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Infinite-dimensional algebras associated with simple finite-dimensional Lie algebra g are
considered. Higher-spin generalizations of s1(2) are studied in detail. Those of the Virasoro
algebra are viewed as their "analytic continuations". Applications in higher-spin theory and
in conformal QFT are discussed. ’

1. Introduction

Among infinite-dimensional (inf-dim.) Lie algebras an outstanding place is occu-
pied by those which contain some given semisimple finite-dimensional (fin-dim.)
Lie algebra g as a maximal fin-dim. subalgebra. These algebras play an important
(and even determinant) role in two central problems of modern physics: the
problem of unification of all interactions and the problem of exact solvability in
QFT and statistics. For this reason the problem of construction of a mathematical
theory for such algebras (including complete classification similar to the theory of
fin-dim. simple Lie algebras) has both physical and mathematical importance.

The algebras containing semisimple g as a maximal fin-dim. subalgebra can be
divided into two classes under the natural representation [g, - ] of g. First-class
algebras are decomposed only into a direct sum of fin-dim. irreducible g-modules.
Second-class algebras involve also inf-dim. g-modules (irreducible or/and non-
decomposable). Examples of first-class algebras are the Kac-Moody algebras and
the higher-spin algebras.

The Virasoro algebra gives an example of the second-class algebra (non-decom-
posable sl,-module under [sL, Vir], sL-{L,,, L }). A more general example is an
analytic continuation AC(g) and its central extension AC(g) of any semisimple fin-
dim. g, discovered recently in Ref. 1. In particular, g = sl,, A~C(s12) is a Virasoro
algebra. We believe that these algebras and their representation theory will play a
role in the D-dimensional conformal QFT and statistics similar to the role played
by the Virasoro algebra in D = 2.

'In this paper we shall be concerned mainly with the algebras associated with sl,.
This is the simplest but striking example of the general theory. It is also very
important in both higher-spin theory*® and two-dimensional conformal QFT. In
particular, the classification of a special subclass of second-class algebras, which are
"analytic continuations" of the first-class algebras, will allow one to obtain a
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classification of the possible Wilson OPE's in D = 2 exactly solvable models.

2. The Universal Enveloping Algebra U(sl,) and its Factor-Algebras

Let T,(i = 1,2, 3) be some basis in si, and C be the quadratic sl, Casimir element.
The universal enveloping algebra!® U(sL,) is an associative algebra with a unit and
generating elements T, obeying the sl, commutation relations. U(sl,) contains a
centre Z(sl,) generated by C (the basis is 1 and C”, where n =1, 2,...). By consid-
ering a family of ideals (A4 |n) =(C -A1)" U(sL,) (Ais an arbitrary complex number
and n=1,2,...), one can define a family of factor-algebras, '

Usl, | Aln) = U(sL) F(Aln) . @)

The commutator AB-BA transforms all the associative algebras into Lie algebras
[U(sL,)] and [U(sl, | A1n)]. The algebras U(sL, | A|n), with n > 1, are not simple.
Let us consider U(s12| A) = U(slz| A11) and the corresponding Lie algebras in
more detail. As was shown in Refs. 11 and 12, these algebras are non-isomorphic to
one another at different values A of the Casimir element. The algebras U(A) and
L(A) = [U(A))/(one-dimensional Abelian subalgebra C1) are simple for the "gen-
eral position” values of A. It is of importance that when A=-I(I+2)/4 (I=0,1,2,...),
i.e., A coincides with the eigenvalue of C in some fin-dim. sl, irrep. D({) (dim D(J)
=1+1), there exists an ideal y in U(- I(! + 2)/4) such that the following isomorphism
takes place, ' '

Mat, =~ U(- I(I + 2)/4)[x , 2)

and for the Lie algebras
gl,, = (UG I+ 2] 2], (3)
sk, = L(= I + 2)4)[[ 2] 4

(Mat_is a full matrix algebra with 7 x n matrices).

