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Based on the conformal higher-spin superalgebras shsc™(4]1) constructed previously by us,
superconformal higher-spin theory in four-dimensional space-time is constructed in the cubic
order. The theory contains an infinite tower of SU(2,2|1)-supermultiplets with all conformal
higher-spin fields interacting among themselves and with conformal supergravity.

1. Introduction

Why conformal higher spins?

A central problem of theoretical physics consists in the unification of all the
fundamental interactions including gravity. Such a unified theory must satisfy the
following main criteria:

(i) It should be self-consistent at the quantum level;
(i1) It should give an adequate description of low-energy physics.

The finiteness and anomaly free conditions for all classical symmetries of the
theory are understood as a self-consistency. An adequate description of low-energy
physics includes the description of compactification to the four dimensions, the
vanishing of the cosmological constant and the presence of the observed spectrum
of particles, including the Glashow—Salam-Weinberg model, QCD and gravity, in
the spontaneously broken phase.

The above selection criteria strongly restrict the possible candidates to the role
of a unified theory.

What must a unified theory be?

Since Einstein theoretical physics has been a search for the answer to this
question. Conventionally this process can be divided into two stages. The first one
is a lower-spin stage. This is a search for candidates to the unified theory role
among the theories including only lower-spin fields (s < 2). The culmination of this
stage was the golden age of supergravity theory. However, within the bounds of
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supergravity, it did not work well enough to enable one to construct a unified
theory, because of a number of obstacles and defects in supergravity.

The first is the non-finiteness in all the supergravity models except the N =4
conformal supergravity. For the finiteness of some theory, apparently, one of the
two possibilities should take place: either the theory has no conformal invariance,
but then an infinite tower of fields should be present, or the theory should be
conformally invariant and in this case, generally speaking, the presence of an
infinite number of fields is not obligatory. In the former case it seems natural that
an infinite tower of fields contains all the higher-spin fields (see ref. [1]).

The N = 4 conformal supergravity provides an example of the second possibility.
This theory with N =4 conformal Yang—Mills matter supermultiplet is anomaly
free and its finiteness then is a consequence of the superconformal invariance (see
ref. [2]). Other supergravity theories do not fit into one of the above possibilities.

The second are phenomenological defects of supergravity consisting in the lack
of correspondence between the supergravity spectrum of particles and the ob-
served spectrum. Among the causes of it there is a restriction from above on N
that does not allow one to construct extended models with the Grand Unification
Group as a gauge subgroup. This restriction is a consequence of the absence of
massless higher-spin fields in the supergravity multiplets. For example, the internal
group in the N =4 extended conformal supergravity is SU(4), which is not
sufficient to include the standard SU(3) x SU(2) X U(1) model*. Meanwhile in a
hypothetical N =5 theory, the internal group actually is the GUT group SU(5).
But such a theory cannot be constructed off-shell without introducing higher-spin
conformal supermultiplets. For the closure of the symmetry algebra one cannot
limit oneself to introducing only a finite number of higher-spin fields. Only an
infinite tower of all lower and higher-spin symmetries forms an Lie superalgebra
for both higher spins (s > 2) and lower ones (s < 2).

To sum up, we have come to the following: for the finiteness and correspon-
dence with low-energy physics, a unified theory must contain an infinite tower of
fields with all higher spins.

In this way we come to the second stage — a higher-spin stage. So our next
question is “what should a higher-spin theory be?”

There are two quite different situations here. These are higher-spin theories
with or without any mass dimensionful parameters.

The first version is realized in closed string theory [3]. String theory contains an
infinite tower of fields with arbitrary high spins, their masses growing with their
spins. The mass parameter here is inversely related to the square root of the slope
a'. In the zero slope limit, &' — 0, masses of all the higher-spin fields (s > 2) tend
to infinity and only the massless lower-spin (s < 2) sector remains as observed. The

* The same problem arises in usual N-extended supergravity, where we also have the restriction
N8
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other limit is the massless limit a" — . In this limit all the higher spins should
become massless. However, this limit does not exist as a continuous limiting
process for all the momentum in view of the well-known no-go theorem [4, 6]. This
theorem states that there exists no gauge invariant interaction among the massless
higher-spin fields and the Einstein gravity without cosmological term. Note that
the theorem leaves one possibility for the massless limit in string theory: all the
higher-spin fields becoming non-interacting in the massless limit. But this possibil-
ity might have a physical meaning only for infinite energy. The formal reason for
the non-existence of the continuous massless limit is the non-analyticity of the
interaction in the mass parameter. A striking example of such non-analyticity of
the fundamental fields interaction in string theory is the Born-Infeld tree effective
action for the electromagnetic field in the open string theory [5]. The effective
lagrangian is [5] \/ det(8,, +2mwa’F,,) , and one sees directly that the interaction is
non-analytical in the mass parameter (which is ~ (a’)~'/?). Note that the exact
result contains the contributions from all massive higher-spin fields (which are the
excitations of the string), because it has been arrived at by performing the exact
integration over the whole string X*.

Nevertheless, the massless limit in the closed string theory may exist. It is
connected with the following possibility. It was obtained in ref. [6] that the
statement of the no-go theorem of ref. [4] takes place only in the case of the
Einstein gravity without cosmological term (as has been formulated above). In
the adS background there exists a gauge-invariant interaction of the massless
higher-spin fields among themselves and with the adS gravity. The crucial feature
of this interaction is its non-analyticity in the cosmological constant A, which does
not allow one to pass to a flat limit A — 0. This is quite analogous to the
non-analyticity in the mass of higher spins in string theory and suggests the idea
that the slope parameter «' and the cosmological constant A are related.

It looks natural that there is a massless limit in the closed string theory; the limit
however is not a continuous process but rather a phase transition connected with
the appearance of the cosmological term. In this case the metric in the ground
state of the string theory will have a different vacuum expectation value, the adS
background, than it has in the usual closed string theory. Since the massless
higher-spin theory in adS has an infinite-dimensional gauge symmetry algebra
[7, 8], then the phase transition from it to the string phase is spontaneous breaking
of the higher-spin symmetry. Thus we expect that hidden symmetry in string theory
is a higher-spin adS gauge symmetry. The massless adS, higher-spin theory is
developed in refs. [6-10). Let us mention a characteristic feature of the higher-spin
interaction. It contains higher derivatives that can be considered as bringing about
some effective non-locality, as in strings.

However, there is still a dimensionful parameter in the adS massless higher-spin
theory. Meanwhile, in the ultra high-energy domain all mass parameters can
become non-essential and therefore any theory can effectively be considered as a
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conformal field theory [11]. Then all dimensionful parameters of the low-energy
theory appear as a result of spontaneous breaking of the original conformally
invariant interacting theory. In this way we come to the idea that a conformally
invariant phase for the adS higher-spin theory, a conformal higher-spin theory,
may exist. Conformal Weyl gravity is an example of a gravity theory without any
mass parameters (dimensionful coupling constants). The superconformal higher-
spin theory is a generalization of the Weyl supergravity to all higher spins. The
conformal higher-spin theory is developed in refs. [12-18] and in the present
paper. Such a theory has a symmetry larger than the adS theory. This is a
conformal space-time supersymmetry and an infinite tower of conformal higher-spin
symmetries [12,13]. It should be mentioned that the adS higher-spin symmetry
algebra is contained as a subalgebra in the conformal higher-spin algebra. Espe-
cially interesting is the extended superconformal higher-spin theory based on the
N =5 higher-spin conformal superalgebra shsc” (4]5) [13], containing SU(5). (It is
not impossible that this N =5 theory is finite.)

Summing up the above expounded arguments, the following scenario may be
suggested. In the ultra high-energy domain a unified theory is effectively described
as a conformal higher-spin theory generalizing Weyl gravity. The spontaneous
conformal symmetry breaking leads to the massless higher-spin theory in the
anti-de Sitter universe generalizing the adS supergravity. Further, the adS higher-
spin symmetry breaking leads to the string-like phase with the massive higher spins
coupled to the Einstein gravity on the flat background with zero cosmological
constant. The above scenario is schematically illustrated in fig. 1.

It should be mentioned that one can look at the above scenario in two different
ways. Firstly, it may be treated straightforwardly as a scenario for the fundamental
unified theory, i.e. the unified hypothetical lagrangian, or its spontaneously broken

Conformal Phase:
Conformal Supergravity + Infinite Tower of Conformal Higher Spin Fields

|

adS Phase:
adS Supergravity + Infinite Tower of Massless Higher Spin Fields

|

String Phase:
Einstein Supergravity + Infinite Tower of Massive Higher Spin Fields

Fig. 1. Phases of Unified Theory. The arrows 1,2 denote the symmetry breakings (see in the text).
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versions, actually describes this picture at all energies. Then, apparently, the
scenario should be played in high dimensions. Secondly, it may be considered as a
hierarchy of effective theories, each working effectively only in its own energy
domain; and their lagrangians, generally speaking, are not connected straightfor-
wardly with each other. Subsequently it also might be considered in four dimen-
sions.

Above we have expounded the philosophy of the massless higher-spin theories.
Now we pass to the methods of constructing them. In principle there are two
different approaches. The first consists in the investigation of string theory in the
ultra high-energy domain when a conformal regime should be realized. The adS
phase is some, apparently instable, phase between the conformal and string
phases. To analyse it one can use one out of the two powerful methods: the
effective action approach, or string field theory.

The other approach to constructing massless higher-spin theories consists in a
generalization of the traditional field-theoretical methods used in supergravity.
Such an approach is developed in refs. [6-10] for the massless adS higher-spin
theory and in refs. [12-15] and in the present paper for the superconformal
higher-spin theory. The first stage is constructing the infinite-dimensional higher-
spin superalgebras generalizing the supergravity superalgebras. For the adS,
theory this has been done in refs. [7, 8] and for the conformal theory in refs. [12,13]
(for the lower-dimensional higher-spin theories and new superconformal algebras
see refs. [16—-18]). The second stage is developing gauge invariant dynamics on the
basis of these global superalgebras (in terms of their gauge fields and curvatures).

The present paper is devoted to the conformally invariant dynamics. In a
preceding paper [14] we obtained a higher-spin generalization of the Weyl gravity
in the cubic order approximation. In the present work we extend our previous
results to the superconformal case and give a more detailed description of our
construction. In sect. 2, we present necessary information about conformal higher
spin superalgebra shsc™ (4]1), its gauge ficlds and curvatures. In sect. 3, a brief
description of free conformally invariant higher-spin dynamics in the spin-tensor
formalism is presented. In sect. 4, the linearized conformal higher-spin theory on
the geometrical basis of linearized curvatures is described. In sect. 5, the la-
grangian of the superconformal interacting higher-spin theory is proposed and its
gauge invariance in the cubic order is proved. In sect. 6, we summarize the main
results of the paper and briefly discuss some further problems.

2. Conformal higher-spin superalgebra shsc” (4]1)

In ref. [13] we constructed an infinite-dimensional generalization igl( M|N; C)
(i means infinite) of the superalgebra gl(M{N;C). This superalgebra is embedded
as a subalgebra in shs(ZN|2M;C) constructed in refs. [7,8], analogously the
embedding gl(M|N; C) C osp(2 N|2M; C). Our construction is based on the oscilla-
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tor realizations method and the symbol operator theory (see refs. [8, 13]). The real
form of igl(4|{N;C) (exactly its factor-algebra with respect to its centre) is a
generalization of the conformal superalgebra in D =3 + 1 SU(2,2|N), denoted by
us as shsc™(4|N) (shsc stands for super higher-spin conformal). The gauge fields
and curvatures for this superalgebra generalize the gauge fields and curvatures of
N-extended conformal supergravity.

In this paper we consider the N =1 case and in the present section we
concentrate our attention on the superalgebra shsc® (4[/1). We shall sometimes
refer to our paper [13] as (I) and to the formulae in (I) as, for instance, (1.7.7).

