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Manifest expressions for the 3D string metric-dilaton backgrounds corresponding to the (gnti-) de Sitter coset models intro-

duced previously are obtained in the leading order approximation. They may be interpreted as non-static cosmological solutions
ift D=3 critical string theory. A generalization to D> 3 space-time dimension is discussed.

To investigate the possibilities to achieve critical

strings in space-time dimensions less than 26 (or 10-

for superstrings ) is an interesting direction that might
be an alternative for the Kaluza-Klein compactifi-
cation. So a family of critical strings in D<26
{D<10) described by the anti-de Sitter non-com-
pact coset models SO(D—1, 2)/SO(D~1, 1) has
been recently introduced in refs. [1,2] *. The possi-
bility to have the critical dimension less than 26 (10)
is provided by the presence of the background cur-
vature with a scale parameter of the Planck order. The
unitarity problem is discussed in refs. {1,3]. _
However, a manifest space-time interpretation of
_ the coset models turns out 1o be rather non-trivial. So

the background metric, where strings described by the_

G/H coset model propagate in, represents a non-static

"~ Universe and has quite a little to do with the metric

on the very coset G/H, partially due to the presence
of a non-constant background dilaton. |

' On leave from Theoretical Department, P.N. Lebedev Physi-

cal Institute, Leninsky prospect 53, SU-117 924 Moscow, .

USSR.

*' After the paper | 2] was published we became aware of the
earlier paper by Bars and Nemeshansky [ 1] where the critical
strings based on the AdS, coset models were introduced.
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For the two-dimensional coset models SO(2, 1)/

"SO(1, 1) and SO(2, 1)/SO(2) (the latter model has

been proved to be unitary in ref. [4]) a manifest
space=tine interpretation has been recently givent in

~ ref. [5] where it is suggested to regard them as de-

scribing 2D black holes. The corresponding metric-
dilaton background was earlier found as a solution to
the effective equations of motion (or, equivalently,
Weyl invariance conditions) in the leading order ap-
proximation in ref. [6]. The exact solution has been
conjectured in refs. [7,8]. ' :

The goal of the present letter is to obtain a manifest
solution for the metric—dilaton background for the

_ three-dimensignal coset models SO(2, 2)/SO(2,

1) diagy SO(3, 1)/S0(3) and SO(3. 1)/50(2, 1) in
the leading order approximation and to discuss cor-
responding 3D critical strings. It should be stressed
we shall consider coset (gauged WZW ) models, rather
than the SO(2, 1) WZW model [9] which is drasti-
cally different in its space-time interpretation, de-
scribing a true group manifold with a torsion. - -

‘-&%

The 3D critical string in question can be defined as u
a GKO coset model for the non-compasct coset SO(2, -

- 2)/S0(2, 1)4i, subject to the Virasoro constraints

on its physical states (energy-momentum tensor
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being the GKO one) with the Virasoro central charge
c(k)=6k/(k—2)~3k/(k—1)=26, where k is the
underlying SO(2, 2) Kac-Moody algebralevel [ 1,2].
Note that for D=3 there is a family of the pos-
sible coset models SO(2, 1), XxSO(2, 1)./S0(2,
1)ty +4p- We shall consider just the case k,=k,=k.
Also we will not fix k equal to one of its two critical
values, since the anomaly cancellation condition
¢(k) =26 may be relaxed to ¢ (k) +¢;,, = 26 by adding
some internal unitary conformal theory to describe
extra dimensions. ’
To find the metrig-dilaton background in the lead-
inig ordér approximation corresponding to the G/H
+ coset model ohe can start with the gauged WZW
model action (see e.g. ref. [10]), choose an appro-
priate parametrization of the group manifold G, fix a
gauge, and then gauge fields 4, (a=1, 2) localizing
the symmetry g—hgh ', ge G, heH (or certain of its
modifications, see (36) below) can be integrated out
as auxiliary fields. As a result one finds the g-model
metric corresponding to the G/H GKO coset con-

struction. The dilaton then can be found by solving

the leading order effective cquations of motion {11]
for a given G, (the anti-symmetric tensor when G/
H is a symmetric space vanishes identically in a suit-
able gauge). For G=SL(2;R), H=S0(2) and SO(1,
1) it was explicitly done in ref. {5].

For the sake of simplicity we will first cdnsider the
compact euclidean case G=SO(4) with H=S0(3)
being its diagonal subgroup. Then we shall pass to all
the non-compact non-guclidean cases via vanous
possible analytic continuations.