The existence of y can be understood from the following consideration. Let V, be
some elementary inf-dim. sl, module with the eigenvalue of C equals A (for more
details regarding elementary modules or the basic series of representations see
e.g. Refs. 10 and 13). ,

It is well-known that the elementary s, modules are irreducible for "general
position" points of .. However, when 4 coincides with some eigenvalue of C in fin-
dim. irrep(A = - I(I + 2)/4,1=0, 1,...), the elementary module turns out to be non-
decomposable. In particular, for each /=0, 1,... there exists a unique sL, elementary
module containing an sl, irreducible fin-dim. module with dimension (/ + 1) as its
invariant subspace. An algebra of polynomials on sl, generators over this module is
isomorphic to U(sl, | - I(I + 2)/4). The restriction on the (/ + 1)-dimensional
irreducible submodule is isomorphic to Mat, , by the Burnside theorem. The kernel
of this restriction is an ideal . The same results were obtained in Ref. 14 by
calculating the invariant bilinear forms for U(sl, | 2). It turned out that for the
"exceptional points” A = — I(I + 2)/4 the bilinear form becomes degenerate and its
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0-space is just the ideal y. The bilinear form is non-degenerate in this case only on
the quotient-space Mat,  in (2).

Now let us consider constructing the s, irreducible basis in U and U(A). Let T,
T,, T_be the Cartan-Weyl basisin sl [T, 7,] =% T,,[T,, T ] =-2T,and C= - T?
+ 1/2(T,T_ + T.T,). The irreducible basis in U(sl)) can be constructed in the
following way,

TV~ [T [T, (T )] O )

s—-m

where N=0,1,...,5=0,1,..., N, [ml<s.

Thus U contains all the s,(2s + 1)-dim. reps. D(2s) with infinite multiplicity. The
factor-algebras U(A|n) contain all D(2s) with multiplicity n. In particular, in
U(A11) each irreps. D(2s) enters only once and the corresponding generators have
the form T: (s = 0, 1,..., | m| < 5). The manifest expressions for the structure
constants for the product T: T, can be obtained as a generalization of the Racah
~ composition law for the matrix algebra. The associative matrix algebra Mat, in the
usual basis E; has a composition law EE,=86,E. (ij=1,., N) and the
corresponding Lie algebra gl has the usual Weyl commutation relations. Racah!s
introduced in Mat, and gl a new basis (see Chap. 7 of Ref. 16),

; J(Zs +1) s
Tm = N mgn,,cjn'inm” Ej—m"+1,j-—m’+l ?

s<2j,lml<s, (6)

where j = (N -~ 1)/2 and C:::are the usual Clebsh-Gordan coefficients (all our
notations and conventions concerning the angular momentum theory follow
Ref. 16). The composition law in Mat, in the Racah basis has the form (see (7.7.23)
in Ref. 16)

T:TS = 3 (-1)%4/@2s+1) (25" +1)

x {s. s }C;:,’;Tm. T, (7)
1 J ]
where {...} are the 6j-symbols. Note that the number of generators (6) is i‘] 2s+1)
=(2j + 1)’ = N* and equals the dimension of Mat,. The gl commutatioﬂ_l?elations
in the Racah basis take a form like (7) (only the factor (1 — (- 1)++")
appears). The generator T forms a one-dimensional centre (7} = 1/V/N 1)in
gl, and sl, = gl /CT{. The generators T’} 1o form an sl,-subalgebra in sl, and the
generators {7, |m |< s} with fixed s form a basis in spin-s sL, irreps. D(2s). In this
way sl has been decomposed into a direct sum of higher-spin sl, irreps. sl, =
1:@: D(25)(N =2j + 1), and a maximal spin involved in slyis s, _=2j. Owing to the
presence of the parity function p(s +s” +5” + 1) = 1/2(1 + (- 1)****"*1) on the right-
hand side of the gl commutation relations, the generators with odd spins s form a
subalgebra in sl, which is isomorphic to so, at odd N, or sp, at even N (see



1970 E.S. Fradkin & V. Ya. Linetsky

- comments below (7.7.24-26) in Ref. 16).
The Racah generators (6) are normalized as follows,

(T3, T)=(-1)"6%8, .\ (8)

under an invariant symmetric bilinear form, (A, B) = tr (AB), where tr is the usual
matrix trace tr (ZA T2 )= AJ 42 + 1.

