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We construct a superconformal theory of higher spin fields in a space-time of dimension
D=2+ 1. The construction relies on the infinite-dimensional superalgebra shsc(V|3) with the
superconformal algebra osp(N|4) as a maximal finite-dimensional subalgebra.

The invariant Chern-Simons action for the higher spin superconformal theory is an
extension of the usual conformal supergravity action for particles with maximal spin two.
The quantization was carried out and the generating functional of the Green functions was
obtained. © 1990 Academic Press, Inc.

1. INTRODUCTION

In recent works [1-8], new infinite-dimensional Lie superalgebras have been
constructed which extended the usual supergravity superalgebra for the anti-
de Sitter space adS,, and as such can allow one to construct interacting higher spin
fields in adS,.

The most transparent way to construct these superalgebras is achieved when one
uses an operator realization thereof in terms of arbitrary order polynomials in the
Heisenberg operators viewed as generating elements [4]. This is an extension of the
usual presentation [9] for the finite-dimensional superalgebra in terms of the
polynomials of order <2. The D =4 action can be written down as a generalized
MacDowell-Mansouri functional [10]. The interaction of higher spin gauge
fields is non-analytical in the cosmological constant which plays the role of an
independent dimensionful parameter of the theory, thus allowing the inclusion of
new terms, of higher order in fields and their derivatives, into the action and the
field transformation laws.

This may lead to an infinite rank theory, in the terminology of Refs. [11,12].
The proof of the existence of a consistent interaction to all orders appears as a
highly non-trivial problem. Consistency of the cubic interactions was shown in
Refs. [5, 6]. The essential non-analyticity precludes one from a transition to the flat
limit, which rules out the possibility of constructing an analogous theory in a flat
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background. The situation is quite different, however, whithin the conformal-
invariant approach to the higher spin theory.

In the conformal invariant theory of spin s, the kinetic terms are ¢, O° P ¢,
(Bose) and ¥, [(1°~ 2 9Py, (Fermi) [13], involving higher order derivatives. The
dimensions of the fields differ from those in the usual Poincaré-invariant theory.
Conformal invariance implies the absence of dimensionful constants, which
considerably restricts the possible form of the interaction. Let us note that the
existence of higher spin conformal invariant theory is not ruled out by the results
of Refs. [14-17]. In these works the incompatibility was shown of the higher spin
gauge invariance with the interaction with gravity. The mean reasoning invoked the
appearance in the gauge variation of the higher spin action of the terms proportional
to the Weyl tensor. These terms cannot be cancelled by adding new terms into the
metric transformation law. For the conformal theory, the terms involving the Weyl
tensors can be eliminated by corresponding alterations of the metric transformation
law, thus by-passing the no-go statements of the above-mentioned works. To con-
struct a complete theory, one is first of all to construct a superalgebra which would
be a higher spin generalization of the conformal superalgebra SU(2, 2|1). Such a
superalgebra, shsc®(4|1), has been obtained by us, and its form in four space-time
dimensions will be published elsewhere [26]. In the present work we construct the
infinite-dimensional superalgebras shsc(N|3) (super higher spin conformal) which
extends the superconformal algebra in D=2+ 1. Conformal superaigebras in
D =2+1 and the adS,-superalgebras are well known to be isomorphic. Analogous
to that, it turns out that shsc(N|3) is isomorphic to shs(N|4), and our generators
and those of Ref. {4] differ by a choice of basis in the spaces of irreducible
representations of so(3, 2).

Briefly, the program of constructing the infinite-dimensional conformal super-
algebras and the gauge theory for higher-spins is as follows:

(1) A suitable operational realization of the finite-dimensional conformal
superalgebra is to be choosen.

(2) An infinite-dimensional associative algebra of all orders polynomials of
the generating elements choosen in step 1, is to be constructed and the associative
multiplication in conformal basis is calculated.

This will be the basis of constructing the conformal infinite-dimensional Lie
superalgebra and its localization.

The aim of this article is to realize this program of constructing the global super-
algebra shsc(N|3) and its localization to obtain the gauge theory of conformal
higher-spins in D=2 +1.

The action invariant under shsc(N|3) is written as the Chern-Simons functional,
and the equations of motion have the form R =0. They generalize the equations of
motion of the usual conformal supergravity in D=2+ 1. It is noteworthy that our
superconformal theory for higher spins is constructed with allowance made for all
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spins' 5> 1, and only in the case of spins does not exceed 2 is the finite-dimensional
version realized (the usual conformal supergravity).

The three-dimensional conformal theory of higher spins may be of interest both
from the point of view of the preparation of a four-dimensional conformal theory
and from the point of view of the theory of higher spins in adS,.