2.1. THE OPERATORIAL REALIZATION

Generating elements to realize the conformal superalgebra can be conveniently
chosen as a supertwistor* Z = (a® a4, @) and a dual supertwistor Z = (a,,, a? a")
with the commutation relations

[z4,Z5) =264, (2.1a)

or
[a%,dg] =285, a4 @"] =28E, (2.1b)
{@,a} =2. (2.1¢)

The Grassmann parity and hermitian conjugation are defined as

e(a)=e(a’) =1, e(a)=e(a)=0, (2.2a)
(a)'=a¢, (@) =a*, (3,)'=a,, (2.2b)
(a) =7, (a)'=a', (a") =a. (2.2¢)

Below we work only with the Weyl (symmetric) symbols of the operators, denoting
both the operators and their symbols by the same letters as in (I).

Let us define a “particle number” operator (or a “superhelicity” operator, as it
is called in the twistor theory) with the Weyl symbol

T=Z,Z"=ad,a%+aPaz+a'a. (2.3)

* For our two-component multispinorial notations see appendix A.
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An algebra formed by all quadratic polynomials on the above generating
elements is isomorphic to osp(2[8). A subalgebra formed by all quadratic polyno-
mials commuting with “particle number” operator, except T itself, is isomorphic to
the conformal superalgebra SU(2,2|1). For the explicit expressions for the super-
conformal generators see eqs. (1.3.8,9).

A conformal higher-spin superalgebra shsc™(4|1) is defined as the algebra of all
arbitrary order polynomials commuting with 7 except the powers of T themselves
(this is a centre of igl(4|1;C), see (I)). In the algebra shsc™(4|1) there acts a
representation of su(2,2|1). One can get explicit expressions for the generators of
this representation as the differential operators according to

A(B)=[A4,B},, Aesu(2,2]1), Beshsc™(4[1) (2.4)

where [,}, is the super-commutator of the Weyl symbols 4 and B (see (1.3.11)).

In shsc®(4]1) there exists an important involutive automorphism % called as the
Weyl reflection or inversion (element of the Weyl group of conformal algebra),
which acts on the generating elements and the superconformal generators as
follows:

(a“,aﬁ,ﬁa,ﬁﬁ,a,a") 2 (E“,aﬁ,aa,aﬂ,aT,a), (2.5)
(Paﬁ’KaB’Ma(Z)’Mﬁ(z)’D’ U’ Qa’QB’Sa’SB)

#

> (KaB, PaB, Ma(z)’MB(Z)a -D,-U, Sa,SB,Qa,QB). (2.6)

The Weyl reflection automorphism reflects the conformal and chiral weights from
cand u to —c and —u (D, T<%], =T, [U,T""], = 3iuT<*, D and U are
dilatation and u(1) chiral generators from su(2,2|1) and 7" is an arbitrary
element of shsc®(4|1) with defined conformal ¢ and chiral u weights). The
reflection automorphism is commuting with hermitian conjugation,

Hot="Fo R, (2.7)

where o denotes a composition of the mappings.

2.2. SPECTRUM OF THE GAUGE FIELDS

First of all note that shsc™(4|1) as a linear space can be decomposed into the
direct sum of the subspaces @;zlL(N ) formed by polynomials with a fixed
degree of homogeneity 2N (from the defining property of commutativity with T it
follows that all elements have even degrees of homogeneity). We call the subspace
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L(N) the Nth level. Under the su(2,2{1) representation (2.4) each level decom-
poses into the direct sum of su(2,2|1) irreducible representation spaces (irrepses)

N
L(N) = @1 V(s). (2.8)

In its turn the irreps V(s) decomposes into the sum of so(4,2) irrepses,
V(s) =D(s,5,0) ®D(s— 3,5 — 3,3)
®D(s—1,5—1, -1)eD(s—1,5—1,0), (2.9)

where D(n, n,, n;) is the so(4,2) irreps with the highest weight (n,, n,, n;) under
the Cartan subalgebra of so(4,2). Here n, is the maximal conformal weight in the
representation and (n,—n3)/2 and (n,+n,)/2 define a Lorentz signature
((n, —n3) and (n, + ny) are the numbers of dotted and undotted indices, respec-
tively) of the vector with highest conformal weight. Note that the representations
(s—3.5— 3, % %) are mutually conjugated under the Weyl reflection (these are

usually called chirally or complex conjugated representations). The dimension of
the so(4,2) irreps D(4, s, u) is equal to

d(s,s,u)=5%2s +3) (s +u+1)(s +u+2)(vs —u+1)(s —u+2). (2.10)

The first level consists of only one su(2,2|1) irreps V(1) which is the adjoint
representation, and under so(4,2) we have

V(1) =D(1,1,0) @ D(3,3,3) ®D(3,3, — 37) ®D(0,0,0).  (2.11)
The basis in these irrepses can be chosen as follows:
D(1,1,0):{P,K, M, D},  D(3,3,3):{5..Qg}
D(3,3, — 3):{5.Q.} ,D(0,0,0): {U}. (2.12)

To construct a gauge theory it is necessary to introduce the basis in so(4,2)
irrepses connected with the decomposition so(4,2) — so(1,1) & so(3,1), where
s0(3, 1) is the Lorentz subalgebra and so(1, 1) generated by the dilatation generator
D. In this basis all generators and gauge fields will have the defined Weyl weight
"and the manifest four-dimensional Lorentz index structure. Such a superconformal
basis has been constructed in (I) by standard group-theory methods. The structure
constants of shsc™(4|1) in this basis have also been calculated therein.
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As a result, the gauge field corresponding to shsc™(4/1) has the form*

N

— i—g,, (N,s,4,c,u) (N, 5,4, ¢,u)a(2D), B2J)
w, Y X Y Wy bG8, fant
N=1s=1(s,c,u,l,j)

e, =0(1) (2.13)

for s integer (half-integer). Here indices of the fields and generators have the
following meaning. The index** N = 1,2,... is a number of the level L(N). The
index s = 1,2,..., N defines su(2, 2| 1)-irreps V(s) (the gauge fields with the fixed s
form the su(2, 2|1)-supermultiplet with maximal spin s + 1; 1 due to the additional
vector index u). Thus on the Nth level there are N conformal gauge supermulti-
plets with the maximal spins from N + 1 to 2. The index s =5 — 1,5 — 1. s defines
the conformal multiplet (the gauge fields describe the spin s + 1). The index u is a
chiral weight: u =0 for bosons (s integer) and u = +3 for fermions
(s half-integer). The index ¢ = —s, —s + 1,..., s is the conformal weight of the
generators and the indices /,j =0, %, 1,... define a Lorentz signature (25 and 2!
are the numbers of dotted and undotted indices) and are restricted by

ctu

I+j<s, I , (2.14)

with / + 3(c —u) and j + 3(c + u) integers. The above restrictions follow directly
from the spectral analysis of V(s) under the decomposition so(4,2) — so(3,1) &
so(1, 1).

It should be mentioned that the structure of the gauge field (2.13) is analogous
to the structure of the string field @[ X] in string field theory. There is an infinite
tower of levels and there are fields with all spins from maximal (s =N + 1) to
minimal (s =1) on each of the N levels. In order to work effectively with the
infinite tower of levels one can use the following approximation procedure. The
number N in eq. (2.13) should be limited by some N,,,,. The original expressions
are restored in the limit N, — .

The Grassmann parity of the fields and generators is defined as

e(@N57:60) = g(TW52e) =g =0 (1) (2.15)

* The hermitian conjugation is

+
Fo _ (N, s, 0,6,1) — (N, 50,0, —u)
@y Dy (wp.,a(21),[3(2j)) @y, B2, a@l) -

** Our notation here is different from the ones in (I). The level number N equals n+s in the
convention of (I).
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for s integer (half-integer), and the following relations hold:
T'wp = (- 1" w,T", (2.16a)
cwl =(-1D)" wlwy, (2.16b)

ie w, ineq. (2.13) is an element of the second-class Grassmann shell of shsc™(4]1)
(i7% in eq. (2.13) is introduced for convenience).

Note that the gauge fields of usual conformal supergravity are, in our notations

(euaﬁ » Opa2) wuﬁ(2)’ e flmB ’ Au ’ d’;m ’ ll/#B ¢ua ’ ¢ul3)

L =10 11,000 (1,1,1,0,0) (1,1,1,0,0) (1|110) (1 1,0:0.0)
(wp,a,B' » Opa2) » Wy B2) ' @y Dya,p Wy ’

-~
—
ol

e

)

voi=

F

i_1 1 14 1
O A S

2.3. THE CURVATURES

The curvatures of conformal supergravity in the two-component notation read
(see (1.3.9) for the commutation relations of su(2,2|1) in these notations)

REB(P) =2, e +igpopf — (n o v),

REB(K) =2, fP +id2df — (n ov),

RED(M) =3,05P + 25 f2F + 0,0,
— sy —(powv), he,

R (D) =03,b,+e,sfF —30,,65+ 10,5~ (pov),

Re(Q) =242 + 3iA, 48 — ieSs0f — (wev), he,

RE(S) =2, 8¢ - 3id, 80 — S0 — (n ) he.,

R(U)=0,A, +ih, ¢ +iY,50° — (nov), (2.18)

where 2, is the covariant derivative with respect to M and D generators

Curvatures of shsc®(4|1) are defined as usual:

R, =d,0,—d0,+[o, o Vs (2.19)
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and in the components we have (see (I))

(N,s,s,c,4) (N,s,s,c,u) _
R 515 oy = a0, asiy gion — (= w)

+ Y 8(c' +c"—c)d(u +u —u)d(m—U' ="+ 1)s(r - 1" +1'=1)
x8(t—U'+1"=18(p—j —j"+j)8(qg—i"—j+J)
X 8(k —j—j +j)ym(N+N +N")i' "=

NI SY J r CV u, ll jV
X N” s n j ” c " ul/ l” ]'H
N s s+ ¢ u |1

(N, 8,2 cu) . (N7, 5" " e u"yy(m) . B(p)
X Wy, a(thymy, BUOSmPy, olr) B (2.20)

Here the parity function m(n) =0 (1) for n even (odd) and the structure coeffi-
cients denoted as were given in* (1.7.7). They are expressed through the group-the-
oretical factors which are well known from angular momentum theory
(Clebsch—Gordan coefficients, 9j-symbols etc.). We will not present here the
complicated explicit expression but instead discuss a simple symmetry property of
the structure coefficients.

Let us define symmetrized coefficients by the relation

Ny sy o0 o u I
S{Ny, 83 45 € uy I Jp
Ny 53 43 ¢35 uy I3 Js

N, s, 4 ¢ u, I, 7
= (- 1)N3+’3"3"3“3 N, s, 4, C, u, I, Jjyy. (2.21)
Ny 53 55 —c3 —uz I3 Js

* As we have noted above, our notation here is different from the one in (I). In particular, in the
structure coefficients {...} the new index N =n + s is introduced instead of the old index n. Thus
there is the following correspondence between the notations:

w("[\lr',s.J'C,u)=(N—5)w9:;,c,u)’ R?{Y,S,J.("u)=(N‘>")Rf:§: ; .c.u)’
Ny sy 97 ¢ u L Ny—s; s 20 ¢ u I |
Ny, 3 45 € Uy Iy Jpp=|Ny=sy 53 4, €3 U L i,
Ny 535 43 €3 uz Iy 3 Ny—s3 3 43 ¢3 ug Iz i3

where the r.h.s. are given in terms of the conventions in (I). In eq. (2.20) the summation over all the
internal indices (N', N",..., ., J".t,..., p) is understood.
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These symmetrized coefficients get multiplied with the factor

(_1)E?=1(N;+li+i.)+4(1|42+42’3+J1’3) (2.22)

under the interchange of any two rows. It can be verified straightforwardly by
looking at the expression (1.7.7) and noticing the following symmetry properties for
the constituent parts of it. The symmetrized structure coefficients of the conformal
superalgebra shsc(3]1) (see ref. [16] and (1.C.4)), :

S, S, 5 S 8, 83
s{c1 ¢ c;3 =(_1)S3'13 € € —C3| (2_23)
ll 12 l3 ll 12 13

and the symmetrized structure constants of the Clifford algebra C, (see (1.7.8,9)),

SAII'IZ'IJ =A[l712’[3 (2.24)

Uy, Uz, Uz Uy, ta—uy?
get multiplied with the factors

(—1)E-s=h (2.25)
and
( _ 1)2;?3,1,+4(1,12+1213+1,13) (2.26)
under the interchange of any two columns respectively.
The above symmetry property expresses the super-anticommutativity of the

supercommutator and the existence of an invariant bilinear form on shsc™(4{1),
which is written as

(A,B)=tr(A=*B), (2.27)
where the trace is defined by
tr(A(Z,Z)) = A(0,0) (2.28)

and A * B is the Weyl product of the symbols 4 and B.
With the help of the invariant form from curvatures one can construct a
topological invariant of the type [y«R“ AR“G,,,,
_ N=s 21 +j N,s,7,c.4) N, 5,7, —c, —w)a(2l), B2j
1= (-1 +”fM4fo(21)’B(§j‘)‘ A RN-s:72—e—0a@D.BCH - (229)

It would be interesting to find the topological meaning of invariants of the above
type which are associated to higher-spin superalgebras. Is there a connection with
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the classification of the four-dimensional manifolds and theorems about indices of
some elliptic operators (in the euclidean compact case)?