The structure constants of (sL, |4) can be obtained from the Racah formula (7) by
generalization to the case of arbitrary complex A. To do this, let us redefine the

Racah generators
- !
P = (N +s)! T ©)
(N-s-1)

and define a new set of 6j-symbols in such a way that {f s] S] }will become a

polynomial functon of j:

I:s s s"}_ 1) (N +s)I(N+s)V(N-s"-1)! :
il (N -s-DI(N -5 = 1)I(N +5")!

X {s s s }—-s's"s"‘A(s s, s")Z(—— 1){ 'I.ISH (N—s”—p)}
J ] ] p=1

{H (N +s5” +q)}[t'(t+s —sN(t+s"—sN(s+s —s5"-1)!

x (s = (s" - t)!]f (10)

(A(s, s’, s”) are the triangle coefficients'*). All dependence on j (or N =2j + 1) in
the new 6j-symbols is a polynomial one.
Now one can define generalized 6j- -symbols | 5 p p p ] for arbitrary complex p as

an analytic continuation in (10) (now N =2p + 1 € C). It is easy to verify that the

generalized 6j-symbols are actually polynomials on N? and do not contain odd
s s s
JJJ
s €2j, 8 <2j,s” <2j (for the other combinations of s, 5°, s” they are usually put to
be zero). The generalized 6j-symbols (10) are defined for all combinations of
integers s, ', s (only the triangle condition ls —s’1< s” < s + 5" must be satisfied;
if it is not satisfied, the generalized 6j-symbols are put to be equal to zero). Then the
composition law for U(sl, [4) (A = - p(p + 1)) has the form

degrees on N. Note also that the usual 6j-symbols { }are defined only for

T 75 = 25+ 1) (2 1sss]
s T zJ<s+)(s+)[pp

x C=¥ 57 Ts,, , (11)

mmm

where p e C. When p = j =0, 1,... and all the generators T, with s > 2j are equal
to zero, we come back to the Racah formula (7). However, when p € C we have

U(sl, |- p(p + 1)). (Note that the sl, Casimir operator C~ [ ,1, ‘1, g]Y},o, where
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[,1) ,1) g ~ p(p +1), T? =1 is the unit in U.)

In this way the composition law for U(sl, | 1) can be obtained as a straightforward
"analytic continuation" of the Racah formula for the Mat, , composition law. This
"analytic continuation" consists in abolition of the conditions s < 2j and in an
analytic continuation from j =0, 1/2,1,... tope C. ,

An invariant symmetric bilinear form for [U(sl, |- (N2~ 1)/4)] can also be easily
obtained from (8) for the matrix algebra. The new generators T (9) have a
normalization

(75, T5]= (- 1y"6s, N I1(N* - p?). (12)
p=1
Supposing now N = 2p + 1 to be a complex number and s = 0, 1,... we obtain a
bilinear form for [U(sl, | A)] with arbitrary A. When N is an integer the bilinear form
(12) becomes degenerate: all the generators T* with s > N are its 0-vectors and form
a basis in the ideal y. This is in agreement with the results of Ref. 14 obtained in
another way.

The commutation relations for [U(sl, | 2)] are immediately obtained from (11)

and have the form

[Fs.75]1=2 3 (1- (-1 J@s+1) @5 +1)

x s s slr:| Css,s,,.” T';: ' (13)

To conclude this section, we see that the way of obtaining the structure constants
of U(sl, | 1) from the Racah basis is practically the same as in Ref. 17 where the
structure constants for the algebra su(ee) = le su(N) were evaluated.