Another possible application of the proposed theory is in the spin membrane
model [18]. In the paper [18] it is shown that a (Minkowski) space-time Lorentz
covariant spinning membrance action cannot be constructed withing the framework
of the three-dimensional super-Poincaré tensor calculus. The shsc(N|3)-theory may
prove to be helpful for constructing such a formulation. The higher-spin models in
D =2+ 1 may be useful for covariant quantization of the super membrane models.

The paper is organized as follows.

In Section 2, an operator realization of the D=2+ 1 conformal superalgebra
osp(N|4) is given in terms of first- and second-order polynomials by the Heisen-
berg generating elements.

In Section 3, the N-extended D=2+1 conformal supergrav1ty in the two-
component spinor notations is considered.

In Section 4, operator realizations of higher spin representations of so(3, 2) are
obtained in terms of the Weyl symbols.

In Section 5, conformal higher spin superalgebras shsc(N|{3) are constructed. The
gauge fields of shsc(N|3) are introduced and the curvatures of shsc(N|3) are
calculated. ‘

In Section 6, the action of the shsc(N|3)-invariant gauge theory and the
equations of motion for the conformal higher spin fields are discussed.

In Section 7, quantization of the conformal higher spin theory in D=2+ 1 in the
phase space and the configuration space is performed. Some appendixes are given
at the end of the paper.

Appendix 1 includes the basic notations. Appendix 2 presents the neccssary
information on the algebra ag(2; C) and superalgebra shs(1{2). The multiplication
formulae in the weight (relative to so(2, 1) ~ sp(2, R)) and spinor bases are given.
Appendix 3 includes all necessary formulae and relations with the Clebsch-Gordan
coefficients and 9j-coefficients in the weight and spinor basis. Appendix 4 presents
several relations with Winger d-functions. Appendix 5 tabulates the multiplets of
conformal higher-spin fields. Appendix 6 includes the analysis of the linearized
conformal higher-spin equations.

2. SUPERCONFORMAL ALGEBRA IN D=2 +1

The aim of the present paper is the generalization of the ordinary superconformal
algebra and its localization in D=2+ 1 to the case of the higher spins and this will

! Possibly, there exist finite-dimensional “approximations.” For example, lim,,_ , osp(N|M)=
osp(N| o). It should be mentioned that the similar limits for classical Lie groups (SU, SO, Sp) are
considered in homotopic topology in the context of the Bott periodicity theorems. See also for SU(oo )

[28].
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be carried out using the method of operator realization. In this connection we
consider it reasonable to first demonstrate the efficiency of this method on the
example of the ordinary conformal algebra, the structure of which is described by
the following non-vanishing commutators:

(Mo Mo =10 My~ NocMag+ NaaM p — NpaM cq, (2.1a)
(Mo, Pl=1o Py — Ny Py, (2.1b)
(Mo, K 1= 00c Ko — 115 Koy (2.1c)

[(D,P,]=—-P,, [D K,]=K,, (2.1d)
[Pu Ky]l=2(nD+ M), (2.1¢)

where (M, P, K, D) are generators of conformal transformations (Lorentz transfor-
mations, translations, special conformal transformations, dilatations).

To extend the conformal algebra to the higher-spin case, it is convenient to go
over to the two-component so(2, 1)-spinors:

— 2 _ 2 1 2
Pa - aaa( )Pa(2)’ Ka - Cram( )K:z(2)’ Mab =32 0'25, )Ma(Z), (22)
where the 62® = (I, 6, 05), 0, 5 are Pauli matrices and

a,abd(2) = O'a“ya'b”. (2.3)

The matrices o satisfy the relations
0, Vel ,, =268, 6, Ma, ;) =26%3), 24)
' %a[a“(z’ab]”z) =8%0,"  ([ab]=ab—ba) (2.5)

(for the notation and the rules of handling the indices see Appendix 1).
‘In the representation for the so(2, 1) ~sp(2; R)-spinors the relations (2.1a—€)
become?

[M,2), Mp)]=28,3M 4, (2.6a)
(M), Pp2)1 =28,5P o, (2.6b)
(M), Kp2y)]=26,3K., (2.6¢c)
(D, Pysy] = =P, [D, K.2)]=Kap2)s (2.6d)
[Pac2y> Kpiy)1 =g Mg+ E,5 6,4 D. (2.6¢)

The algebra so(3, 2) ~ sp(4; R) (2.6a—¢) admits a simple operator realization.
Let a,, b, form the Heisenberg algebra .