Above we have considered the superalgebra shsc™(4|1). To construct a bosonic
conformal higher-spin theory we used in ref. [14] the conformal higher-spin algebra
hsc™(4) which is a subalgebra* of shsc™(4|1). It contains only su(2,2) but not
su(2,2|1) as a finite-dimensional subalgebra. hsc*(4) has the same operator realiza-
tion as shsc™(4|1) and only the odd generating clements @ and a' now equal zero.
The gauge fields are m“ w007, fzjy» Where there are no indices s and u because m
the bosonic case chiral weight u =0 and s =s (due to the absence of a and o,
cach Nth level is decomposed directly into the sum of spin-s su(2,2) but not of
su(2,2|1) irreducible representations and s =1,..., N). The corresponding curva-
tures R{Y 59 4o5 have the same structure as (2.20), where now there are
structure coefficients**

These coefficients also have the simple symmetry properties. The symmetrized
coefficients

Ny sy ¢ L ' Ny sy a L i
KN, s, 6 b =(_1)Ns_[3—]3 N, 5 c; L Jyp (2.30)
Ny s3 ¢35 I3 Js Ny 53 —c3 I3 Js

get multiplied with the factor

( _1)Z?=1(N:+l:+ji) (231)

under the interchange of any two rows.
The topological invariant constructed with the help of the invariant bilinear

form for hsc™(4) reads

o N

N—s+{+j N, _

=Y ¥ Y- Jf RSI(ZIS)C[‘S(ZJ)/\R(N5 )a2D), B2)) (2.32)
N=1s=1c¢,1I M*

W

* As discussed in (I), the Bose subalgebra of shsc™(4|1) is hsc™(4) ® hsc™(4) @ ( @;:lu(l)N).
** Here again we have changed the notations as in (2.20).
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3. “Pure spin” conformally invariant lagrangians

287

Usually in the tensor formalism the massless states of spin s are represented by

a real totally symmetric tensor field ¢,

, in the Bose case (integer s) and a

Majorana spinor-tensor i, 1, in the Fermi case (half-integer s). We suppress

the four-component spinor indices below.

The simplest conformally invariant higher-derivative actions for these fields were

proposed in ref. [2] in the following form:
A(s) = [ d*x ¢, OPER ™
for integer s > 0, and

_ 4 —1/2 —1/2 1,2
A(s) —fd x‘h(s—l/z)‘:'s / aRs-'f;((xs—x//z))l/fV(s 2

(3.1)

(3.2)

for half-integer s. The spin projection operators P, are totally symmetric, “trace-

less”,

(s) — -1/2) _
nyuPsL:(ss) =0, 'Y,LPs-‘;((Ss—l//z) =0,

and transverse

s) —1/2) _
6# I)s‘:/((;)) =0, 3# P, f:((ss— 1//2)) =0

(3.3)

(34)

(the same relations hold for lower indices). As a result, the actions are invariant

under the following gauge transformations:
0= 0éuis-1 ™ Mupruis—2)
Wuis—1/2 = 0uuis-3/2 ™ Yukus-3/2)

The actions (3.1) and (3.2) can be rewritten in the form
A(s) = (= 1) [ d*2Cp, (o CH
for integer s > 0, and

_ s=1/2 [ 4. ~— — 1/ w(s—1/2
A(sy=(-1) fd xcu(s—1/2),u(s—1/2)c+“(s /B wts= 172

(3.5)

(3.6)

(3.7)

(3.8)

for half-integer s. Here we have introduced a linearized Weyl tensors (integer s)
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and spinor-tensors (half-integer s) associated to spin s,

— cppis),o(s)
C#(S), v(s) “@S#(S), V(S)ap ot ap d)cr(S) (3'9)
—_——

A
for integer s > 0, and

- _ —1/2),0(s—1/2
w(s—1/2),v(s—1/2) _‘@sp;.(isf]//%)frv(gs~ l//2))ap s ap l»[Ia'(s— 1/2)» (310)
W—/
. _ s—1/2
C/L(S— /2 s—1/2) = an.(s— 1/2),v(s—1/2) (3~11)

for half-integer s.

In egs. (3.9) and (3.10) the P5 are the projectors obeying the following
irreducibility conditions:
(i) antisymmetry

oP(5),o(s - -1/2),0(s—-1/2) _
ysppisf{)z,v(s) - 0 ’ L@spifs—{/%)g,(z(s—/l/)Z) - 0 (312)

[ 9]
(ii) “tracelessness”
PR =0, RPN BT A =0 (3.13)
(and analogously for upper indices). By virtue of these properties the Weyl
(spinor)-tensors obey the corresponding irreducibility properties and are invariant
under the gauge transformations (3.5) and (3.6).
In order to pass from egs. (3.1) and (3.2) to egs. (3.7) and (3.8) it suffices to
integrate by parts and employ the observation that, in view of the properties

satisfied by &, -, the following equality holds:
w(s) — gpp(s),¥(s) o
DSP-Y#’-:&) _(@;’O‘is),lf(s)ap"'apa "‘aa H (3.14)
S———

N
N

with the same expression for half-integer s.

In the cases of spins s = 1,2 the corresponding Weyl tensors C,,,, and C, ;) .2
coincide with the Maxwell tensor and the linearized gravitational Weyl tensor, and
the lagrangians coincide with the Maxwell and the linearized Weyl lagrangians
respectively. In the case of s =+ we have C™=¢ and C*=4y, and A(3) is the
massless Dirac action. For s = % we have the linearized Weyl spinor-tensor for the
conformal gravitino

Co, =30, — 370, — o) — vy (B —0my,) — (pov), (3.15)
y=y",, yC,,=0, C.,=-C ., Cr,=#C,, (3.16)

and A(2) is the linearized spin- 2 action in conformal supergravity.
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The actions (3.1) and (3.2) are invariant under scale transformations of the form
x'=e” A ’d)#(s) 2 SA¢;L(S)’

Yos-1m= e@mn Yuis—1/2)- (3.17)

The Weyl (spinor)-tensors are transformed as C’ = e?* C with the scale dimensions
d=2, 3 and 3 for C,, .6 Cots—1/2 00512 A4 Ciliy 1 12y (s 1,/2)» TESPECtiVEly.
The half-integer spin s is described by two Weyl spinor-tensors with different scale
dimensions.

In ref. [2] the numbers of off- and on-shell degrees of freedom were calculated.
The action (3.1) describes the 25 + 1 off- and s(s + 1) on-shell degrees of freedom
and the action (3.2) describes —2(2s+ 1) and —2(s + 3)* ones, respectively
(minus for Fermi). For the N =1 conformal {s,,,}-supermultiplets consisting of
the spins § =S, Smax — 3»Smax — 1, the grading total numbers of degrees of

freedom are equal to zero both off- and on-shell. Hence the necessary conditions
for on- and off-shell closure of supersymmetry are satisfied.

4. Geometrical description for the free conformal higher-spin fields

In this section a linearized conformally invariant higher-spin dynamics will be
constructed in terms of the gauge fields and linearized curvatures, and the
equivalency of this formulation with the standard formulation in terms of symmet-
ric tensors given above will be shown.

4.1. LINEARIZED CURVATURES AND CONFORMAL COHOMOLOGICAL COMPLEX

We shall use the following expansion procedure. The gravitational vierbein is
expanded into two parts,

(@)
where a,,5 is the zeroth-order background part (flat vierbein, see appendix A)
and & is the first-order dynamical part (the tilde will henceforth be omitted for
simplicity). All the other fields are supposed to be of first order.

We describe the conformal spin (s + 1) in terms of the set of gauge fields wf,
where A4 is the collective index in the so(4, 2)-representation space D(s, 5,0) (for
integer s) or D(s,s,3)® D(4,s, — 3) (for half-integer s). In our superalgebra
shsc™(4[1) such representation spaces have an infinite multiplicity. However,
considering the linearized case, we shall work only with one set of the spin-(s + 1)
gauge fields. So in this section we suppress the indices N and s in the gauge fields
notation (™"’ “* and simply write this as w{’%".
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Disregarding the second-order terms, for the linearized curvatures we have
R =2w=dwo+Pw, (4.2)
where the operator % is defined as
Pw = [P"B,a'aﬁ- /\w]* =15“B(0a3/\w), (4.3)

with P, 4 the translation generator’s symbol ( B is the translation generator in the
so(4, 2)-representation [see eq. (2.4)], and o, O dx*
In the components eq. (4.2) can be rewritten in the form*

£(s,0,u) (s,ct+1,u)y
Ry atny. fomy = 9 “’v ain, fomy T @5, c,u,m, M) Gy 505 iy o 1)

oLy, 8
+a(.1 s Cy — uamyn)a-uaswsij,ac("_lu)?ﬂ(m)

—b(J,c,u,n,m)crwswf;”;f(;)l’””,ﬂ-(m)s
—-b(s,—c—1,—u,n—1,m—-1)g, aﬁwaaL(:—l) fom-1— (e v),
(4.4)

where the coefficients are

3 (n+c—u+2)(m—c—-u)Rs+m—-n+2)(2s +n—m+4)
“(”C’”’”’m)_[ 16(n + 2)(m + 1)

(n+tc—u+2)(m+c+u+2)(2s —n—-m)(2s -+-n+m+6)]1/2

b H 2 E =
(s,¢,u,m,m) 16(n + 2)(m + 2)

(4.5)

The component equations (4.4) and (4.5) obtained directly from eqs. (4.2) and
(4.3), where in eq. (2.13) for the gauge field one should substitute egs. (1.6.12,9)
for the generators and calculate the commutator of symbols [P, T,...], (see
appendix B).

Our operator & has the following properties:

(1) It increases the rank of an arbitrary differential form at unity;

(2) It decreases the conformal weight of an arbitrary differential form at unity;

*In ref. [14] we denoted by s the spin of the gauge fields. There the spin of the generators equalled
s — 1. Here we denote by s the spin of the generators and the spin of the fields is » + 1.
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(3) & is nilpotent
P2=0; (4.6)

(4) & anticommutes with the usual exterior differential
#d+d#=0. (4.7)
Due to the properties (3) and (4) we have
(2 =d>+dP+2d+2?=0, (4.8)

and the linearized curvatures are invariant under the linearized gauge transforma-
tions

.0 =08 =d&+PE, (4.9)

and the Bianchi identities are satisfied
P'R’=dR"+%#R" =0. (4.10)
Due to the properties (1) and (3) the operator % is a cohomology operator and

it converts a sequence of linear spaces A, of differential forms taking their values
in the so(4, 2) representation into the cohomological complex:

1%

s
oA A (4.11)
where ¢ =0, 1,2,3,4 is the rank of the differential forms.

One can define a local cohomological complex at some fixed point x of the flat
four-dimensional space-time. Here A, , will be spaces of the rank-g antisymmetric
tensors (components of the differential forms at the point x). Evidently, this
cohomology does not depend on x. A cohomology theory defined in such a way is,
generally speaking, non-trivial (i.e. cohomological spaces H? can have nonzero
dimensions). We call it a conformal cohomological complex.

