 1-5 and in
the present paper. In this paper we will concentrate on a few examples of 2D QFT
models.

Let g be some fin-dim simple Lie algebra. 2D quantum field theory naturally
yields two closely related inf-dim generalizations of g. The first one is an affine
Kac-Moody algebra £, the chiral current algebra with the Schwinger term.
The currents J*(z) can be realized for example through the fermionic fields, or
bosonic fields in the WZNW model on the group manifold associated with g.
The second generalization of g provided by 2D QFT is the so-called Casimir alge-
bra associated with g. Let g have a range r and hence have r independent Casimir
invariants. Then to any such invariant of order s one can associate a spin-s chiral
current (see Refs. 13-17)

W (z) ~:Cf:?_'a g g%

These r currents form a nonlinear algebra in the case of s > 2. In the simplest case
of g = sl,, where only one independent Casimir invariant is available, one obtains
the Virasoro algebra realized through the affine sl(2) algebra by means of the
Sugawara construction. In the case of su, one obtains the so-called W, algebra
involving currents with spins 2 and 3. The characteristic feature of such algebras is
their non-linearity and presence at only a finite number of higher spin currents.

Recently the problem of constructing linear Lie algebras involving, along with
the Virasoro subalgebra, an infinite tower of higher spin generators like higher spin
algebras in four-dimensional space-time **'$-* has attracted a lot of attention %%

Here we want to propose one of the ways to obtain generalizations of the
Virasoro algebra with an infinite number of higher spin currents. It consists of
replacing the fin-dim algebra g by its inf-dim generalization. So let us take, instead
of the series A, continuously parametric series A , (0 < v< oo, we also have joint
V=0, A = su(oo) (for compact form)). We can 1ntroduce the corresponding affine
Kac-Moody algebras A for all non-exceptional points of v including v = co. For
the exceptional ones, v= N, A, has the degenerate bilinear form (9), and to define
Kac-Moody algebra it is necessary to pass to the factor-algebra, usual fin-dim
A,, to make it invertible. Having at our disposal the affine algebra A we can
consxder a generalized higher spin Sugawara construction. A crucial feature is
that, owing to the presence of infinitely many generators at the general position
points of v (including =), A has an infinite number of independent Casimir invari-
ants and we are able to introduce an infinite number of higher spin currents

Wi (z)~:tr(9(2)... 1(2)):, s=2,3,...,

N

9(z)=X1.(2) T (32)

¢ It should be mentioned that, to our knowledge, higher spin (super)algebras involving infinitely
many higher spin generators firstly were discovered in Refs. 8 and 9 in the context of constructing
the gauge theory for massless higher spin fields in the anti-de Sitter universe.” The conformal higher
spin superalgebras with an infinite tower of higher spins have been investigated in Refs. 18-20, 4 and
25 in various dimensions of space-time.
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However, the price for infinite dimension in this construction consists of divergen-
cies of the central charges and the prefactors. Thus the Sugawara energy-momen-
tum for su(v) and su(ee) has a divergent central charge because it includes the
factor dim g. Nevertheless the finite answer may be obtained by using some ap-
propriate regularization (e.g. {-function one).

However a cardinal way out of the situation consists of introducing the
supersymmetry. To do it let us substitute su(v+ 1| v) and su(eo + 1 | o) for su(v) and
su(ee). Although these superalgebras are inf-dim, the characteristics we worry
about are the finite ones. So their graded dimensions are equal to zero:

s dim su(v+1|v)=sdim su(co+1]o0)

o oo s-1/2 s=1
=¥(¥1-2 ¥ 1+ X 1)=0. (33)
s=1 m=—s m=—s+1/2 m=-s+1

The Virasoro central charge and the prefactor in 7(z) = 1/28: tr(L?): for the affine
Sugawara construction for some Lie superalgebra G are given by'*:

ksdim G
c=—

»B=k+g, (34)
k+g

similar to the bosonic case. For the superalgebras in question we have
c=0 and B=1+k. (35)

The secret of finiteness for the inf-dim superalgebras at issue is accounted for
by the known fact that invariants of superalgebras SU(N | M) depend on N - M as
for the ordinary algebras SU(N — M).%* The non-zero central charge will appear if
one adds the u(1) factor and considers u(eo + 1 |00), u(v+ 11 v). In this way, working
with the superalgebras one is able, in principle, to calculate all the OPE’s of
the higher spin currents, i.e., construct manifestly the corresponding Casimir
superalgebras with an infinite tower of currents.