[a,. bg]1=2i6y,  [a, a5]=1[b,,b;1=0, @7)
al=a,, b} =b,. (2.8)

2In our notations (see Appendix 1) Epup = 5((9’,],,1& yF By, B gy
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Then one can easily verify that the operators so(3, 2) are

1
Ma(2)=4_i(aaba+baam), (293)
1 1
Pa(Z) = Z; aaam, er(2) = Z bszau (29b)
1
D= Y (a,b* + b°a,). (2.9¢)

As is known, the polynomials quadratic in the generating elements of the Heisen-
berg algebra form a symplectic algebra. The relations (2.9a—) give the usual
operator realization of sp(4; R) in the basis convenient for our purposes. Consider
the operator realization of the supersymmetric extension of the so(3, 2)-super-
algebra osp(NV|4). To realize osp(1|4), one should add to the operators (2.9a—) the
operators

Q.=34s  Se=1b, (2.10)
The commutation relations osp(l|4) include, along with (2.6a—), also
{Q., Q,} =2iP,,, {8., S,} =2iK,,, (2.11a)
{Qx 8,} =i(M,, +&,D), (2.11b)
[D,Q.]=-3Q.. [D,S.]=35., (2.11c)
(M., 0,]1=6,0a;  [Mua), $,1=6,5, (2.11d)
[Puays $,1=6 00, [Kuz), ,1=6, S, (2.11¢)

Here Q, are generators of the supersymmetry, S, are generators of the special
conformal supersymmetry.

To obtain an extended supersymmetry osp(N|4), one should add the Clifford
algebra generating elements to the (2.8-2.7):

Wt} =28,  [¥,al=[¥,b]1=0, (212)
U=y, ij=1,.,N. o (213)
Then the generators
Qu=3Vie,  Su=1¥ibss Tiy=1V¥:¥, (2.14)
along with (2.9a—) form a osp(N|4):
{Qias Qip} =20, Py, (2.15a)

{Si> S} =2i0;K 5, (2.15b)
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{Qus Sj} = i8;(M g+ 8,5 D) + 2i6,, T, (2.15¢)
[Ties @ip]=5(3:,;Qu5— 64,Qip)s (2.15d)
[Ty Sied = 3(810 81~ 84,S0a), (2.15¢)

[Tii> Tppd=3us Ty + 61, Ty — 81 Toaa = 8101 Ty ) (2.15f)

The relations (2.11a—¢) for N> 1 differ only by the appearance of the internal sym-
metry index in Q and S. The operators T, form the basis in so(N). The formulas
presented demonstrate the advantage of the spinor formalism, namely, the absence
of y-matrices in (2.15a—c) and a simple oscillator realization.

All the Bose generators are anti-Hermitian, whereas the Fermi generators are
Hermitian (the super-anti-Hermitian basis [9])

At =(—1)"0*1 4, (2.16)

where n(A) is the Grassmann parity of 4.

3. CONFORMAL SUPERGRAVITY IN D=2+1

We present here the results of localization of a superconformal algebra
(conformal supergravity) in a three-dimensional space-time. The gauge fields w u of
conformal supergravity are

w“ = eZ(z)Pa(z] +f:(2)K,(2] + (D”z(z)Mm(z] + pr
+ AP T o)+ Y0+ 84S, (3.1)

where (P, K, M, D, T, Q, S) are generators of the conformal group (2.9a—c, 2.14)
and it is assumed that

oT=(—1)"="D Ty (3.2)

(the Grassmann shell of second class, see [19]). The fields (e, £, w, b, 4, ¢, ) with
usual statistic are, respectively, the dreibein, the connection for the conformal
boosts, the Lorentz connection, the dilatation connection, the so(N) Yang-Mills
field, the connection for the conformal supersymmetries, and the gravitino. These
furnish the adjoint representation of osp(N|4). All the fields are Hermitian, and

W= -0, (3.3)
and the curvatures have the form:

R,=0,0.—-0,0,+[w,, o] (3.4)
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In conformal supergravity in D=2+1 (according to (2.6a—), (2.11a—e) and
{2.15a-f)) the curvatures become

R P)= D1 4€01002)— 20 ¥ o (3.5a)
Ruva(Z)(K) = @[ufv]a(Z) - 2i¢m‘a¢viw (3-5b)
R,e2)( M) = 01 ,0,702) + 2000y 06" + €00y fr16” — iy [;u'a¢v]icx5 (3.5¢)
R,(D)=01,by3+ €(ua /1™ — W 1™ (3.5d)
R, (T)=0;,4,3:+ 2Aw~kAvk,- =20 (i Bu1™ (3.5¢)
R,.i(Q) =D ¥ yix + ey Bi1i’ + A[yik'ﬁv]kn (3.51)
R,..(S)=2 it [rumV¥e1’ +4 [m'k¢v]ki9 (3.5g)
DD iyy = 0, WDy + D oy @5, 1) + €D, 05, (3.6)

where the antisymmetrization [ --] is supposed only by x, v and c is the conformal
weight of the generator T,

[D, T]=cT", (3.7)

that corresponds to the field w°. The conformal weights of (P, M, D, K, Q, S, T) are
(—1,0,0,1, —3,4,0), respectively. The action of conformal supergravity in
D =2+1 can be written as the Chern—Simons functional

s:jtr(w/\dw+§w/\w/\w), (3.8)

where w = w,dx*. The equations of motion of the action (3.8) are as follows

Ra2)(P) =0, (3.9a)
R,ui)(K) =0, (3.9b)
R uu2y(M) =0, (3.9¢)
R,(D)=0, (3.9d)
Riof(T) =0, (3.9¢)
R,..(2)=0, (3.9f)
R,i(S)=0. (3.9g)

By virtue of the curvatures homogeneous transformation law, Egs. (3.9) are
invariant under the gauge transformations

bw,A=0,6+[w,, 81" (3.10)

The fields £, w, and ¢ can be expressed through the independent fields e, b, ¢, and
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A with the help of Egs. (3.9a, c, f). The 5 field can be, as usual, put to zero by fixing
a gauge which spoils the K-symmetry.