Note that the conformal complex is analogous to the deRham complex and & is
the analog of d. In the conformal complex one can introduce an operation

generalizing the Hodge star =

@ =Ro %, (4.12)

where # is the Weyl reflection automorphism described in sect. 2.
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Thanks to the involutivity of %% and
7= (—1)7"! (4.13)

(in the Minkowsky signature; here ¢ is the rank of differential form), the following
relation holds:

@2 =(-1)7". (4.14)

Now with the help of @ one can define an operator .7

T =®0PF, P=- OFAOE (4.15)

The above defined operator .# has the following properties:

(1) it decreases the rank of an arbitrary differential form at unity;
(2) it increases the conformal weight at unity;

(3) % is nilpotent

Zr=0. (4.16)

The operators % and % are mutually conjugated under a non-degenerate
bilinear form for two arbitrary differential forms with the same rank,

<A,B>=[tr(AA@B), (4.17)

where A A B includes the Weyl product for components of the forms 4 and B
which are Weyl symbols in our construction. The operator % is an analog of the
divergency 8 in the deRham complex on the Riemann manifold. In subsect. 4.2 we
are going to apply the above formal construction to the conformally invariant
higher-spin dynamics.

4.2. CONSTRAINTS FOR THE AUXILIARY FIELDS

In sect. 3 we have seen that the free conformal higher-spin theory can be
described in terms of the totally symmetric tensor or the spin-tensor. However, our
set of gauge fields is sufficiently broader. The physical spin-(s + 1) fields in this set
are w0, (for integer ) or @ o1 b — 12 and @ LT 5 6+ 1,2 (for
half-integer s). These fields generalize the conformal supergravity (CSG) ones
€aps Yuar Vg A,. All other fields are auxiliary. The auxiliary fields are necessary
for us to build the gauge invariant curvatures. But to construct the conformal
theory of higher spins we must find such constraints which will allow us to express

all the auxiliary fields through the physical ones up to a pure gauge part. A
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solution, as we will show later, is given by following constraints:
FZR =0, (4.18)

where the operator .% conjugated to % from the linearized curvatures is given by
eq. (4.15).
In the components the constraints (4.18) can be rewritten in a form

— - _ v, s, e, u)y — 3
a(s,—c—1, u,n,m)oyﬁRw’,a(")‘B(m_”wLa(J, c—1,u,m,n)a., vn e l)B(m)

_ PR _ (s, u . 3
b(s,—c— 1, —u,n,m)oy; Rw’ﬂm oy

—b(s,cou,n—1,m—1)alsR;$C 5001 gom—1y=0, (4.19)
where a and b were given in (4.5) and we have taken into account that

; N=l=j=lul;— e —
(T;(N")SB(’:)M)) (— ) T 2MTOS(N")SB(P'")L u)’ (4‘20)

as follows from the definition of % in (2.5) and the definition of the generators
in ().

Let us show that the above constraints make it possible to express all the
auxiliary fields. For it firstly introduce some notations. Let d(s) denote a dimen-
sion of the so(4,2)-representation space D(s, s,0) (for integer s) or D(s,4,3) &
D(s, s, — %) (for half-integer s) (the gauge fields taking their values in this
representation space describe the spin-(s + 1), as discussed above). Furthermore,
let d(s,c) denote the dimension of the dilatation generator D eigensubspace in
this space with eigenvalue (conformal weight) ¢ (¢ = —v,...,s). Due to the
reflection automorphism % we have

d(s,c)=d(s,—c). (4.21)
In this notation the number of constraints in eq. (4.18) for fixed s is equal to

Md(s)—d(s,—4)). (4.22)
Here 4 is the number of components of the one-form (see property (1) of the
operator %) and we have subtracted d(s, —s) due to property (2) of #Z. In the
component decomposition of . #R' there are no terms with the minimal conformal

weight, but the dimension of the minimal conformal weight eigensubspace is
d(s, —2).
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However, the constraints are not independent due to the nilpotency of 7. The
number of identities

FZ(ZR)=0 (4.23)
is equal to
d(s)—d(s,—s)—d(s,—4 +1), (4.24)

where the last two terms have been subtracted again due to property (2) of 7.
In this way we have for the number of independent constraints

3(d(s) —d(s,-3)) +d(s,—2 +1). (4.25)

Surprisingly, this is exactly equal to the number of auxiliary fields minus the
number of auxiliary gauge parameters (parameters for such gauge transformations
under which only the auxiliary fields are transformed and not the physical ones).

Indeed, the number of auxiliary fields is equal to the number of all fields minus
the number of physical ones, i.e. equal to (4.22). The number of auxiliary gauge
parameters is equal to the number of all gauge parameters minus the number of
gauge parameters for transformations under which the physical fields are trans-
formed, i.e. equal to (4.24). Then the number of all auxiliary fields minus the
number of auxiliary gauge parameters is equal to the number of independent
constraints (4.25).

Practically, finding explicit expressions for the auxiliary fields is a very compli-
cated task (as compared to the adS, case [9], there are four terms in the expression
Pw in the curvatures (4.4) and in the constraints (4.19)). Here we present only an
algorithm to do it and later give some of these expressions that will be useful for
us. Denoting the gauge fields with defined conformal weight ¢ as w(s,c), the
constraints can be rewritten in the form

Fdow(s,¢) +FPow(s,c+1)=0. (4.26)

These are recurrent relations allowing us to express the fields with ¢ + 1 in the
terms of fields with ¢ up to a pure gauge part @'(s,c+1)=2&(s,c+2). It
permits us to express step by step all fields with ¢ > —s through the derivatives of
the physical fields with minimal conformal weight ¢ = —s.

It is interesting to mention that the above constraints have the Maxwell-like
form 8F = 0, where instead of the usual divergence § there is a “divergence” %’
from the conformal cohomological complex.

Let us analyse the constraints for spins 2 and —Z— For spin 2 (s = 1) we have
Dec=-1

3, —1,0) _ va prAd,—1,0) _ ips(1,-1,00 -
aa”BR#f,,aB- V=0, U“BRuf,,aﬁ V=0, a””ﬁR#f,,aB =0; (4.27)
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@ c=0

/(1,0,0 Bpr(1,0,0)  pe(1,0,0) _

o R GD + oy PR o) + ous RS D =0, (4.28)
The constraints (4.27) are equivalent to the linearized zero-torsion condition
( Rﬁ},’a}é 1L0) _ R;,.s(P), note the correspondence between our notation and usual
supergravity notation in eq. (2.17))

R/ 10 =0, (4.29)

uyv,ap

The constraint (4.28) together with the Bianchi identity (we also have taken into
account (4.29)),

477 (0, PRI S + s Ry LA + 0,ug RYSOP) =0, (4.30)
is equivalent to the linearized Einstein equations (R/{"%%) =R, 2, h.c.)
%0, FRIOD 0, e R0 =0, (4.31)
and the relation (R;"*? = — R/ (D))
RI0:00 — 0, (4.32)

The proof of the equivalence of (4.28), (4.30) and (4.31), (4.32) is given in appendix
A as an example of manipulations with two-component multispinors.
For spin 2 (s = 3) we have the following constraints:

UW,;R;’E,%Z’_I/Z']/Z) =0, O_VQBR:L£1,/52,41/2‘71/2)=0, (4.33)

which are exactly the chirality-duality and tracelessness constraints for the Weyl
gravitino curvature (R(/% ~1/2 21/ < R(Q)),

Y'R; (Q) =0. (4.34)

The constraints (4.29) and (4.30) allow us to express the auxiliary fields f and w
through the physical spin-2 field (Weyl graviton) €,..4 Up to a pure gauge part (the
field b,). The constraints (4.33) allow us to express the auxiliary fields ¢ through
the physical spin-2 fields .

To conclude this subsection, note that all the auxiliary gauge symmetries can be
fixed by the following gauge conditions:

Fw=0. (4.35)
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The number of these conditions for fixed s is equal to the number of gauge
parameters with the exception of e(s, —s) under which only physical fields are
transformed. The gauge (4.35) fixes also the symmetry with parameters &(s, —s + 1)
under which both the auxiliary and physical fields are transformed. The residual
symmetry in this gauge generalizes the linearized general coordinate transforma-
tions and Q-supersymmetry.

In particular for the spins 2 and % we have

=LO) _ (1,—-1,0) _ i (1, -1,0) _
0"‘[3(0,L g =0, o, s =0, U““meaﬁ =0, (4.36a)
(1,0,0) wp, (1,0,0) _ (1,0,0)
o0 0 +offe, sy = —odge, (4.36b)
(172, -1/2,1/2) _ 3 (172,172, -1/2) _
or gl /22D =0, gl TR TP =0, (4.36¢)

The gauge conditions (4.36a) are equivalent to the linearized gauge conditions
( (L, =10 h )

“, aﬁ naf

hy  —h, =0, h,*=0 (4.37a)

which fix the local Lorentz and dilatation symmetries; the gauge condition (4.36b)

removes the field b,(~ o’ 0.y and fixes K-symmetry, and the gauge (4.36¢c) is

equivalent to (g, ~ (/> ~1/2 £1/2)

yHi, =0, (4.37b)

which fixes the local S-supersymmetry for spin- 2. Note that the gauge Fw =0 is
formally analogous to the Lorentz gauge 64 = 0.

4.3. THE SOLUTION OF CONSTRAINTS

Our following task is to find a general solution of the above proposed constraints
for the curvatures. Together with the linearized Bianchi identities we have the
following system of equations for the curvatures:

{%R/ =0, (4.38a)
PR =—dR". (4.38b)

Before looking for the solution of system (4.38) in terms of the curvatures, we first
consider an auxiliary homogeneous system

{sz =0 (4.39a)
#B=10 (4.39b)
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for two-forms B taking their values in the spin-s so(4,2) representation space
D(4, 5,0) (for integer 4) or D(4, s,3) ® D(s, s, — 1) (for half-integer 4).

Let us calculate a number N(s) of independent components of the general
solution of the above system. It is equal to the number of components of the
two-form B, 6d(s), minus the number of independent equations in (4.39). The
number of independent equations (4.39a) has been calculated in (4.25). The
number of independent equations (4.39b) is the same by @-duality. Thus we have

N(s)=6d(s)—6(d(s)—d(s,-5))—2d(s,—s +1)
=6d(s,—s)—2d(s,—5+1). (4.40)

Using the information about so(4, 2) representations given in sect. 2 (see below eq.
(2.11)), we have for the dimensions of the eigensubspaces with conformal weights
c=—,—s +1

+ 1) int

(s, 1) - (4 Z 1 meg.era (4.41)
2(s +2)(s +3), half-integer s
and
25(a +2) +42, integer s
d(s,—s+1D)={2(s+)(s+3)+2(s + (s -3)
+2(s+3)(s—%), half-integer s .

(4.42)

Thus the number of independent components of the general solution of (4.39)
reads

2(24 +3), integer s

443
425+ 3), half-integer s . (4.43)

N(s) = {

In the half-integer spin case we have obtained a doubled number because the
corresponding so(4,2) representation is a sum of two irrepses.

An explicit expression for the general solution of the homogeneous system has
the form

2
Bﬁl’,%z)),/é(m) =8(n—24)8(m)d(c+ ”)‘Tuva( )Cff(éf’f%)

+8(n)d(m—25)8(c — u)EWB(Z)ég(éf’f;), (4.44)



298 E.S. Fradkin, V.Ya. Linetsky / Superconformal higher-spin theory

where C and C are arbitrary, mutually conjugated multispinors

(C(J,C.u) )Tz C(.¢0 1) (4.45)

a(2s +2) a(2s+2)

and for ¢, and their properties used below see appendix A.
Due to the 8-functions, the only non-zero components are

~(s,0,0) ;
CsYhy,  Cgi, vy,  integers, (4.46a)
(s,1/2, —1/2) (s, —1/2,1/2) ~(s.1/2,1/2) . —1/2,-1/2) -
CLa.43 , Coii+h , Ciavny s Ciz, +2) , half-integer s .
(4.46b)

It is easy to sec that the number of components of C and C is equal to (4.43).
Now let us proceed with solving the “non-homogenecous” system (4.38) for the
curvatures. It can be written as

{ZR’(J,C)=O, c=—4,~1+1,...,7—1, (4.47a)
PR (s,¢)= —dR(s,c— 1), c=—+1,...,4. (4.47b)

In the r.h.s. of eq. (4.47b) there is a differential on the curvature with ¢ — 1. Thus
eqs. (4.47) for given fixed ¢ form a non-homogeneous linear system for the
curvatures with conformal weight ¢. A general solution of the system with fixed ¢
is a sum of the general solution of the homogeneous system and a partial solution
of the non-homogeneous system. It can be obtained recurrently by c. For simplicity
we shall first solve the system in the bosonic case (integer s). The first step is
¢ = —s and

FR(4,—3) =0, (4.48)

and #R" (s, —s) =0 because ¢ = —s is a minimal conformal weight. As it follows
from the above analysis, it is equivalent to

R (s,-4)=0 (4.49)
(the homogeneous system has no solutions with the non-zero conformal weight, see

egs. (4.44) and (4.46)).
Further, let the curvatures with some fixed — < ¢’ <0 be equal to zero,

R’ (s,¢") =0. (4.50)
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Then for ¢ =c¢' + 1 we have a homogeneous system

FZR (s,c'+1)=0,
(s, +1) (4.51)
PR (4,¢'+1)=0.
Hence, for ¢’ < —1 we have
R'(s,c'+1)=0.