3. A General Construction for Arbitrary Semisimple Fin-Dim. Lie Algebra

Now let g be some semisimple fin-dim. Lie algebra of rank (g) =r and dim (g) = n
and U(g) is its- universal enveloping algebra. U(g) contains a centre Z(g)
generated by r homogeneous generating elements, r independent symmetrized
Casimir operators C, (i = 1,..., k) of g, by the Chevalley theorem. By considering a
" family of ideals S#(A) = S#(A,,..., A ) generated by a system of equations

C-A1=0,i=1,..,r, (14)
one can define a family of factor-algebras
U(gla) = Ug) #(A) . (15)

These algebras are simple for "general position" points A.
However, when (4,,..., 4)) is a set of eigenvalues of the Casimir operators in
some fin-dim. irrep. D(A) of g, the algebra U(g| A) has an ideal y such that

Mat,, ., ~ Ug| A)/x (16)
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and for the Lie algebras
Slgm oy = L& 1AV 2] - 17)

The proof is the same as in the case of sl,. Again one needs to consider elementary
g-modules. There exists an elementary non-decomposable g-module containing the
fin-dim. irreducible g-module with the eigenvalues {2 } of the Casimir operators C.
Again by the Burnside theorem there exists in U(g|A) an ideal y such that the
isomorphisms (16, 17) take place. Seemingly the ideal y is a 0-space for a certain
symmetric bilinear form on U(g | A) in the exceptional points.

Algebras U(g | 1) can be interpreted as quantum associative operatorial algebras
on the following algebraic manifolds. Let x, (A = 1,..., n) be the coordinates in the
n-dimensional flat space. We associate with g (dim g = n) a family of algebraic
manifolds M(g | 1) (dim = n — ) which are defined by the equations

C(x)=4, i=1..,r ' o (18)

(M(so, |A) is a sphere S of radius vA ). The Poisson bracket is defined by [, 8len
= dflox, fS,x. dglax,. The quantizaton on M(g|2) in this case is performed by
x,—>x, where now([%,,%,]= infS, % and Eq. (18) are satisfied in the operatorial
sense. In this case we have an isomorphism U(g|A) = aq(M(g| A)) (aq(M) is an
associative operatorial algebra on M). One can perform a transition to the classical
limit # — 0 (4, > ) and

similarly to the case of sl,.

We want to point out that the compact six-dim. manifold M(SU(3)) may be of
1nterest for the compactification in D = 10 supergravity (and superstrings) to D = 4*
Re L M(SU(3)) x R* (or Ad §*). M(SU(3)) is a submanifold of seven-dim. sphere
S7 defined by the equations (x,, A =1,...,8) x x, = R*,d, ;. x x,x .= p’, where the
completely symmetric coefficients defmmg the thlrd order symmetrized Casimir
operator of SU(3) are d,,. = tr (4,4, 4,), where 4, are the Gell-Mann matrices.
In general the compact manifolds M(g) associated with the compact forms of
semisimple Lie groups defined by Eq. (18) may have interesting geometrical
properties (note that M(g) is an (n - r)-dim. submanifold of the sphere S*!). For
example the manifolds M(SU,) (dim = n? — n) are defined by the equations

tr(X")=(R, )", m=2,.,n X=xT,, (19)

2 It seems to us that in D = 10 superstrings there exists a possible interesting two-stage compactification.
The first state reduces R to Ad S, x M(SU(3)); the cosmological constant of anti-de-Sitter D = 4
universe is related with parameters R and p defining M(SU(3)). The second stage is a "flat limit" leading
to flat Minkowski space and a certain Ricci-flat internal Kihler manifold (Calabi-Yau space). It is
actually a phase transition in the string theory.