An arbitrary group element geSO(4) can be con-
veniently parametrized by the generahzed Euler an-

gles [12] N

8=81(3|)82(9 )g3(63 )h ' ' (1)
where heSO(3) c SO(4) and R
h=g,(67)8:(62)8.(61) . . (2)

'Here gi(a)=exp(aT,, ) are one-parameter sub-
groups corresponding to the SO(4) generators Tiy s x
(k=1, 2, 3) with the matrices (Tis 14 Y =0k Fk+1—
Jkavl t‘slk :

“The SO(4)/SO(3) gauged. WZW model is invari-
ant under the gauge transformanons

gaaga"', 2e50(4), quO(3)aSO(4)..- 3)
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A gauge can be conveniently fixed by the following
choice for the gauge slice:

£=2(9)2:(0)8:(20)8:(0)z:(9) . 4)

‘where ,
0gop<2n, 0€Q<N, 0<i<in (5)

[t=t(g, 1), 0=0(0, 1), 9=9(0, T) are functions of
the world-sheet coordinates o and t].

The SO(4) currents J_=g='d_ gmtlusgaugetake
the form -

JY = (1+cos’G—sin*0cos 21) d_g,
J3 o (1 4+cos 2t)

b (bosgoa_ 0+sin Gcos @sinpd_p),
J¥ = (1+cos 2t)

X (~sin@d_0+sinBcosBcospd_p),
J9=2co0s09_t+sin 2tsin 63_0, o
J¥=_2sinfcospd_r+sin2t

X (cos@cos pd_0+sinfsingd_g),

'J4' =2 sin @sin g d_t+sin 21

X (—cos Osin ¢ d_0+sin 8 cos ¢ 3_p) , (6)

as can be found by straightforward calculation. Cur-
rents J, =3,gg "} are given by similar expressions
with the only substitution of 9, ford_ and additional
overall minus signs in the expressions for /4 and
J3.

"‘The WZ term identically vanishes in this gauge
(since the corresponding closed three-form van-
ishes) and the WZW lagrangian reduces to

k [0,t0_t+4(1+cos2t)d,.83_ 0

+4(1+cos’0~sin*cos 21) .9 @} .  (7)
The gauged WZW lagfapgian is then given by

) Lpnged\= Lwzw

' —f‘—Tr(A J_ +A Jo—A A +,4,,1g '4_g),

167
R (8)
where At 650(3) (At=Ail Tz, +A-3£2T32+A:¥T31)

and Tr is the usual maftrix trace.
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Gauge fields 4. now can be expressed through the

physical o-model fields ¢, @ and ¢ by solvmg the ch&-
sical equations of motion

‘ )iy =A. —(87'4_8)wi) » (9a)
(J+)ooiny =44 “(8/'4»3—')»(3) ’ {9b)

where { ) stands for the s0(3) projection.
To simplify the above equations it is convenient to
perform first an SO(2) rotation

A =g.( —-p)A_g:(9),

A=), .51 (-0), (10a)
J_=g (e _g(—9), o
T =g (—-p) .8 (). (10b)

Then the equatxons we are 10 solve become in
components

(1+cos 21)sin G(Ai‘ sin §+A42' cos )

=(1+cos?f—sin’Gcos 21) d_p, (11a)
(cos 2¢—cos 21)A3* -4 sin 2¢
=(1+cos2t)d_9, (11b)

(cos 2p+sin 20— cos26 cos 2)AY + A4 sin 29
" —cos @sin 8(1+cos 21)42
=sin fcos B(1+cos 2t) d_g, “ (1te)
where we have omitted primes. .
A soluuon with respect to A. can be wntten as
follows: - : ‘ !

A =tan pcotfcot’td_80

T (2a)

+ (tan2r— coszﬂcolzt) 20,
T S
A% =cord_ e+w, . (12b)
l—-cosZz _
AY an¢cot‘la 8
(cos 29— co<2t)cot68 'y (12c)'.

(1=cos 2t) cos’g

A, are given by sxmxlar expressions. Substituting it
into the gauged WZW lagrangian (8), we finally ob-
tain a o-model lagrangian expressed only through the
physical ﬁelds v _ ‘
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L= {;(a*la'_ﬂcot’t (8,0+tanpcot 83, 9)

X (8_60+tang@cot a_ ¢)+ 206*¢6 v)

(13)
which corresponds to the string o-model metric

-

+ i%?% d¢1) . | (14)
By means of introducing new variables
x=sing, y=cosfcosp, (15)
such that '
0<xi+y<l, | | (16)

the metric can be brought to the simpler form

tan2t dx2+cot?rdy )
1—x?-y?

dsz=a"k(dlz+ (17)

Now we are to find a background dilaton which .
satisfies the leading order effective equations.of mo-
tion [11]

Ruu=9u9v¢- . v (18)