In this way we have proved by induction that all the curvatures with negative
conformal weight are equal to zero

R (4,c)=0, c<0. (4.52)
It generalizes the zero-torsion condition R”(P) = 0 for spin 2.
For ¢'= —1 the homogeneous system (4.51) has a non-trivial solution (see
eq. (4.44)),
R;&iho()n),ﬁ(m) =36(m)é(n— ZJ)UM.}&Q)CS&?L 2)
+38(n)8(m —22)3EPC;Y (4.53)

where C and C are the multispinors which represent the spin-(s + 1) Weyl tensor
described in section 3 in the tensor formalism and

I
,0 = — #1(4,0)
¢§11(21)+ 2) 4 E#vpo-a.y.vaﬂ)Rpa'J,a(ZJ) L (4.543)
]
Pl — _ _uvpo= (5,0
Cos+2 2 0bRys b (4.54b)

(we suppress the index u in the quantities R ““ as u =0 in the bosonic case).
Substituting eq. (4.4) for the curvatures into eq. (4.54) we have

0 B (5,0
Ct(;(ZJ)+2) - _aa waﬁ,a(ZJ) ’ (4.553)
7.0 _ e (4,0)
CB(ZJ +2) = d Bwaﬁ,B(ZJ) . (455b)

Here the following notations are used:

Oy =040, Wop, . =00, . (4.56)

Note that in egs. (4.55) the Weyl multispinors have been expressed through the
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auxiliary fields. Using the constraints (4.52), one can express C and C only through

the derivatives on the physical fields.
To this end let us write the useful part of the constraints (4.52) in components:

—uv (s, —c) O
Y5y urv, a(e), B2s <)

y, (s,—¢) (J,_—c+l) )
J WIB a(e), B2s -y~ Pag,alc—1), f2s —c+ 1) (4.57a)

aa(Z)RMV a(ZJ —c), Ble) — =0 ’

P (s,—c) (J,'—c+1) .
aﬂ Oug, a(2s -0, ey waﬁ,a(l: —c+1),Blc—1° (4-57b)

(4,0 (+,0)
The above constraints allow us to express the auxiliary fields w b2y Coup.f2

entering the expressions for the Weyl tensors through the physical fields, and as a
result we have the Weyl tensors expressed only in terms of the physical fields:

O X B (,
Ca;Zz +2) aa . aa aﬂ a(J) Bs)? (4.583)
—_
4+ 1
0 o, a (4, 9)
CB(ZJ +2) ~3d B"‘a Bwrxﬁi,a(g),ﬁ'(J)‘ (458b)
S——
s+1

Here the physical field o “, (J) 60) is a multispinor representation for the traceless
part of the totally symmetrlc tensor ¢, ., in sect. 3. It should be mentioned that
the simple expressions for the Weyl tensors in the two-component multispinor
formalism take the place of complicated expressions in the tensor formalism, and
the elementary symmetrization—antisymmetrization operations take the place of
cumbersome projectors.

Thus we have obtained the solution of the constraints for R(s,c) with ¢ <0.
Now let us find a solution for the curvatures with ¢ > 0. The homogeneous system
has no solutions with ¢ > 0, so a solution of the non-homogeneous system is
unique. It can be found recurrently for 0 < ¢ <s. At the first step ¢ = 1 substitut-
ing into the r.h.s. of (4.47b) (Bianchi identities) the solution (4.53) for ¢ =0, we
have (only equations with nontrivial right-hand sides are written)

/(2,1 o~ R 0
o.ay(';)RuS/,a()ZJ —-1.8 aaﬁcc(zJ(ZJL 2)» (4593)
Brs.0)
O-B(Z)RILV a, B(ZJ -1) 6 CB(ZJ +2)° (459b)

All the other curvature components satisfy the homogeneous system and hence are
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equal to zero. Thus the solution for c =1 is

R;VJ al(n) By ™ d(m—1)86(n—2s+ 1)0p£:1(2)6aﬁcl(:!ii[d])+2)
+8(n—1)8(m—2s +1)3,,/P,,C40 . (4.60)

Proceeding analogously, we finally obtain the general solution of the constraints:

RS2 = 3A(s,0)8(c)[8(n—2s +c)8(m —c)

X0, P97 0% CLs® o +8(n —c)8(m — 25 +c¢)
\/_/
c
— fQ2), B g 0
X 0-/.1,1/ aa (7 C(J(24)+ 2)
S——
c

(s —c)!

A(s,c)=(-1)27°¢ T

8(c)=1(0)atc=>0(c<0). (4.61)

The fermionic case can be examined in the analogous way. Here the Weyl
multispinors are

i
C(.} —1/2, 1/2)__6;1. POy R/(J,—I/Z,I/Z)
4

a(24 +2) pwa(Z) pa,a(2s)
~ 8 (f —,1/2)
Ba Oy @ aB,a(s +1/2), B —1/2)? (4.62a)
s+ 1/2
[
G —1/2,-1/2) "y 1, —1/2,—-1/2)
Coa. v 3¢ *GuiaRos B
~ . a (.7, —1/2)
9 ﬁ”'a ﬁwaB.a(J—l/Z),B(J+l/2)’ (4'62b)
4 +1/2
i
(,1/2,-4/2) . __ o 1/2,-1/2
Caj( J{+—2) /? 46’“)" O-[LVQ(Z)RPO'J a(éj) /2
~ B (4,—4 —-1/2)
aa aa af,a(s—1/2), 3(,+1/2)7 (4633.)
s +3/2
i
172,172y —etvrogy (s, 1/2 1/2)
CB(24 +2) 4E #Vﬁ(Z)RpO' B(2s)
~ Ju. a ., (s,—,1/2)
0 0% 05 2D sy (4.63b)

s+3/2
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Here wf:,;’:(’;ﬁ)ﬂ), b1z and w(a’éy:(’;‘{/zz))‘ 4 + 1,2 Tepresent the y-traceless part
of the field 4, ,,,2 Note that the Weyl multispinors with ¢ = — 1 (4.62a,b)
contain s + 1 derivatives on the physical fields and those with ¢ = + 7 (4.63a,b)
contain s + 3 derivatives. They represent the Weyl spinor-tensor C~ and C*
respectively (see sect. 3).

The final expression for the curvatures both for the bosonic and the fermionic

cases can be written in the form

R;Sj,;f(’n”)?,g(m) =30(c+lul)| A(s,c,u)d(n—2s +c+u)d(m—c— u)a'w“(z)

X 9% ... 0% CSs i) + A(s, ¢, —u)d(n—c+u)

S——
c+u

- —ue By 8 B G u.u)
X8(m—2s +c—u)o,,” 79, .9, Cg " o]
———

c—u

1 —=c)!
Crugetu ( ) ) (4.64)

A(J,C,u)=(—l) (c+u)!(d—u)!

Eq. (4.61) follows from (4.64) for s an integer and u = 0.

In this way we have obtained the expression for all curvature components only in
terms of derivatives on the Weyl multispinors, which in turn are expressed only
through the derivatives on the higher-spin physical fields.

4.4. LINEARIZED ACTIONS FOR THE CONFORMAL HIGHER-SPIN FIELDS IN TERMS OF
CURVATURES

In subsect. 4.3 we have expressed all the auxiliary fields and curvatures only in
terms of physical fields. Our next task is to construct a linearized conformally
invariant action which will produce equations of motion for the physical higher-spin
fields.

We are going to look for the actions in the MacDowell-Mansuori form,
guadratic on the curvatures (see ref. [19]). The dimensionless real action for spin
(s + 1) must have the general form

; — e, o, —c, —wan),
A(H= % A(J,c,u,n,m)/Ra(j,)fB’(‘,)n)/\R“ e, —wa(m, Bem)

c,u,n,m

A(s,cou,n,m)=A(s,¢c, —u,m,n)(-1)""". (4.65)



E.S. Fradkin, V.Ya. Linetsky / Superconformal higher-spin theory 303

Disregarding the terms containing the curvatures which are equal to zero on the
standard constraints (4.18) (or (4.64)) and the full derivative terms, we get the
unique actions:

(i) Bosonic case (integer )

A(5) = (=1)iB, [[REGSO AR COMC) — e (4.66)
(ii) Fermionic case (half-integer »)
A(5) = (-—1)’—I/ZBJ‘/‘[R;&;/Z'_I/Z) ARG —1/2,1/De2s) | h.C.] , (4.67)

where B, are overall, dimensionless normalization constants.

The above actions generallze the actions [R%,(M) A R.,(M)e®**¢ and [R(Q)ys
A R(S) for spins 2 and 2 3 to arbltrary higher spm Varying the action (4.66) with
respect to the auxiliary flelds w, -1 O) _1,5 and 0l p)(z, _1y, we get the constraints

eHPTy R;‘(IJ o(z)(ZO:) 0, (4683)
eMPPIy ﬂR;t(;,b()(,zﬂj)) =0. (4.68b)

These constraints are contained in the standard constraints. It states that only
non-zero components of R’(s,0,0) are Weyl multispinors. Substituting their
solution (4.53) into the action, we can express it simply as C2

A/(J) - ('-1)JBJfd4x[Cs(i[,]'-e)Z)C“’O’O)Q(ZJ+2)

~(+,0,0) 5,0, 2542
+ ;00 e ovhas 2] (4.69)

It evidently is a multispinorial representation of the standard C*-action (3.7) for
the conformal higher-spin field.
In the fermionic case we get analogously

A/( y=(- 1)1—1/213 fd4 [C‘(j( :/+2 )—1/2)C(4,—1/2 /225 +2)

= 1/2, =1/ 75,1 /2,1 /2)B(2s +2)
+CGs 1 ACe . ] (4.70)

In this way we have demonstrated that the free conformally invariant higher-spin
actions introduced in ref. [2] can be geometrically formulated in terms of curva-
tures, similarly to conformal supergravity. An analogous formulation for the
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higher-spin fields in adS, was constructed in ref. [9]. Note that constraints in adS
also admit cohomological interpretation, as it was shown in ref. [24].

5. Cubic interaction in superconformal higher-spin théory

5.1. SOME REMARKS ABOUT ACTIONS QUADRATIC ON THE CURVATURES

Let T, be a basis in some Lie superalgebra g containing the Poincaré or adS,
algebra as a subalgebra, and let R¥ be curvature two-forms. In ref. [19] it was
proposed to choose an action of the following form:

A= [RAR7Q,,+ Ay, (5.1)

where Q,,., is some (super)symmetric bilinear form and A4y, is Yang—Mills action
for the vector fields (if there is some internal subalgebra in g).

However there is a question in this approach: How ought one to choose the
bilinear form Q. ,? If one chose the invariant bilinear form G, , on g, one would
get a topological invariant and have no dynamical equations of motion. Hence one
should look for another bilinear form, but then the action will no longer be
invariant under the original gauge transformations. Meanwhile it may be invariant
under some deformed gauge transformations. Often the action (5.1) is not suffi-
cient to construct the theory and should be supplemented with the constraints.
Then the deformed gauge transformations may be found from the covariance
properties of these constraints.