Let us calculate now the total number of degrees of freedom off the mass shell:
Ry = (number of independent field components)-— (dimension of the gauge
group), to which the Fermi degrees of freedom contribute with the minus sign

Roral = 1(€) +n(b) + n(A) —n() — n(&(P))
—n(8(M)) —n(&(K))—n(&(D)) —n(&(T))
+n(8(Q)) +n(8(S))=N>*~3N+2, (3.11)

where n(-) denotes the number of components of the argument.
When N=1 and N =2 the total number of degrees of freedom is zero, that is, a
necessary condition for the closure of the supersymmetry algebra is fulfilled.

4. HiGHER SPIN REPRESENTATIONS OF THE D =2 + 1 CONFORMAL SUPERALGEBRA

In Section 2 we considered the realization of the conformal algebra by
polynomials of second order in the Heisenberg algebra generating elements. The
corresponding gauge fields were of spins <2. Now we generalize this construction
to the case of polynomials of arbitrary order in the generating elements (2.7, 12).
Consider first the case with only a and b generating elements present. Note that our
generating elements @ and b are related to the generating elements ¢ and r of
Ref. [4] as ‘

| .
"= (g, + e~ 1" ), (4.1)
1 —i(n/4) i(7/4)
rj=_2(e e a1+el7‘ bz), (42)
q: = rg'ga EQa’ q‘,'] = Zig:t‘p [ra'u r/?] = zugmﬁ (43)

The order 2s polynomials in a and b (with 5=0,4,1,..) span the spaces of
irreducible representations of so(3, 2). In these spaces we choose the conformal
basis which is related to the reduction from the algebra to a subalgebra,

s0(3,2)—so(2, 1)@ so(l, 1). (4.4)

This basis is suitable for constructing a conformal theory. The fields transformed
according to the corresponding representations so(3, 2) have a manifest Lorentz
structure in the three-dimensional space-time (so(2, 1)) and for each field its Weyl
{conformal) weight (so(1, 1)) is determined.



MASSLESS HIGHER SPIN FIELDS 301

Let now? a,, b, be Weyl symbols of the corresponding operators. The basis in a
real linear space ¥ of polynomials in @ and b may be chosen in the form

1

T N — b,
a(2),p(21") ! @), Qo200 u(2r)

The product of the Weyl symbols is given by the formula

1
'=0,2,1,... 4.5
LI'=0,3 (4.3)

A x B=A exp(4) B, (4.6a)

where 4 is a differential operator, acting simultaneously to the left and to the right,
and :

. (8§ § 7
a =1(aaa %t 5 6aa)' (4.6b)

The complex algebra of polynomials in ¢ and b with the multiplication (4.6)
coincides with the algebra aq(0|4; C) [4].

In the space ¥V there acts the representation of the D=2+ 1 conformal algebra
(2.6a—). The action of the generators in this representation is determined by

T(A)=T*A—-AxT=[T, A4],. (4.7)
where T are symbols of the operators so(3, 2) (29a—) and A€V, ie, T(4) is the

Weyl symbol of the commutator [T, 4].
One can easily verify that these generators of so(3, 2), in terms of the symbols are

P .
Puoy= a3, (4.82)
~ d
sz(2)= - aaT‘a; (4.8b)
. d 0

M,2=— (aa 2 +b, 6_1)“)’ (4.8¢)

~ 1 5, 0
D—E (b“a_ba—a“ a) (48d)

In particular, it is seen directly that the operator D is diagonal in the basis (4.4),

5(T'az(Zl),ﬁ(Zl’)): (l,—l) Ta(2l),B(21’)' (49)

*Both the operators and their symbols are denoted by the same letters. This does not lead to
misunderstanding since we henceforth work only with symbols.
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The operators Pam and I?a(z), respectively lower and raise the Weyl weight by
unity. The basis (4.4) is not irreducible relative to the so(2, 1) subalgebra generated
by the operators ﬂa(z,.