The manifold M(SU(3)) itself is Kihlerian, non-Ricci-flat and has SU(3) as an isometry group. Itis an
orbit in the adjoint representation Adg of SU(3) in its Lie algebra; we hope to return to this question in
a separate publication.
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where I', are Hermitian SU_ generators.

4. Analytic Continuation

So far we have considered only first-class higher-spin algebras. The Virasoro
algebra (centreless) which is second-class can be obtained from s, by an analytic
continuation in the following sense. sl, commutation relations [L , L ] = (m - n)
xL,, (where {L, In|< 1) are sl, generators), after the restriction Tnl <1 was
revoked, would define the Virasoro commutation relations. It is of importance that
the Virasoro structure constants are the same as for sl ; only the regions of defini-
tion of the parameters are different. A similar procedure done by us as an analytic
continuation has been described in Ref. 1 for the arbitrary semisimple fin-dim. g.

In principle, similar construction of the analytic continuation can be applied to
the inf-dim. higher-spin algebras. When the higher-spin algebra is classical (and can
be realized by the usual Poisson brackets), this procedure holds without any
modification (all the semisimple fin-dim. algebras can be realized by the usual
Poisson brackets). To illustrate, let us consider the simplest higher-spin algebra

(T3, T3] = (sn’ = sm) T35 (20)
where [n|<s, [n’|<s’. It can be obtained as a classical contraction of (13) when
T: - q'”lf‘: and g — <o in the new commutation relations. After a revocation of
the restrictions |n|< s in T we obtain a classical higher-spin generalization of Vir
(see Refs. 7 and 8 for the super-extensions, realizations and BRST formulation for
this algebra and® for the connection with W -algebras'®*).

However, in the case of the quantum higher-spin algebras L(sl, |A) some modi-
fications are necessary. Above all, to revoke the conditions [m |<s, |m’|< s’ in (13)
we redefine the generators so that the redefined Clebsh-Gordan coefficients in (13)
become polynomial functions onn and n”:

1
~ss’s” (S + n)' (S - n)' (S, + n,)! (S, - ﬂ,)! 2 555"
C o ” ” ” ” Cnn'n"
(" +n" Y (s"—n")

= J2s" + 1) A(s,s",s") X (1)

y+h=s5+s"—s" tl!tZ!
-1 -1
X{ho (s-n—pl)(S'+n’—pl)HLi'I0 (S+n—p2)(S'—n’—p2)},

1'jg(...)=1. - (1)

However, we cannot revoke the restrictions right now because the Jacobi identities
for the new generators T, |n | > s turn out not to be satisfied. To restore the Jacobi
identities for all the generators we need to add on the right-hand side of (13) certain
suitable additional terms, an "analytic continuation of zero", which would be equal
to zero in the original domain |n | < s: ‘
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[TS,T’]— 22p(s+s + s +1)[s “:) ‘;]\/(25+1)(25’+1)

x o T {f’[ (n+p)} (...)

¥ {Tn (n + q)} () (22)

where ... are additional terms which can be calculated from the Jacobi identities. In
this way we get an analytic continuation, AC(L(sl, | 1)). However, the additional
terms strongly change the structure of the algebra. In particular, the generators T,
n e Z of AC(L(sl, |12)) are not primary fields under the Virasoro subalgebra T! but
primary only under the little conformal algebra so(2, 1). Also at the exceptmnal
points A =-j(j + 1), =0, 1/2, 1,... it turns out that an analytic continuation of the
ideal y is no longer ideal in AC(L(sl, |A)) and one cannot directly pass to a linear
factor-algebra. However, the generators 7 with s < 2j in this case form a nonlinear
W, (N =2j + 1) algebra (this is our con]ecture and we have no proof yet). It is of
interest that in the subalgebra of the W,, algebra formed by 7, with | nl<s there
exists an ideal y such that the factor-algebra formed by T w1th s<N-landlnl<
s is isomorphic to sl, (with the Racah commutation relatlons) To illustrate, when
j=1(N=3)we have some first commutation relations of L(sl, |-2):