As g contains a Lorentz subalgebra, the basis 7, can be chosen as {T 0, jomh
where 2 is the set of all other indices. Let us split the set into three parts:

(T Tiwiem> n>ms
{T3): TS 6omy » m>n;
{T)}: Ty 6omy > n=m. (5.2)

The invariant bilinear form G, in this basis has a block-diagonal form with only
non-zero blocks G5, G55, G,,- Then the topological invariant is

I= fw[R" ARBG,,+ RTARBG 5 +R* ARG,,] . (5.3)

A non-trivial action (or at least its main part) in this basis can be proposed in the
following simple form

A0=if[RA/\RBGAB—R”‘_/\REGE], (5.4)
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and the Yang—Milis term is

Ayy = 27[ d*x —gg”"g""RﬁVR[’ G;i

po
=v[REA % RPGy, (5.5)

where {R%) is a subset of the set {R“} (n =m = 0) corresponding to the internal

subalgebra (if it exists in g), and g,, =e,‘j’3emﬁ- is the four-dimensional metric

constructed from the vierbein e;‘B which is contained among the gauge fields of g.
Let us examine the variation of the action

A=Ay +Ayy (5.6)
under the original gauge transformations
A _ ApBg.w Ap B Apbe v
6gR _fB.u/ R°Z +fEM R7Z +fb.u/ R°& ’
A _ ApBg.w ApBeyw Apbg
BgR _fB,q/ R”& +fl_3.f.a/ R"& +fb,cV R*& ’
8,R* =5, R°E" +f5.,/RP€" +f, /ROE" . (5.7)

|
It has the form

8,Ay=i[[R4ARE"(fo. Gan+ (~1) " f4,°Ges)
~RTARCE™(f2,°Gaz + (1) f1,%Gzp)
+2R* ARE“(f2,/Gap— (1) £, Ges)
+2RA AREf,," Gy — 2RTARE™f, PGr5|.  (58)

The first and second terms in eq. (5.8) are identically equal to zero due to the
invariance property of G5, G15. The remaining terms can be brought to the form

8, Ay =2i f [2R? A RCEf7,"G 4

+(R*f,,"Gap — R,."Gr5) ARUE™ . (5.9)
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The variation of the Yang—Mills term is

8, Ay =27 [R? A % (£4./RAE +f7./R7E +£, /R2E )Gy + (5,4),.

(5.10)

where (8,.4), appears due to the variation of g,, in eq. (5.5). Generally speaking,
this term may spoil the gauge invariance. However, in the cubic approximation it
reduces to the linearized part of general coordinate transformations (the linearized
zero-torsion condition is supposed to be satisfied)

88,,=(0,6)8,, +(3,6°)8,,+£°9,8,. (5.11)
with parameters
£Pe 0 = Eug (5.12)

(é"a,; is contained in the gauge parameters of the algebra g). These variations can
be compensated for by deformations in the transformation law for Yang-Mills

fields

Aol =¢'R;,, (5.13)
which differs from the usual general coordinate transformations by a spin-1 gauge
transformation with the parameter &¢ =§“wf‘. In the cubic approximation the
deformations (5.13) do not contribute to 84, because the vector fields enter 4,
only in interactions terms, and Alwﬁ is of at least second order (see ref. [6]).

Let us consider remaining terms in egs. (5.9) and (5.10). If from the standard
constraints it follows that the R“-curvatures are antiself-dual and the R# self-dual,

* R1= —iR4, % RP=iR”, (5.14)

then the first term in eq. (5.9) is identically equal to zero due to the simple identity
(A.19). The second term in eq. (5.9) can be divided into two parts. There are
curvatures for vector fields R? in the first part, and there are curvatures R({R%
={R%} except {R%)) in the second part. Due to (anti)self-duality of (R“) R* the
first part is canceled out with the first and second terms in eq. (5.10) if and only if

y=1. (5.15)
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In this way only non-vanishing terms are
8,4 =2i [[R*f;,”Gn = R r]
ARIEY +2[REA % Rég“f, G, (5.16)

(note that the term R? A % R’ in 8, Ayy is equal to zero due to the symmetry
property of G,z).

The terms (5.16) should be compensated for by some deformations Aw. As an
example of the above type of action let us call to mind the proof of cubic
invariance in the extended massless higher-spin theory in adS, from ref. [6].

When the linearized constraints and equations of motion are taken into account,
the only non-trivial curvature components are the Weyl multispinors C and C

s . _ a(2)
R/.w,i(k), a(n), Bem) = 8(m) L Citky, atn+2)

+ 5(")5#;,6(2)61'(/(), B(m+2) (5.17)

(i(k) is the antisymmetrized set of so( N )-indices [i,...i.]). At the linearized level
all the curvatures from R? are equal to zero on the constraints, R“-curvatures are
antiself-dual and R“ are self-dual. Hence all the cancellations considered above
take place in this case and 8,4 =0 without any deformations Aw (except, of
course, A, in eq. (5.13)). This is true because in the cubic order the term (5.16)
equals zero as R' = 0. The knowledge of non-linear constraints in this case is not
essential to prove gauge invariance in the cubic order because the terms
(8A/8w) Aw are either equal to zero on the linearized constraints and equations
of motion, or are of at least fourth order (for so-called “extra” fields, i.e. fields
which do not enter the quadratic action and which are defined only by the
standard constraints). In this way the action of the type of eqgs. (5.4)-(5.6) solves
the problem of constructing the invariant interaction in the approximation under
consideration.

5.2. THE CUBIC INVARIANT ACTION IN CONFORMAL HIGHER-SPIN THEORY (CASE OF
INTEGER SPINS)

In this subsection we present an action obtained previously by us in ref. [14]
which generalizes the Weyl gravity action, and prove its gauge invariance in the
cubic order with some simplifications. Our construction for the purely bosonic case
is based on the conformal higher-spin algebra hsc™ (4).
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Making the splitting (5.2), one can write down an action of the type of (5.4) (the
topological invariant for hsc™(4) was given in eq. (2.32))

B N K
A= ¥ ¥ T (-)¥imtmtlg(n—m)
N=1s=1lc=-snm
X [ RG55my AR5 - B, (5.18)
where
1, n>m
&(n—m)= 0, n=m (5.19)
-1, n<m.

The above action is dimensionless, real, parity conserving and does not contain any
dimensionful parameters. There only is a dimensionless real constant B8 (overall
normalization), and the correct normalization of the conformal gravity action
(terms —iBf[REHD A RGLO=@ —c.c]) follows by setting B = —1/8a?, where a
is the coupling constant of Weyl gravity.

Let us now consider the action (5.18) perturbatively using our expansion
procedure. In second order, taking into account the linearized constraints (see eq.

(4.61)

A(N,s,e), 1 _ _ (DRAN,s,c),
Ry.v,a(n),B(m)_ 40(0)5(”1 c)é(n 25""')‘7:1/ Ra(n+sz),3(m)

+218(c)8(m — 25 +¢)d(n — c)GEPRLN SO 0, (5.20)

R{u%zl\; 2, ey =A(5,¢)%...9% C(zsioz)), (5.21a)
\/___/
c
R:&i\;:é’(gl_c_"z)=A(S,C)(9aﬁ a BCU(%SS+02))7 C=O,1,...,S, (5.21b)

[

the action is brought to the sum of linearized actions C? for free conformal
higher-spin fields, as in eq. (4.69).

In the cubic order the above action describes a cubic interaction in conformal
higher-spin theory. Let us prove its gauge invariance. First, the curvatures R“4 are
antiself-dual, R are self-dual, and among the curvatures R““ the only non-zero
ones are R°™%* (denoted by R'%). Thus in this case after all the cancellations in

(), B(s)
8, A stipulated by the symmetry properties of G,p, Gy and (anti)self-duality, as
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considered in subsect. 5.1, only the following term remains non-compensated:
agA = 2i[[R/Af&.o/BGAB _R/A_fa.wﬁGA_E] ARE
=2i[[RAE“],,) R f5.,/E 7| ARGy

=2 f d4 R;fz) “fa /bG R +R3(2)g “f, /Tx/bGdfaI_z/ﬁ(z)d] ,

rA _ 2 sA _ D A
R — a( )Ra(Z) , R 40-3( )RB(Z) ,

R/ =1ge®@R/e 4+ 15POR ., (5.22)

where we have used the 1nvar1ance property of G and (anti)self-duality of (R*)
R4. The index @ means w, wLN;;s) :3(‘) (among the coefficients of the bilinear

form G;,, the only non-zero ones are G;; = Gy s, syacsy, (s (N, s, —syy(sh sy SE€ €d-
(2.32)). Let us note that (5.22) can be brought to the form

8,4

g

2f d*x[ (8, RE )R “®3Gs, + (8, R0y ) RPPG, |

s NZ (-1nY [ d“x[(6ngf(’2')”gs’)};(s))R’(N'S"""‘s”’z)""‘s) +he], (523)

because the homogeneous gauge transformations for RY are
8, Ry = f4, R2sE + f3, Rbp ", and hc. (5.24)
Substituting (5.24) into (5.23), we arrive at (5.22), because the term
fiw Ra(z)Ra(z)’devﬁ

and complex conjugate one are equal to zero due to the invariance property of G.

The remaining terms in (5.23) should be compensated for by some deformations
Aw. Let us consider the structure of the deformation A4 ~(8A4/8w) Aw. First of
all note that since Aw are of at least second order (remember that the fields  and
gauge parameters & are supposed to be of first order), 84 /8w should be taken as
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linearized 4’ /8w in the approximation under consideration. In this way we have

i N { o
AA= =5 T (=D [ dhrer RN
N,s

Ba (N,s.l=s)a(s+1),BG—=1 _ a4 (N,s,1-5)a(s— 1), B(s+1)
X [o'pa Awy o, phay . A

1 . .
N _ _
-5 2 (—1) Vs fd“x[Rgﬁffz’)‘};(ﬂA(»‘N’*‘ B, a(s+ 1), B(s— 1)
o LB(s)
N,s

(N,s,s} (N.s, i —s)aB,a(s—1),B(s+1)
+Ra(s)’ B(H_Z)Aa) , (5.25)

where we have varied the action, integrated by parts, and used the linearized
Bianchi identities and constraints. All the other fields (except o™ 5! =) either do
not enter the linearized action A” (more exactly, enter only the full derivative
term) or 8 A° /8w equal zero on the linearized constraints. Thus in the approxima-
tion under consideration the only essential deformations are Aw™-'~%, Note that
Aw enter eq. (5.25) multiplied with the curvatures R}, The term (5.23) which
we need to cancel out also has such a structure (R’¢ = R“V-:9) Hence we get
explicit expressions for the deformations Aw compensating 6, 4:

ApVs =5+ D N L(; RWN.s, =5} (5.26a)

Pab a0, 86-D T T [T O Ta@ a6 oA

AN =5+, - _ ! § RUNs. =9 (5.26b)
aB.a(s— 1), f(s+1) /s & B@nas).Bs) ’

(note that in the approximation under consideration the curvatures R on the r.h.s.
of the expression 8,R =fR‘& must be taken as linearized). Further we should
verify that these deformations are compatible with the constraints.

At the linearized level the fields m%’_ff"“’ have been expressed through the
physical fields w%"’:’._” with the help of the constraints
R &Gl =0 (5.27)

It looks natural to suppose that in the second order the same constraints remain in
force

ROV-s.os =0, (5.28)

v, a(s), B(s) —

where R is no longer linearized but of second order. Straightforward verification
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gives that the constraints (5.28) are invariant under the deformed gauge transfor-
mations

N,s, —5) (N,s,—s) (N,s,=s+1)
ARG sy fisr + 82 RaGrwon, o) 2‘/—A"’aﬁ o b1y T 8 REG oy sy = 0

(5.29)

and analogously for the complex conjugate expression. The deformations found
generalize the deformations

Aws? ~&¥(P)RIH(M) (5.30)

in conformal gravity.

In this way we have completely proved the gauge invariance of the cubic
interaction in conformal higher-spin theory. The following characteristic feature of
this proof as compared to the one for adS, theory should be mentioned. When
establishing the invariance in the adS, theory, only linearized constraints were
essential. In the conformal theory, on the other hand, the second-order constraints
(5.28) are essential along with the linearized ones.

The action (5.18) in the cubic order can be brought to the C’C®-form analo-
gous to the linearized case (C”)?, where C’ are the linearized Weyl tensors
considered in sect. 4 and C® are second-order Weyl tensors. To see this, one
should note that in the cubic order R A R ~ R“ AR, substitute the solution of
constraints R~ d°C and integrate by parts. The second-order Weyl tensors are
found in a unique way from the requirement of gauge invariance of the action.
Thus the action is defined in a unique way.