To construct the conformal basis so(3, 2) > so(2, 1)@ so(1, 1), it is necessary to
expand (4.4) into irreducible multispinors. To this end, we shall use the formulae

of Appendix 3.
The irreducible components (4.4) have the form

AL ol 20), 920 I+ =1
T;(z,.),)(b, a)= C1(21”)’B( b2 )Tﬂ(21),y(2[’)(_1) * » (4.10)

where C are Clebsch-Gordan (C-G) coefficients from Appendix 3.
The conformal weight of the new basis element is

B(Fih) = -0 Tép,. (4.11)
As a consequence of the triangle relation for the C-G coefficients
=-U<t"<i+0 (4.12)
we have that the conformal weight ¢ =/’ —/ may run the values
c=—1", =1"+1,..,1". (4.13)

Let us write an explicit form of the basis elements in terms of 2 and b:

/ "+ 1)
(s.c) -
Tiiain(b, @) (s—I"V({"+cN " =) (s+1"+ 1)
X aa(["-r)bm(l"+c)(a1b1):7]"9 (414)

where we have denoted /+/'=s,/'—/=¢, and employed formulae (A.3.22,.23).
The highest weight vectors relative to D are

1
T5n(b, a)= T Bazs)s (4.15)
DT = 5T, (4.16)

Applying the operators P, to T &)(b, a), we obtain the complete basis of the
irreducible representation space (irreps) so(3, 2) with dimension

d(s)=(2s+3)(2s3+1)(s+ 1) (4.17)
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(dimension of the adjoint rep. is d(1) = 10 and spinorial rep. is d(3) =4). The gener-
ators
(Tl e=—s, —s+1,.,551=]c|, . 5} (4.18)
form the basis in this irreps.
Let us calculate the Weyl product of the two symbols (4.14). This calculation

consists of two stages. We first make a convenient change of generators and then
apply formulae of Appendix 3.

(1) Let us make an invertible change of generating elements

1

«=——=I(a,+5,), 4.19a
q NG ( ) (4.19a)

1

za=7§(aa—ba) (4.19b)
and inversely

1
a,=—=(q,+z,), 4.20a
NG (g ) ( )

1
b,=—=(q,—z,) (4.20b)

<

2
The new generating elements satisfy the relations
q: =gy Z: =24 [qa'-v qﬁ]*=2ié';ﬂ, (421&}
[Zonzﬂ]*= _Zigaﬁa [qaszﬂ]*=0 (421b)

(attention should be paid to opposite signs in the commutation relations for ¢
and z). The change of generating elements (4.19a, b) gives rise to an invertible
change of the basis in each of the so(3, 2) irrepses

| .
rie.a= ¥ d(3) redia (2)
! n
T = ¥ di(-5) Tue.a) (423)
c= —{

where d.,(+mn/2) are the particular values of the Wigner functions (see
Appendix 4).

To prove (4.22), (4.23), it suffices to note that the change (4.19, 4.20) is a unitary
transformation from the group SU(2)

_L( 1 il>=<cos(ﬂ/2) —sin(ﬂ/Z))

ﬁ +1 1 sin(B/2)  cos(f/2) (4.24)

B= +n/2
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and the coefficients of the transformations (4.22, 23) are matrix elements of the
representation of this matrix in (2/+ 1)-dimensional space {T(y), c= -1 .., 1}
(s and / are fixed), i.e., df_,k is the Wigner function at the points f= +n/2. This,
however, may also be obtained by explicit calculation by substituting (4.20a-b) into
(4.14).

(2) The next step consists in calculating the product of the elements of the
new basis {T{5)(¢, z)}. The new basis has been made from (4.14) by the change
a-»z,b—q. This basis is connected with the decomposition so(3,2) »so(2, 1)®
so(2, 1) > so(2,1). Indeed, the elements T ifi’fg(q, z) form the representation
I, =4(s+ k) of the algebra so(2, 1) in terms of ¢ (the corresponding generators are
ﬂqa(2)= —q,(8/0q*)) and a representation /,=3i(s—k) in terms of z (the
correspondent generators are #Z, = —z,(9/6z*)). Thus the elements T form
the representation (/) of so(2, 1) in terms of both variables (¢ and z) with the gener-
ator as a sum of MY and M*

. d 0
M1(2)_ _(qaé?"—zx_a?) (425)

Applying the multiplication formula (A.2.4), intertwining formula (A.3.18), and
taking into account (4.14) (where a, b — z, q), we come to

h+h, h—1 Uy 415,01 =15)
T;(lz-;-)z' 2)(qaz)*TB(121»)2 17 g, 2)

(_1)12+1;—1§l-11+12+/;+1§—1,"—1§

ity AU 1 1) A, Ty, 1)L + 10205 +1)

A
x|y I3 U C1(21),B(ZI'),?(ZI”)T-(ZI(;;:)IZ'II ~h)(g, z),
i r (4.26)

where [ ---] are related to the 9j-symbols by (A.3.8). The sign (—1)2*"2~% has
appeared in the account of signs in (4.21a, b).