[Tl,TS] (m—sn) n+m ?
[12,T2]=(m-n)T,,, +(m—-n)2n* +2m’ —nm -8) T, (23)

n+m

(here |nl<sin T:). Setting T'? = 0, we obtain the Racah commutation relations for
sL, (8 generators T/, T?). To perform an analytic continuation in (44) ton € Z one
has to add in [Tl T:] an additional term n(n* — 1)T}, , and the generators
T3(m € Z) are not primary under the Virasoro (but primary under so(2,1)). The
reader can recognize in (22) (with the additional terms) the commutation relations
for W_.'% Similarly from L(sl, |- j(j + 1)) for other j = (N — 1)/2 one can obtain the
commutatlon relations for W, In the algebras AC(L(sl, |2)) one can pass to a limit
A — oo, which will be a limit N — oo for W, (and SL(N)). In this limit one obtains an
algebra, AC(PB(S5'!)/(constant functions)). In this way, in our opinion, the limit
N — o for W, is an analytic continuation of the corresponding procedure of Ref. 17
for SU(N). The classical algebra (22) may be viewed as a contraction of AC(PB(S*')/
R1). It should be mentioned that recently the limit N — = in W, has been consid-
ered in several papers.® As we mentioned above, in this limit one can obtain either
an analytic continuation of the Poisson algebra on the pseudo-sphere or its
contraction (22). However, besides these algebras there exists a whole family
AC(L(sl, |A4)) of higher-spin generalizations of the Virasoro algebra, parametrized
by the eigenvalue of the sl, Casimir operator A. With each of these algebras a
certain new model can be connected. In the exceptional points A = - j(j + 1) these
are the Toda field theories: It is interesting that this family of models are analytic
continuations of the Toda models for arbitrary real (or complex) A. The Wilson
OPE's for them will be given by AC(L(sL, |4)) and will involve an infinite tower of
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fields of all spins to infinity. Only in the exceptional points may certain truncation
be performed which leads to W, algebras and the Toda theories.

5. Conclusion

Here we shall discuss briefly some applications of the algebras considered above
in the higher-spin theory. It seems natural to choose the universal enveloping
algebras U(so(3, 2)) and U(so(4, 2)) (exactly corresponding Lie algebras and their
supersymmetric extensions) as the global higher-spin algebras to construct*> AdS,
and conformal®’ gauge higher-spin theories generalizing AdS, and conformal super-
gravities respectively. The spectrum of the gauge fields corresponding to these
algebras is very rich. It involves all higher spins with infinite multiplicities as well as
anumber of auxiliary fields. If such algebras may be localized, i.¢., a self-consistent
higher-spin dynamics based on them actually exists, then the problem of spontane-
ous higher-spin symmetry breaking comes into being. In such a theory it may
proceed in several stages. The first one may reduce the symmetry algebra L(so(3,
2)) (here we shall discuss the AdS, case) to its factor-algebra L(so(3, 2) Ml, A)
defined by the equations C, = 4, C, = A,, where C, and C, are the second and third
order Casimir operators for so(3, 2). The physical interpretation of such a symme-
try breaking might be the following. In the theory a family of so(3, 2)-invariant
vacua parametrized by the values 4, A, of the so(3, 2) Casimir operators may exist
(each vacuum is a certain so(3, 2) representation characterized by 4,, 4,); then over
each vacuum the symmetry algebra is a representation of L(so(3, 2)) with the fixed
values of C,, C,, i.e., the factor-algebra U(so(3, 2)| A, A)). The gauge fields
corresponding to the ideal f(so(3,2) |2.1, A,) should become massive in this picture.