5.3. THE CUBIC INVARIANT ACTION IN SUPERCONFORMAL HIGHER-SPIN THEORY

The action based on the conformal higher-spin superalgebra shsc™(4/1) of the
type (5.4) can be written in the form [for the topological invariant for shsc*(4|1)
see eq. (2.29)]

-1
Ay=-—

a2

N
Z (_I)N—Sin+m+lg(n_m)

s=1s,c,u,n,m

T[\’Js

s [RU 560 1 RO -t (531)
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and the Yang-Mills term for vector fields* ("% reads
-1 ® _
AYM — _4:2_ Z (_ ].)N ]/d4x [ ggy.pgvtrRLI:/,I,0,0,0)RL/Z,I,O‘0,0) . (5.32)
N=1

The action A =A,+ Ayy, as in the purely bosonic theory, does not contain any
dimensionful parameters. The metric in eq. (5.32) is defined as

_ 1, (,1,1,=1,0 (1,1,1,—1,0)a, B
v = 29, 0,8 @, ’

g =(g,) ", g=det(g,,). (5.33)

At the linearized level the solution of constraints have the form

Z(N,s,s,c, _ 1 o _ a(2)p(N,s,s,c,u)
RiM&soed = 20(c +ul)d(m —c —u)8(n — 24 +c+u)o,," "R 050 dimy

+30(c+ul)d(m—2s +c—u)d(n—c+ u)fr'“f(z)ﬁf::”;i’;(‘;’:)z),

(5.34)
N,s,s,¢, . = . (N, s, o, -,

fo(Zj—Jcil‘:lZ),ﬁ(c-%u)_A(J’C’ u)B“B...H“ﬂCl(x(szr’z) u u)’ (5.353.)

~———

c+u
(N, s,4,¢,4) _ _ B B A(N.s,s,u,1)

Ra(c—u),B(2J—c+u+2)_A(j’c’ u)aa "'aﬂ! CB(21+2) 4 (535b)

c—u

and the action is brought to the sum of free C>-actions.

Let us consider cubic invariance of the action. First, due to the gauge variation
of the metric in the Yang-Mills action, which is a sum of the linearized general
coordinate transformations and the linearized Weyl transformation in the approxi-

mation under consideration,

8g,,=0,& +0,&,+An,,, (5.36)
the compensating deformations for the vector fields are
(N,1,0,0,0) _ g=vRps(N,1,0,0,0) _ _afg(l,1,1,-1,0)
Awy = &"R.Y (£, =0, & ) (5.37)

* As considered in (I), in the N =1 theory this infinite tower of vector fields is abelian, but in the

N-extended theory it forms a subalgebra in the 51_7( N) Kac—Moody algebra with the generators T4,

n > 0. The coupling constant for vector fields here is the same as the one for the gravitational

interaction, e%=a?.
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(note that under the Weyl transformation &g, = Ag,, Wwe have

Sw(y —gg* g’ )=0).

The curvatures (R)R” are (anti)self-dual except following ones

#(N,s,s =172, s—1/2, 1/2) a(Z)R(N s, s—1/2 s—1/2,1/2)
wv,a(s— 1), B(s) 4 34 a(s+1), A(s)
1= BORN,s.s=1/2,5—1/2,1/2
+30,, Ra(s—l) ﬁ(/s+v) 2B, (5.38a)

F(N,s,s=1/2,5—172,—1/2) _ 1 __ Q)p(N,s,s—1/2,s—1/2,—1/2
R ). 661 = 10, CRGGS gl TP

+37, PR gAY, (5.380)
which contain both self-dual and antiself-dual parts. So the first term in eq. (5.9) is
equal to zero except the terms with the above curvatures.

Transforming the terms in egs. (5.9) and (5.10) with the help of invariance
property of G and (anti)self-duality of curvatures, we finally get, analogously to
(5.23) in the purely bosonic case,

1
- N—s 4.[;:2 (N, 5,75, —
bpA= =7 L (=D AU (8, R T )
@ N,s,s,u
(s>0)
X Rl(N,s,J,J,u)a(2+J +u),B‘(J—u)+h.c'] . (539)

To compensate these terms, let us try and find deformations Aw. The deformation
A A reads (analogously to eq. (5.25))
AA = 1 1Ns d4 2,‘/—R/(Ns11u)

=T 5 2 Z (_ ) f [ als +2+u), Bs —u)

2a N,s,s,u

XAm(N,:,J,—J+1,—u)a[§,a(J +u+1),ﬁ(4 ‘u—l)_l_h'c.] . (540)

In the superconformal case the only essential deformations in our approximation
are

A (Ns:—4+lu) —1 6 VSad, =1, 1) (541&)
@b ats +ut 1y, fls—u—1) o e a(2) als +u), B —u) .

and

-1
(NSJ—J+IM) (N,s,9,—s,u)
Awaﬁ a(s +u—1), B(J—u+1) 2 ’J —u SRB(Z),Q(J +u), ﬂ(; —u)" (541b)
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At the linearized level the fields '™ * ~*h® are expressed through the
physical fields @™-5*» =~ *5% with the help of the constraints

4, = (N, —
Ra(Z) ;(4 Y, 73(4 ~u) =0, RE(Z) ;(j o, 'E(J -y =0. (5.42a,b)

We suppose, as in the bosonic case, the second-order constraints to be satisfied,

§,4, =4, W),

RO i T -0 =0, RSyt i =0. (5.43a,b)

By, als +u), B —)
Then it can be easily verified that the constraints above are invariant under the
deformed gauge transformations é,w + dw. In this way it is completely proved the
gauge invariance of the higher-spin superconformal interaction described by action
(5.31). The above deformations generalize the deformations under P and Q
symmetries in conformal supergravity.

However, it is known [20,21] that in the conformal supergravity action there is a
term

f R(D) AR(U) (5.44)

along with the terms R(M) A R(M), R(Q) A ysR(S) and R(U) A x R(U) appearing
in egs. (5.31) and (5.32) when N =s = 1. But in our approach we have not obtained
this term and neither its higher-spin generalization. Nevertheless, gauge invariance
is proved without such terms in the approximation under consideration. As a
matter of fact, the nondiagonal term (5.44) (we call it “non-diagonal” because it is
built out of two curvatures associated with the different so(4,2) representations;
R(D) with the adjoint representation, R(U) with the trivial representation) is
necessary in the supergravity action to provide the gauge invariance in the fourth
order. In cubic order in the action there is one non-defined parameter which can
be fixed in such a way that the coefficient in front of the term (5.44) becomes equal
to zero. This coefficient is uniquely defined only in fourth order. However, in the
present paper we have dealt only with the cubic approximation and such “non-
minimal” terms are not essential for our purposes. Note also that in conformal
supergravity adding the term (5.44) in the action with the above-defined coefficient
is sufficient to provide complete gauge invariance in all orders; on the other hand,
adding these terms in higher-spin superconformai theory is no longer sufficient.
Along with them one should find a non-linear generalization for all conventional
constraints and, possibly, include in the action some higher-order terms on the
curvatures. The situation here differs drastically from both the adS, higher-spin
theory and the bosonic conformal higher-spin theory, where in cubic order the
action is uniquely determined without any non-minimal terms.

To conclude this section the following feature of the above action should be
mentioned. Kinetic terms for fields with the same spin-(+ + 1) (including vector
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fields) enter in the action both with positive and negative signs due to the factor
(=1DY75, Thus half of the fields have a “wrong” sign. However, the action
contains higher derivatives in the kinetic terms for spins > 3 and hence has no
perturbative unitarity even without these “wrong” signs. This is analogous to the
situation in the hypothetical N > 4 superconformal theories (see ref. [2]), where
the kinetic term for the U(1)-vector field has a multiplier (N — 4) /4N changing
sign when N> 4. If the generators T ‘V*/-““ with even (N —s) furnish a
subalgebra in shsc*(4|1), one might restrict oneself to considering only this
subalgebra, so that the “wrong” signs do not appear. However, we have no proof
of the existence of such a subalgebra yet. Anyway it does not give a solution of the
non-unitarity problem in conformal theory stipulated by higher derivatives (see for

a discussion of this problem ref. [2]).

6. Conclusion and summary

Here we briefly sum up the main results of this paper and point out a number of
problems that need further study.

We have shown that there exists a gauge invariant cubic interaction among
bosonic and fermionic conformal higher-spin fields incorporating conformal super-
gravity. This result opens up the possibility of constructing a self-consistent
interacting conformally invariant higher-spin theory. Together with previous results
about higher-spin interaction in adS, [6] it gives hope to solve the longstanding
higher-spin problem which would be a considerable step towards a unified theory,
as discussed in sect. 1. It seems natural that in our construction there is an infinite
number of fields of each spin. It is completely analogous to string field theory.
Each level contains all spins from maximal to minimal (spin 1). Such a structure of
levels also looks natural from the point of view of spontaneous symmetry breaking.
Only the first level (spins < 2) might remain massless; the other higher levels
should become massive.

However regarding the infinite multiplicity of spins in the gauge invariant
conformal higher-spin interacting theory one should keep the following circum-
stances in mind. Right from the start we have dealt with the superalgebra
shsc™(4|1). In principle it is not impossible for the invariant interaction to be based
on another superalgebra containing each spin with a finite multiplicity. In ref. [13]
we constructed a whole family of such superalgebras shscf,”)(4|N ), where n =
1,2, ... is the multiplicity of SU(2, 2| N )-supermultiplet with the fixed maximal spin
in the algebra and p € R some numerical parameter. They are factor-algebras of
the original superalgebra shsc™(4|1). However all those supecralgebras seemingly
may not be localized. To build a cubic gauge invariant interaction as in sect. 5 it is
necessary that some invariant bilinear form exists on the algebra. But shscﬁ,")(4|1)
apparently does not possess any invariant bilinear form (the structure constants of
factoralgebras have no simple symmetry properties which differ from shsc*(4(1)).
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Meanwhile it cannot be excluded that any other superalgebras with a finite
multiplicity of spins exist*. Note that the situation here differs drastically from
adS, higher-spin theory, where the superalgebra shs(4|N) contains each spin a

finite number of times.
Now for the readers’ convenience we shall briefly reproduce the main steps of

our consideration.

In sect. 2, we described the conformal higher-spin superalgebra shsc™(4/1), its
operatorial realization, the spectrum of gauge fields, and its curvatures. Some
simple symmetry properties of the structure coefficients providing the existence of
invariant bilinear form were discussed. The important involutive automorphism %
(Weyl reflection in the so(4, 2)-representations) was introduced.

In sect. 3, the usual conformally invariant description of higher-spin fields in
terms of symmetric tensors (bosonic case) and spinor-tensors (fermionic case) has
been presented. We introduced higher-spin linearized Weyl tensors C, and
spinor-tensors C,;*,C,” generalizing the gravitational linearized Weyl tensor and
rewrite gauge and conformal invariant high derivative actions ¢, O °P,¢, (integer
spin s) and ¢, 0° /2P,y (half-integer spin s) in the form C? and C, C}".

In sect. 4, the geometrical description of free conformal higher-spin dynamics is
presented. The linearized curvatures R’ '=dw +%Pw are constructed with the help
of the nilpotent operator Pw = [P“B,Uaﬂ- A ], acting on the differential forms
taking their values in shsc®(4/1). With the help of the generalization @ = %K
of the Hodge star % including Weyl reflection %, the nilpotent operator 7" =
@9’@ conjugated with % under some natural scalar product [ tr(A4 A @B)
was introduced. The operators % and .% converted the sequence of linear spaces
of g-forms into the conformal cohomological complex which is analogous to the
deRham complex on the Riemann manifold. The linearized conventional con-
straints which allow us to express all auxiliary ficlds through the physical ones up
to a pure gauge part then were proposed in the simple form ZR’ ‘= 0. The general
solution of these constraints in terms of the curvatures was obtained. It turned out
that all curvatures can be expressed through (derivatives on) the Weyl multispinors
representing the Weyl tensors and spinor-tensors. The Weyl tensors in this context
are non-trivial cohomological classes (harmonic forms) for the conformal cohomo-
logical complex. The linearized actions quadratic on the curvatures R“A R’ both
for integer and half-integer spins were brought to the C%form as in the tensor
formalism of sect. 3, after the conventional constraints had been taken into
account. In this way the equivalence of our geometrical formulation and the usual
formulation in the symmetric tensor formalism was established.