The last step in the calculation consists in going over in (4.26) to the initial basis
50(3, 2) = s0(2, 1)@ so(l, 1) by formulae (4.22, 23). We finally arrive at

TeO TS = T P 8Qu—I—1"+1")6Qu—1+1'—1")
(s", ¢ " u v, 1)
s S.I Sﬂ
x8(2 = +1-1"Y| ¢ ¢ ¢ | & panT il (427)
l 1! III

" 73 1
s u0,t=0,3, 1, ..,
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where the coefficients have the form

7 "

s s s
c ¢ ¢
Y A

=8(c+c'—c")E(s, 8, 5")EWL T, 1)

305

QI+ 1)) 2+ 1)1 (21" +1)!

X[(1+1'

X Z (_1)(s+s’—s"—-k—k’+k")/2
k, k' k"

.

n . (T .
dcl-,k ('2') di’,k’ (5) d/’c",c" (‘

1/2
WA+ I — I+ +17 + 1)!]

)

2 72

[ s+k s—k /
2 2’

sS+k =k l’
2’ 27

SVI +kl! S”—k” I”
\ 2 ’ 2 7
&(a, b, c)=1(0)

s+k s+k s"+k”) (s——k =k s
2 3

x/"( 7

\

>,

/

for

— kll)
2

2 2

cella—bl,a+b],(c¢[la—bl,a+b]),

k=—1 ..

A

k=1, ..

!
’l’

k"= 1", ..

A (4.28)

We have expressed the structural coefficients of the *-product in the conformal
basis in_terms of the 9j-symbols and particular values of Wigner d-functions.

The explicit form of the numerical coefficients (4.28) is rather combersome, but
of practical importance for us is the following simple symmetry property

7

’

s s
c ¢
iLr

"

N

4
I

o =(_1)s+s‘+s”+l+1'+1” ’

’

N

4
!

”

N
", (4.29)
1’

which follows from the symmetry property of the 9j-coefficients.
When anti-commuting generating elements s, are also present, the generators

1

(s,¢) -— (s,c)
Ti(k),a:(ll) - k! d’il e l//ikT':x(Zl)

(4.30)
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make up a superconformal basis which is related to the reduction

osp(N|4) = 50(3, 2) @ so(N) —= s0(2, 1)@ so(l, 1) Dso(N) (4.31)

in the irrepses of the conformal superalgebra osp(N|4).
The Hermitian conjugation (2.8, 2.13) acts on the generators (4.30) according to

+(sc k(k—1)/2 (s,
Ti(kli;(zz) (—1) T(k) w(20)? (4.32)

where the sign (—1)**~1/2 emerges due to the anti-commutativity of v,.

The generators (4.19) furnish an associative algebra ag(N|4; C) [4] under the
‘multiplication of symbols (4.6) (where now 4 involves also the (&,/0y,)(J,/0¢°)
term along with the RHS of (4.6b)). It will be convenient below to limit ourselves
to the subalgebra ag®(N|4; C) spanned by the generators (4.30) with even (k + 2s).

5. CoNFORMAL HIGHER SPIN SUPERALGEBRA shsc(N|3):
GAUGE FIELDS AND CURVATURES
To construct a Lie superalgebra by a given associative algebra, it is necessary:

(1) to fix the Grassmann parity of the generators;

(2) to choose the class of the Grassmann shell (GS) (this is of particular
importance for the case of N> 1, see [19,4]);

(3) to define the supercommutator.

The Grassmann parity of the generators (4.30) is defined as
n(T®))=0(1) for s integer(half integer). (5.1)

Following the arguments of [4], it is convenient to work with the second-class GS
and consider the algebra ag®(N|4; C), specified by even (k+ 2s). The gauge fields
have the form*

N L ;—125l2-1 (s,c)i(k) a(2!
—Zi’ 12512 wf‘fc)'( ) a( )Tfskg)a(m,

s=0,4,1,.; k=0,1,.,N (k + 2sis even);
c=—s, —s+1,..,8 I=]|¢c,|c]+1,. (52)

The field statistic coincides with the generator statistic. By the property of the
second class GS we have

n(wy)=n(T"), 0, T =(-1)* T"0,’ (5.3)

4 The multiplets of the gauge ficlds are given in Appendix 5.
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The factor i~'*" in (5.2) is introduced for convenience in the case of second class

GS [4].
Hermitian conjugation will be determined as follows:
0 = -0, o Ge=(-1*"""ell ., (54)

(see (4.21)).
The superalgebra (5.1-5.4) with the supercommutator

[4,B},=A*B—(—1)"r® B, 4 (5.5)

is an extension of the D =2+ 1 conformal superalgebra osp(N|4) with a maximum
spin two to all conformal higher spins. We shall denote it as shsc(¥N|3) (c-confor-
mal). By construction, it is isomorphic to the algebra shs(N|4). The difference con-
sists in the choice of another basis in the irreducible representation spaces so(3, 2).
The curvatures of the algebra shsc(N|{3) we determine according to the general
formula