Non-zero components of the Christoffel connection

" “and Ricei curvature for the above metric are

"~ sint 1
T=—e—l = ———,
{1—-r")cos’t sinfcos! (19a)-
. cos ! = 1
L= (1=r?)sin®’ ~ " sintcost’’ (150)
rs=ry=-—2=, M=ri=-"s (19c)
Xy vy 1 _rz s x xx ]_rz ’
‘xcotdt ytan*t
Thy==To7 Te==T 7 (194)
R.=— A2 : ’ ST (2023 -
o sin2z cos’t’ ‘ _
. 2tan%  2(x2+yftan't)
Re=-"m ~— (-7 (20b)
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: 2cotY  2(y*+x%cot*t)
Ry=— 1~ " -2 (20c)

where r2=x2+)?2. Then the equations of motion (18)
reduce to differential equations for ¢= ¢(1 X, ¥)
which admlt a general solunon

¢=2In(sin lcosl)+ln(l—x_’—y’)+¢.,, (21)

where @, is the integration constant.

In this way, we have obtained the metric-dilaton
background (17), (21) corresponding to the SO(4)/
SO(3) coset model in the leading order approxima-
tion, It defines the string o-model [11]

§= Z;?‘&' j do dt /=% [§° dx* px” G,
~jaRDg] . @
Now let us take a look at the dilaton S-function

B*=4(D-26)+{a’ [(86)+ 276]+O(a’?) .

(23)
ln the background (17), (21) it reduces to a constant
Be=4(D-26)-3/k+O(1/k*) = (24)

{D=131in ourcase). One can see that it is nothing but
the 1/k expansion of the SO(4)/ SO(3) central
charge '

6k 3k |
ﬁ’=§[c(k)—-26]= —(m - m —-26)
=3(3-26)-1/k+0O(1/k?). C(25)

However, the compact coset model SO(4)/SO(3)
has the Virasoro central charge c< 3 (k is a positive
integer). To get ¢>3 (and, in particular, c= 26) one
has 10 pass to the non-compact algebras so(2, 2) and
s0(3, 1). It can be done by taking some of the gener-
ators Ty, Tss, T4, in (4) 10 be non-compact. Equw—
alently, one can Wick rotate {(a—1a) the Euler an-
gles corresponding to the non-compact generators
directly in the final expression (14) for the s-model
metric. Simultaneously one is to change the sign of &,
k-» — k, 10 obtain unitary representations of the non-
compact algebra {13] [and to obtain f°=0 (c=26)].
As a result, there are seven cases. ,

First, by taking t—it, k— — k (T3 is non-compact)
we obtain the non-compact euclidean’so(3, 1)/s0(3)
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coset model and a corresponding one-loop back-

tanh? dx?+coth?f dy’)
T—xi—y? ,  (26)
¢=2In(sinhtcosht)+In(1-x*—y?)+é,. (27)

It describes a unitary * euclidean cosmological so-

ution of 3D critical string theory which incorporates

both Witten's euchdean sO(2,1)/ SO(Z) black hole -
[5]

ds?=d¢?+1anh?r d6? (28a)
and its dual
ds?=dr2+coth? d6?. (28b)

Thus this model is “self-dual” (see also below).
Second, by taking 6—i0, k—+ —k {T5; is non<com-
pact) we obtain the anti-de Sitter SO(2, 2)/S0(2,
1 )di.‘ coset model with -
tan?r dx2+cot?t dy’) o
) @

d&zza‘k(-dt1+
¢=2In(sinfcos ) +In(x2+yi=1)+g,

x24yiz1., (30)

The time 7 here is a periodic coordinate [similar to
the true AdS,=5S0(2, 2)/SO(2, 1). manifold which
is topologically S' XR?].

Third, there are also two other analytic continua-
tions corresponding to SO(2, 2)/SO(2, 1)4is. For
t=it, p—ip, k— —k (T3, T4, are non-compact); and
t—it, 810, p—ip, k—» —~k (Ty,, T5, are non-com-
pact), we have

—tanh? dx2+coth?t dy?
1+x2-y?

). (3ia)

" ¢=2In(sinh zcosh7)+In(1+x2—p?)+¢,, .

0<y?—x'<l (3ib)
and
S 2 2_ 2 2 ’
» dsz=a'k(d12+,tanh'tdzx \_f_‘it;l ’d"')—")‘r"(.ﬂa)

R .,

2 G/H models, where H is a maximal compact subgmup of G
are shown to be unitary in general [ 13].
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=2 In(sinh 7 cosh ) +1In(y2—x2—1)+¢p,
yi-xiz1, (32b)

correspondingly. These solutions are 3D generaliza-

- tions of the 2D minkowskian black holes [5].