In sect. 5, the special form of MacDowell-Mansouri actions if [RYARBG, 5~
RA A RBG 5] was considered, where R (R7) is the set of curvatures R2 ) 5.

*In fact such algebras do exist [e.g. certain factor-algebras of the universal enveloping algebra
U(so(4, 2))).
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with n > m (n <m) (the curvatures R* with n =m do not enter the action), and
G .3, Gzp are the blocks of the invariant bilinear form in the algebra. The cubic
invariant action for conformal higher-spin theory (Bose case) then is chosen in the
above form. The proof of cubic gauge invariance has the following steps. The
general structure of the gauge variation in cubic order is R” A R“&. Firstly, due to
the symmetry properties of G, and Gy, the terms R* A R?& and the complex
conjugates R4 A RB% are cancelled separately. Secondly, taking into account the
self-duality of R““ and the antiself-duality of R"* as follows from the linearized
conventional constraints, the terms R”? A R’ Bz yanish identically. Finally, among
the remaining terms R’“ AR4& and R’ a A RA% only the terms with R’% =
R:;f; ;(ss)) are non-zero due to the constraints. They must be compensated for by
some deformations Aw in the gauge transformation law for auxiliary fields.
Obtaining Aw from the requirement 8, 4 + Aw =0, one should verify that these
deformations are compatible with the conventlonal constraints. In this way we find
the second-order constraints for the part of auxiliary fields (only for those which
get the deformations Aw). The action found in such a way is unique.

In the superconformal case the Yang—Mills term for the vector fields must be
added along with the above-considered action. The proof of invariance here is
analogous to the purely bosonic case with some technical complications stipulated
by the increased number of terms.

There are a number of problems that require a further study. The first is to
expand the construction presented here to all orders in the interaction; in particu-
lar, to find a non-linear version of the standard constraints. Another problem is to
construct N-extended theories. These theories may be based on the N-extended
conformal higher-spin superalgebras shsc*(4|N) constructed in ref. [13]. We hope
to return to this problem in a subsequent publication. To transfer the theory
presented here to higher dimensions is also an important task. The higher-dimen-
sional higher-spin theories might be based on the superalgebras shs(M|N) (as
proposed in ref. [22]) or some real forms of igl( M|N; C) (see ref. [13]).

Appendix A

We adopt the notations and conventions of refs. [6-9]. The Greek indices
w,v,p,o=0,1,2,3 are the indices of components of differential forms. The flat

Minkowsky metric is 7, (+, —, —, — ). The two-component dotted and undotted
spinorial indices a, 8, ...; @, B, ... take on the values 1 and 2. They are raised and
lowered by means of the symplectic metric e, = —g4,, £*F = —£P%, 5, =¢"" =1

as
A=A, A, =ep, AP (A1)

and analogously for dotted indices.
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A symmetrization is implied separately for any set of upper or lower dotted or
undotted spinorial indices denoted by the same letters. The usual summation
convention is understood for each pair of a lower and upper index denoted by the
same letter. The number of indices is indicated in parentheses (except for a single
index). After the symmetrization with the indices is carried out, the maximal
possible number of upper and lower indices denoted by the same letter should be
contracted. For instance,

1
Ayimy = ._'(Aap..a + (n!— 1) permutations of @, ..., ), (A2)
n! "
Ca(n*m) =Aa(n)Ba(m) =A(B1-~-Bmam+|---ﬂn)BB|mﬂm ynzm, (A'3)

where brackets denote full symmetrization. The same conventions are used in sect.
3 for the vector indices u,v, p, 0.
The flat vierbein is

0:6 =(1,00,0,5,04)", (A4)

where [ is the unit matrix and o, ,, are the Pauli matrices. The flat vierbein
satisfies the following properties:

TufT*?° =28188,  a,,50"F=28". (A.5), (A6)

I

The vierbein one-form is

Opfp = Opap dX*, (A7)

(43

and for its exterior product we have

20 A g7 = g Gh0 4 gBigor (A.8)
where
_ ~ g5 _ =65
o =g dxt Adx?, 78 =5 dx# Adx” (A.9)
and
ay _ _a v — B8 _ 5\_ _ B _v8
0, =0, 0", Ty —(o'wﬁ )—O'M o, (A.10)

The two-forms o*® and 5@ (¢°¥ = g7, 5P% = 7°f) are antiself-dual and self-

dual respectively,
a(2) _

%0 —ig®® | % PO =ighD (A.11)
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or in the components

%Ep,vuao.pga(z) — _l’a.lll’a(z) R (A,12a)
%ey.vpa'&pgﬂ(z) = i&}“fﬂ(z) A (A12b)
The quantities a-w,“m and Ewﬂ(z) are, as a matter of fact, projectors on the

antiself-dual part and self-dual part of the arbitrary two-form R ('t Hooft tensors)
_ 1 a(2) 1 _B2D
R,uv =30, Ra(2) + z(TflEz)RB(z) , (A13)
1. vpo R —
R, = 7i€"°0, 0y Rps s Ry = ( RB(Z)i' (A.14)
In this way any two-form is decomposed into the Lorentz irreducible components.

If R is (anti)self-dual, then (R, = 0) Ry, =0.
Evidently, the following relations hold:

f RAR=i j d*x (R0 RP® — R 0, R*P), ‘(A.15)

JRA % R=~ [ d'x(R,R*® + Ry, R*?), (A.16)

due to the identities

oD N, = — 1608367 d'x, (A.17a)
F5O A 555, = 168855 dx (A.18a)
Taiy N Ty =0, (A.19a)
or in the components
e"*og g o= —16i5287 (A.17b)
75 PG 5= 1606558, (A.18b)
evog P B =, (A.19b)

As a simple example of the manipulations with the two-component spinorial
indices we now show the equivalence of the constraints (4.28),

(Pp.aﬁ = avaﬁR;/l.v,a(Z)(M) + UuaﬁR;v,ﬁ;(Z)(M) - a’ﬂVBR:LV(D) = 0 (Azo)
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to the linearized Einstein equations in conformal gravity,
A‘;B = E#VPU(UVQBR;U,[?(Z)(M) - O'VaB'R;U,aQ)( M)) = O’ (A21)

and find their general solution. The curvatures can be decomposed into the
Lorentz irreducible components as follows:

' _ 2) ¥ — B2)

R;,u,a(Z)(M) = a'wa Coy T Oa Ry + 0 ay R+ 3.7 "Ry, a2y s (A.22a)
o _ = BOF. - dp.. .= . B a2)p )

Ry, (M) =5,," Chay+ Guup Rps + OpyR + 0,  “Ray poy> (A22b)

R;(D) =0, PR (D) + 5, PR,(D). (A.22¢)
Due to the Bianchi identities (4.30) (R(P) = 0)

X(leB = euvpa(avaBR;&ﬂ(Z)(M) + O-VaﬁéR/‘ (M) + o-vaﬂ:R;u'( D)) =0 ’ (A'23)

poa(2)

we have
Xafab ~ Ra 6@~ Riy.a = 0
XaB,aB' ~R,~ iR,0(D) =0,
X%, ~ Ry~ $R4(D) =0,

x® s~R-R=0. (A.24)

The constraints (A.20) in irreducible components are brought to the form

Pap.ap ~ Ray by + R e =05
0. ap ~ Ruy + 2R, (D) =0,
?%6.05 ~ Rpy + 2Rp2(D) = 0,

¢ s~R+R=0. (A.25)
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Combining egs. (A.24) and (A.25), we see that

R, 60 =Riz,a=0,  Ruz=Rux(D)=0,
Rioy=Rsa(P) =0, R=R=0 (A.26)

and the quantities C and C remain arbitrary.
A general solution of the constraints and the Bianchi identities (it is a homoge-
neous linear system for the irreducible curvature components) has the form

R:V,a(Z)( M) = o-y,va(Z)CaM) » R:V,ﬁ.(Z)( M) = E‘Lvﬂ(Z)EB(Z) ’
R.(D) =0, (A.27)

ie. only the Weyl tensor is different from zero. The Einstein equations in
irreducible components read as follows:

Aag.ap ~ Raey. by T Rb@), a0 = 05

8 - a -
Ay ap ~Ray=0, A R4 =0,

a a

B.ap =

A8 i~R+R=0, (A.28)

and is equivalent to (A.25) modulo the Bianchi identities (A.24) and has the
general solution (A.27).

In principle, any linear system of equations for the quantities with the vector and
spinor indices can be solved analogously by passing to the Lorentz irreducible
multispinorial components; all quantities of the type of y-matrices and compli-
cated projection operators then disappear. The two-component spinorial algebra
with applications is explained in detail in ref. [23].

Appendix B

In this appendix we deduce the expression (4.4) with (4.5) for the linearized
curvatures in components. For simplicity we shall consider only the bosonic case
(integer s+ and u =0). To write down egs. (4.4) and (4.5) we need to know an
explicit expression for the translation generator in the so(4,2)-representation
(4, 4,0) in the conformal basis

Pvé(ch(jri)C,)Mm)) = [Pvé" Tatns. omy| # - (B.1)
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To calculate it we shall take advantage of the oscillator representation for 7' in
terms of the generating elements introduced in sect. 2*

IG5 apy =17 "'B(4,¢,1,))

X B+ /20 ail-c /0B —c /PG +e /2)

(a,a7)"(@a;)"”

(rH 1+ D10 = Do i+ D)o, =)

x Y (=)

dytag=4

(B.2)

where the normalization constant is chosen so that the invariant bilinear form is
given as in eq. (2.32)

QIADIQj+ DI HI+j+ 20 == (s HI—j+ DI —1+j+1)1]V7?

Bl e ) = | T /DN = e/ DI + e/ 27 +2)!

(B.3)

Eq. (B.2) is found in (I) (see (1.4.6,7), where we suppose N =s (n = 0) and omit N
in the notation T(N,s,c), since n =N —s >0 gives the same answer for the
commutator due to commutativity of P and (g a* + aha ). The operator P then
is a differential operator (see (1.3.11))

a d
Paﬁ'=l(aaﬁ—a,3‘ﬁ)~ (B-4)

In this way our task is reduced to the calculation of the action of (B.4) on the
generators (B.2). To do it the following relations will be useful for us:

Aoty Bai—c /20 = U arc ynyPai—c /2%y

(I+c/2) )
Saymaa(l+c/2_1)aa(1_c/2)(aﬁaﬁ) , (BS)

* 7 =
Auresn= 8y 8, €t
_—

I+ ¢ /2 times
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where (...) denote the symmetrization over all indices and

)

_ _ =l
ﬁ(aa(1+c/2)aa(1_C/2)(aBaﬂ) )

_ _ a1
= (l + C/Z)anaa(uc/zfl)aa(l—C/Z)(aﬂaB) 1
_ - B s —=I-1
+('41 _l)aa(1+c/2)aa(lfc/2)a7(a3a )

— _ s —1—1
=(s- l)a(a([+c/2)aa(l—c/2)ay)(aﬂaﬁ) I

(I+c/2)(s,+1+1)
21+ 1)

. a1
anaa(l+c/2—l)aa(l—r/2)(aﬂraﬁ)] . (B.6)

To prove (B.5) one should contract the Lh.s. and r.h.s. with £ and take into
account that

n+?2

5:‘Pa(n) = m‘pa(n)' (B-7)

Calculating (B.1) with the help of egs. (B.5) and (B.6), we have after reduction of
the homogeneous terms the following result:

. T.ct 1) - .0 T )
[P'yS’Ta(n),ﬁ(m) * _a(jac’nam)gyaTa(Jnil),B(m)B+a(j’C!m5n)86BTc£(Jn)L7?,B(m-l)
— Ry o O I
b(Jaca”:m)gyagaBTa(Jn—l),B(m—l)

—b(s,—c—=1L,n=1,m=DT5) soms > (B.8)

fed

where the coefficients a and b are given in eq. (4.5) (u = 0). The expression (4.4)
now can be simply deduced from (B.8).
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