R =0,0} 0,08+ fic0l0f, (5.6)

iy

(s,¢) — (s,
R:v,ci(k),a(ZI) = a#wvfi(cIZ),a(ZI) —(pev)

RN _ 1
+Zl.v +s8"—s+z—|zla—

dk—u—v)

u! Ur ]
X02p—1l'"=1"+1)0(2q—1"+1"—-1) 62t =1"+1'=1)
xO(|4s's" + 5"+ 5" —s+uv+z(u+v)+1[,)

’ ”

N s N

"

’ c') (s”
X{e ¢ ¢ wu t(u)J(Z)a(2q)v(2p)wvt(v)

T M | (5.7)

¢”) j(z) y(2p)
,a(2t) .

In this formula, su_mmation parameters s', ¢’, ', u+ z and s”, ¢”, l”, v+ z take their
values as in (5.2).
The appearance of factor

O(l4s's" +5' +5"—s+uv+ (u+v)z+1|,) (5.8)

is due to the simple fact that

1= (=1)"=26(|n+1],). (59)

The property x,0*= —x*p, gives in (5.8) the term (s’ +s” —s), the Grassmann
parity of the fields gives (4s's”), and the antisymmetry with respect to the internal
indices gives (uv + (u+ v)z). The expression (5.8) is equal to §(|s'+s" —s+z+1[,)
by force of restriction that k + 2s is even.
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As usual, the curvatures (5.7) are homogeneously transformed under gauge trans-
formations shsc(N|3)

dw,=0,6+ 0,56 (5.10)
The superalgebra shsc(N|3) possesses a symmetric invariant bilinear form
(A, B)=tr(A4 * B), (5.11)
where a “trace” is defined as

tr(A(Z))=A4(0), Z=(a, b ¥). (5.12)

In terms of the expansion coefficients of the type of Eq. (5.2), the bilinear form
reads

20+ k— k|2

A4B8)= Y ——

s, e, Lk

Ag(sk(i,)a(zl)B(s' ‘C)i(k),a(zl)- (5.13)

Similarly, the trace (5.12) is used to define multi-linear invariant forms
tr(A4, *---* A,). Note that the form (5.11) satisfies the Hermiticity condition

(A, B)* = (A, B). (5.14)
6. A CHERN-SIMONS ACTION AND THE EQUATIONS OF MOTION
OF THE SUPERCONFORMAL THEORY OF HIGHER-SPINS IN D=2+ 1

In three dimensions, the action invariant under gauge transformations of the
algebra shsc(N|3) has the form?®

S=Jtr(w/\dw+§w/\w/\w), (6.1)

where @ =w,dx* is the 1-form of the gauge connection (5.2). The equations of
motion of the fields of conformal higher spins in D =241 are

R;(zs\:,c;'Zk),a(Zl) =0. (6.2)

These equations are invariant under the gauge transformations of shsc(N|3) (5.10)
by virtue of the homogeneity of the curvature transformation law

SR, *=f"5cR,°EC. (6.3)

Sono=}o, 0,—0,*o,)dx" Adx"
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Let us show now, that within the sector of fields with spins s=1, 3,2, the above
equations generate the usual osp(N|4)-invariant conformal supergravity Egs. (3.9).

It is not difficult to note that T generators are related to the generators in 3.1
by the transformation (see (4.14))

(1,-1 (1,1) lT(l,O) !

. 1 1
*Tu 9_—Ta s A Ay s
(Zﬁi @y e 5 T 5

1 1
5 Tf-,lofz’ _1/2), 5 T,(-,lf’ 1/2)) = (Pa(2)9 Ka(l), Ma(Z): D, Ti(2)9 Qi Su)  (6.4)

1 0,0
> o, 3 TGy

The conformal supergravity curvatures (3.5) follow from the general formula (6.14)
(when all fields with 25+ k > 2 are equal to zero) by the identification

(ezu)’ fz(2)5 wz(2)’ by’ A;u‘(2), Q;u‘cu ¢uia)

- (1, —1)x(2) (LDa(2) o (LO)a(2) _ (1,0)
—(\/Ew”, ,\/iw“, 0, R \/Ew# .

: 0,0 (1/2,1/2 (1/2, —1/2)
— iy, 0B, 0l (6.5)

and similarly for the curvatures.