The coupling constants for the interactions of massless higher-spin fields defined
by L(s0(3,2) |).1, A,) structure constants will manifestly depend on the parameters
A,» A, characterizing the vacuum. However, in theories with the global algebra
L(s50(3,2) |Al, A,) there is still an infinite tower of massless higher-spin fields. The
second stage of symmetry breaking should reduce the symmetry algebras to fin-
dim. gravity algebra, and only spins 2, 3/2,... (in the supersymmetric case) should
remain massless. But there is an interesting intermediate possibility. As we dis-
cussed above, the algebras L(so(3, 2) |A.1, A,) for the exceptional points of (4,, A.)
(which are eigenvalues of C,, C, in the fin-dim. so(3, 2) irreps.) are not simple; there
exists an ideal y such that one can pass to a fin-dim. factor-algebra (35), (36). The
remaining algebras sl,, (N = dim D(4,, 4,)) may be interpreted as fin-dim. higher-
spin algebras in this context. They contain so(3, 2) as a subalgebra and also involve
higher-spin so(3, 2) representations. It looks very attractive that in the exceptional
points there is a possibility of such spontaneous symmetry breaking so that in the
resulting theory only the fields corresponding to these fin-dim. factor-algebras
remain massless. The highest massless spin S, would be defined by N(4,, A,) = dim
D(A,, A,). In this way, along with the theories with massless fields with spins 2, 3/2,...
and massive higher spins and the theories with an infinite tower of massless higher
spins (in AdS,) might exist also a family of intermediate theories with massless
spins 3, 5/2,2,..., with 4,7/2, 3,... and so on (apart from the fin-dim. massless sector
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there is also an infinite tower of massive fields). The massless truncation of these
theories (when massive fields are not taken into account) might be considered as
step-by-step approximations to the complete theory. It looks natural that such
approximations would be finite up to n loops, where n depends linearlyon S__ . For
example, the AdS, supergravity finite up to two loops would be the first step, the
theory with spins 3, 5/2, 2,... finite (possibly) up to four loops would be the second
step and so on.

It should also be mentioned that in these hypothetic theories the upper limit on
the degree of supersymmetry is increased in comparison with supergravity (N <8,
or N < 4 in the conformal case). In this way, in principle the theory with massless
spins 3, 5/2, 2,... (in AdS, background or conformally-invariant) might include the
standard model group (which is impossible within the boundaries of supergravity).

Note also that the possibility of constructing gauge theories in lower dimensions
(D =3 Chern-Simons theories) involving a finite number of higher spins in a similar
context was discussed in Ref. 14.

Appendix

U(sl, |A) has an ideal y when the eigenvalue A of the Casimir element coincides
with the eigenvalue - j(j + 1) (2/ = 0, 1, 2,...) in some fin-dim. irrep. D(2j). Here
we demonstrate in a straightforward way from the structure constants of U(sl, 12)
in Eq. (11) that the generators T; with s 2 2j + 1 (2j is an integer) form an ideal ¥
and one can pass to a factor-algebra (2) formed by T,: with s < 2j. The property y,
being an ideal yU c g, is equivalent to the following condition for the generalized
6j-symbols involved in the structure constants,

[S. s S.}o (A1)
J 1]
for

s22j+1, Vs, ands” <2 (A2)

(generalized 6j-symbols are symmetric under the interchange of the first and
second columns with s and 5’). It means that in the decomposition of the product
T‘T’ where spin s 2 2j + 1 there appear only generators with spins s” 22j + 1 also.
The property (A1), (A2) follows directly from the expression (10). Indeed, the
factor [¢!...] is different from zero if and only if the following conditions are
satisfied, :

s—§<t<s, §-§"<St<s,
t20, t<s+5-5" (A3)
or
t<s+s5-2j-1.

The second factor 7T ' (2j + 1 - s” - p) is equal to zero if and only if s + &' — 5"
-t22j+1-s"21.
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However, the last condition follows from 7 < s’ (A3) and s 2 2j + 1 (A2). In this

way each term in the sum in the definition of generalized 6j-symbols is (10) equal

to

zero for s, 5" and 5” lying in the domain (A2), and hence (A1), (A2) takes place.
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