A crucial problem is whether they are linear Lie algebras or nonlinear ones. At
the very beginning it is not easy to verify that these currents can form a usual linear
algebra. However, recently an example of linear algebra with central terms for all
spins was constructed in Ref. 22. It might be that the algebra W_ as a matter of
fact, appears naturally as a Casimir algebra via the higher spin Sugawara construc-
tion for su(ee). Note that the above discussion leads to a whole continuous family
of the higher spin generalization of the Virasoro algebra. However, the problem as
to whether they are all linear, or, e.g., only one corresponds to su(se), is still open.

Now let us discuss the concrete models realizing SU(v), SU(e0) and their Casimir
algebras. The affine algebra g for fin-dim g naturally appears in the WZNW mod-
els? on the group manifold. Similarly one might consider at the very beginning the
WZNW models based on the inf-dim group manifolds (e.g., SU(v), SU(e) =
SDIIF(S?)). The corresponding WZNW action has a usual form, where g'd, 8
belongs to the inf-dim algebra and tr is the trace operation in this algebra discussed
above. At the exceptional points v = N such an action becomes the usual WZNW
action for SU(N) due to the degeneracy of the bilinear form tr(AB). When g €
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SDIIF(S?) and g~'d, g € su(e), the tr operation is, in fact, an integration over §?
and the WZNW actxon looks like an effective four-dimensional model. Similar
construction for Chern-Simons theory was considered in Refs. 3 and 5.
~ As was shown in Ref. 17, Toda model associated with some fin-dim algebra g
can be obtained from the corresponding WZNW model by imposing certain special
constraints on the currents. Following this method in the case of inf-dim algebras
A, one might obtain a continuously parametric family of Toda models. To do it,
one should pass to a new Cartan-Weyl basis for A . The generators T, s =1, 2,...
form a basis in a maximal (inf-dim) commutative subalgebrain A . Now they should
be diagonalized simultaneously. If it is indeed possible for any non-exceptional v
and v — oo, (for exceptional v = N we replace the non-simple A, for its simple
factor-algebra A,) one would obtain an infinite set of roots and, in particular,
simple roots &, i =1, 2,... . The Cartan matrix would be an infinite matrix & (v) =
(v) with components depending on v. Then the corresponding Toda model
wouI'd involve an infinite set of fields @, obeying the Toda equations of motion with
X,(v) in place of the Cartan matrix for fin-dim simple algebra.

The Casimir algebra derived from the WZNW model currents, when the con-
straints of Ref. 17 are taken into account by means of the Dirac brackets, is
transformed into the W-algebra of Toda model.’® Naturally the notation W may
be introduced for the models based on A, (and W_for A_(su(s°)).

It should be mentioned that in Ref. 27 certain continuous Toda models were
considered based upon the continuous Lie algebras with a certain operator
%x(t, t°) (for example 8”(7~ 7’)) in place of the Cartan matrix. It is interesting to
establish the correspondence between the algebras sl(v) and the continuous algebras
of Ref. 27. For example, the Cartan matrix of quantized diffeomorphisms algebra
might be represented as a differential operator X(7, 7’ lv) = X, (d/dt) &t—1"),and
the corresponding Toda model might be viewed as some effective three-dimen-
sional model.

Another way to construct W _and W_ algebras may consist of using the quantum
Hamiltonian reduction method for A and A_, as was done for fin-dim algebras
A, in Ref. 28.

Also starting with the superalgebras sl(v + 1 | v) and sl(eo + 1] e0), as we have
discussed above, the superalgebras W .., and W_,,, might be considered mani-
festly. '

6. Conclusion

Among the applications, without doubt the most interesting, and problematic
at the same time, is whether certain hypothetical string theories with an infinite
tower of higher spin gauge fields living on the worldsheet may exist. In this
connection an infinite tower of higher spin gauge fields in D =1 + 1 was considered
in Ref. 20 and the conformal anomalies for the ghost sector were calculated in
Ref. 4. In Ref. 29 a finite and in Ref. 30 an infinite set of higher spin gauge
fields interacting with the scalar fields have been considered respectively.

However, at present the problem as to whether strings with worldsheet higher
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spin symmetry may exist at all is still open. To speculate about their properties if
the answer is positive, it would be of interest to examine their massless sector.
It might be especially esthetical if the massless sector contains an infinite tower of
massless higher spin gauge fields of all spins in the space-time. However, according
to the results of Ref. 23, such (interacting) strings with unbroken higher spin gauge
symmetry might propagate only on the anti-de Sitter background with non-zero
cosmological constant. On the other hand, if certain connections between the
worldsheet and space-time higher spin gauge symmetries may really take place, all
the attempts to construct interacting string theory with higher spin worldsheet
gauge symmetry will not be a success without mtroducmg a non-trmal anti-de
Sitter background.