Finally, the analytic continuations r—it, §—i@ (T,
T,,; are non-compact ); p—ig (T3, is non-compact);
and g—ip, 6—16 (T3, T5, are non-compact) lead to
the SO(3, 1)/SO(2, 1) coset model with back-
ground metrics having two time directions:

tanh? dx?+coth?t dy’)
2 2_
ds‘=a k(dl x’+y’—l ‘ -1,
x2+yiz1, (33a)
ztcbc’—::m’t dy )
2 2!
ds’=a k( de’+ =yt ,
0<y*—-x3<1, ’ (33b)
and
, cot’t dy®*—tan?r dx?\
dst=a k(—dfz"’ yz_xz-x 5
yi-xizl, (33¢c)

respectively. Three different metrics correspond to -

three different embeddings SO(2, 1) =SO(3, 1).
One can see that all the above metrics have various
singularities [e.g. (26) - for =0 and x*+y?=1].
However, these singularities are unphysical in the
following sense. Recall that the “observable™ physi-

- cal metric GI3* satisfying the standard Einstein

- GR =exp[2¢/(D=2)]Gome

g-hg(eh)",

equations

R =G RP™=T,,, 34

where T, is the dilaton energy-momentum, tensor,
is related 1o the o-model metric by

_ Then, as is easy to see, such a rescaling removes all

the singularities and the physncal metnc GoY® is

" regular. _
Above we have considered the vector gauging
g-hgh~'. However, itis possable to consider a more-

general situation
$(36)
where o is a certain automorphism of the subgrd_i,xp
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H. For involutive + (¢« 2=1) sucha construction gives
a non-abelian generalization of the axial gauging -
g—hgh [heSO(2)] of ref. [5], where » is simply
» T3, = —T,,. Generally, for non-abelian H, transfor-
mations g— Agh obviously do not constitute a group,

_while the transformations (36) do. A corresponding

group of involutive automorphisms of H may play
the role of the generalized duality in the multidimen-
sional non-abelian case (for the role of duality in
string cosmology see ref. [14]). We are going to dis-
cuss it elsewhere, but here we shall only explain in
what sense the solution (26) is “self-dual”.

Suppose we are given an involutive automor-
phism « of SO(3) defined by

2Ty =T, »Ty=~Ts, ‘Tn"“Tn- (37)

Then we can start with the gauging (36) An appro-
priate gauge now is

g=81(9)g:(—0)8:(2t)£:(8)8:(9) . (38)

Pexfonning again all the necessary calculations we ar-
rive at the e-model metric

ds’=a'k (d12+ta‘n21(d0+lan @ cot 0dp)?

cot?t ' '
+ sinzedqa’-). (39)
Introducing new variables (15) we get
2 2 2 2
ds2=a'k(d12+ cot 'f)_‘;ﬁ*;‘ztdy ) (40)

so that the x and ) have only exchanged their places.
On the other hand, putting ¢=0 one sees the metric .
{14) equals (28b), while (39) equals (28a) (when
t—it, k——k).

All the consideration presented here can be ex-
panded to the AdS, coset models SO(D—1, 2)/
SO(D—-1, 1) [as well as to the euclidean models
SO(D, 1)/SO(D)] for arbitrary D (and, generally
speaking, to any G/H coset models), though to eval-
uate manifest expressions for the metric—dilaton
background becomes more "complicated. One again
may start with the generalized Euler parametrization- -

‘ of SO(N), fix a gauge

-

g=81(6,).-8n— (Ox_)EN(21)
XgN—l(gN—l)"-gl(el) ’ (41)
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solve the equations for 4., calculate the g-model
metric by substituting the solution to the gauged
WZW lagrangian, and find a dilaton by solving the §-
function equations. We are going to return to it and
especially to the D=4 case, as well as to physical
interpretations of these cosmological solutions, in a
more detailed publication. )

To conclude, we would like to emphasize once again
that in string theory there are possible exact non-per-
turbative vacua with D <26 (D < 10) and with curved
background space—time. A class of such exact vacua
is described by the (anti- }de Sitter coset models {eu-
clidean versions SO(D, 1)/SO(D) provide solutions
in D-dimensional critical euclidean string theories],
as introduced in refs. [1,2]. However, the manifest
space-time interpretation of these models is highly
non-trivial since they describe complicated non-static
cosmological solutions for the background metric with
a non-constant dilaton. The true (anti-)de Sitter re-
gime could probably be realized only at very small ¢,
but then non-static regimes are realized. This non-
staticity and a non-constant dilaton were missed in
our original discussion of the AdS coset models in ref.
[2]. It also should be mentioned there may appear a
dilaton mass term (and a more general dilaton po-
tential) as a result of string loop and non-perturba-
tive effects. It would give an additional contribution
to the curvature and change essentially the metnic.
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