Another problem of considerable interest consists of developing an algebraic
theory in D > 2 space-time analogous to the theory of the Virasoro algebra and its
higher spin generalizations in D = 2. Formally, from the algebraic point of view, the
algebra sl, is not singled out. In Refs. 31 and 32 we have developed a formal
construction (analytic continuation of the semisimple fin-dim Lie algebras) which
puts certain Virasoro-like inf-dim algebra in correspondence with a fin-dim
semisimple algebra g. It turned out that there also exist higher spin generalizations
of those algebras like W_for the Virasoro one. In particular in Ref. 32 the Virasoro-
like generalization of s0(3,2) (conformal algebra in D =2 + 1) and its higher spin
extension have been considered in detail.

To conclude, we would like to mention that the Racah basis for SU(N + 1 | N)
constructed in this paper may be of use in atomic and nuclear physics, similar to
the Racah basis for SU(N).!

Appendix

For any three integer or half-integer numbers (s, s’, 5”) satisfying the triangle
condltlonls -s'|<s”<s+s’,and forallk = -s, —s+1 S ki==5 -5 +1,...,
s k" =—-s",-5" + 1,..., s” we define a symbol

oV (v)=25"+1A(s,s",s") 8(k+ k'~ k")

x T(-1)"{ n1 “(v=s"+k” - p) II(v+s"+k"+q))
t p= =

N+ (s— KN (s"+ K (5"~ k) (s"+ k™) (s"— k)
ts+s' =" (t+s"—s-kNE+s"-s"+ k) (s—k-)(s"+ k' 1)

X

(A1)

¢ This strong statement is based on the known negative result (“no-go” theorem) that there does not
exist any non-trivial gauge-invariant interaction among higher spin (s > 2) gauge fields and
Einstein gravity without cosmological term. On the other hand, the positive results of Ref, 23 assert
that there does exist a non-trivial interaction on the anti-de Sitter background, but it is non-analytical
on the cosmological constant. Another variant discovered in Ref. 24 consists of the existence of
conformally-invariant interaction of higher spin gauge fields with Weyl gravity (at least in the cubic
order).’ All these arguments should be taken into account when the possibilities of constructing
asymptotical symmetric phases of string theory are considered (see the second reference in Ref. 24).
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. L
(5+5=s"N(s—s"+s")N(s"+5"— s}

A(s, s',s”)=[ (A2)

(s+s"+s"+1)!

So the defined symbol f{v) is a polynomial function of the real parameter, ve R.
Due to the simple property

fiine V=t (V) (A3)
we can set v 2 0 without losing of information. When v= N =1,2,... is integer and
sSN-1,s'<N-1,s"sN-1, (A4)

our symbol is directly reduced to the 6j-symbol as follows,

£S5 (N) = 8(k+ k= k") 25"+ 1 (-1)7 8

[ =R KON 4k NN + k757 D) "
(N-K'+k"=s—1I(N+k'=s"-1)! (N +k"+s")!

s sl sll B
X N—l,,N 1 e N - 1+k ‘ (AS)
2 2 -2
In this way the symbol (A1) in fact is an analytic continuatioh of the 6j-symbol when
N becomes arbitrary real and the restrictions (A4) are abolished.
An easily verified peculiar feature of f consists of its large-v behavior at v — o,

Hm [v=o= " f550 (v)]=C % (A6)

— kk'k* kk'k”

ss's” o gy SHs 5" 55T
fkk’k"(v)_ v Ckk k"

— yre {\/(s— KY(s'+ k") (s+8"=s")(s+5'+5"+1)

k+1/2,k"-112, k” kk'k”

Cs—lIZ s'-1/2, 5" ¥ % (SfS'— S”) (S+S,+ S”— 2k”+ 1) Css’s" }

+ lower powers of v. (A7)

This large-v behavior plays a central role in the calculation of large-N limits for
the various Lie algebras and superalgebras in the su,(sl,)-irreducible basis.

In view of (A6) and (A7), f(v) may be interpreted as a quantum deformation
of the Clebsh-Gordan coefficients with the deformation parameter /i =1/v. They
are restored in the classical limit % — 0. This phenomenon is well-known for the
6j-symbols. In particular our symbols f,,, h .~ (V) are proportional to the symbols

L 1 (j) considered in Ref. 11 (see Egs. (3 278) and (3.300)) at the integer points

v= N and j = (N - 1)/2. However, f(v) is defined for all real values of v and the
restrictions (A4) are not required.
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For the reader’s convenience, we also present here the interesting formula,

h3 clihis I3 oIidst
M My M, MaomM; MymyM, M;-myM,

12
o [ R2208 D)

(2j3+1)

x jl j2 j3 Cilizfg .
Iy Iy J3) T (A8)
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