7. GENERATING FUNCTIONAL OF HIGHER SPIN THEORY IN D=2+ 1
In this section we shall consider the quantization of the superconformal theory

of higher spins in D=2+ 1. To this end we consider the quantization of the theory
with the Chern-Simons Lagrangian of the general form

L(r)= [ d*x8""(0}0,02 + 4 f 2,010 02) 0 5. (7.1)

Here f4. are the structure constants of the Lie superalgebra G and Q.p is the
invariant bilinear form on G with the following symmetry properties

ngQCD+ngQCA(— 1)mamr =, QABQ_BC=5A¢a (7.2)
Qus=(—1)*"2Qp,, Q.p=0 for ny=ng+1,

n 4 is the Grassmann parity of T,. The Lagrangian (8.1) is useful to rewrite in the
form®

L(1) = [ d2x6%H(w§ RE, — 02 0002) O 45. (7.3)

In this section a, b=1, 2.
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The standard procedure of canonical quantization gives the following first class
(T 4(x)) and second class (8%(x)) constraints corresponding to (7.3)

Ba — Pa _éaawaQBA’ (gab =(gOab’ (74)
T, (x)= _‘gabR s QP salo=0s (7.5)

where P? is the canonical momenta for /. Using the standard definition of the
Poisson bracket

6,4 §,B 6,B 6,4
A, B} pp=| d%x | e — (— 1y 7.
(4,8} ps=[d x(awfap,é (—tyemes s 51,,,), (76)
we find for the second class constraints
{64(x), 05(x")} pp= —26Q 5,6 (x — x"). (1.7)

Then the Dirac bracket takes the form
(4, B} p= {4, B} ps—} [ d*x{4,04(x)} p5 £,07{05(x), B} o5 (18)

Following Dirac we thus get for the (super) commutator of the operators Aand B
[4, B1=i{4, B},. (19)

While in general Eq. (7.9) is true only in the semiclassical approximation (see
[27]). In the Chern-Simons theory, where the second class constraints are linear
functions of the canonical variables, Eq. (7.9) for the commutator of the canonical
variables remains true also in the exact operator sense. The involution of the first
class constraints takes the form

{T(x), Ts(x)}p=f5Tc(x) 5 (x—x). (7.10)

Then the hamiltonian is equal to zero on the constraints. Thus, we have seen that
the Chern-Simons theory of the general type is a system with constraints of the
first and second class, and since the structure functions f<, are constants, this
theory is quantized following Ref. [11] as a theory of rank one using the method
of the generalized canonical quantization. Then the generating functional in the
generalized phase space (which consists of the initial phase variables w/ and P%,
Lagrange multipliers (1* =w{) to the first class constraints and Lagrange multi-
pliers (n,) to the gauge conditions for the first class constraints and corresponding
ghost variables C* and C, has the form [11]

Z= f Dw* DP4, DAADrn , DC*DC ,5(6%)

x (Det{8, 8} »5)"* exp ij d*x(P3g0? — Hy). (7.11)
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Here the effective hamiltonian is

o,¥ o, ¥ S,¥/(, é,u’
He=T it —g, ~—_(p LI N LN RISy A ) .
=T, maa {¥,T}p 30 ~ 3 (c acgl) (7.12)
The gauge functional is
P f d*xC, ¥*w, P, A, 1, C, T), (7.13a)

and we use the following notations
T=J‘ d*xCT ,(x), ul(x)=1f4,CPCE(—1)y=+1, (7.13b)
Carrying out the integration over the momenta P, in (7.11) (substituting 14 = w,*

and assuming that the gauge condition (7.13) does not depend on P), we get the
following expression for the generating functional in the configuration space

Z= f Dw{Dn,DC*DC ,(Det{8, 8} ,5)"* exp iS.g, (7.14)
where
o¥ o,¥ 16,%
= 3 e BTl A__r- g4 DB __1yn
sc,,_s+jd x(n‘a‘A+6w;‘9“C 55c4) 2 C7C( 1)")- (7.15)

Here § is the original Chern-Simons action. It is not difficult to see, that the same
expression for the effective action can be obtained using the lagrangian method of
Refs. [24, 25].

In the case of the theory of higher spins in D=2+ 1 the effective action in AdS;
and in superconformal theory can be rewritten in the following compact form

5¥Y 8,¥ 4
_ 3 ! r r
S,H—S+Jd Xtr<n*_56+_6w *2,C+ 5C

* c*c), (7.16)

u
where

c=c4T,, C=C,TA sv=jd3xc",, @A

5, ¥ 8,,¥
sop  dp,

Here T ,(T") are the generators of the superalgebra of higher spins.

In conclusion, let us note that the elementary count of the physical degrees of
freedom in the phase space shows that in D=2+ 1 their total number is equal
to zero. In fact, 2x (number of physical degrees of freedom)=2 x (number of
fields) — (number of second class constraints)— 2 x (number of first class con-
straints) =0 for gauge fields of each spin s>1. However, the higher-spin
Chern-Simons theory will be interesting from a topological point of view.

p=(o,C, ).
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APPENDIX 1: NOTATIONS AND CONVENTIONS

We follow the conventions of Refs. [1-8]. The two-component spinorial indices
are raised and lowered by means of &= —&,, %, &, =67=1, as 4" =84,,
Ay =&,5A% The internal so(N) indices (i, j; k, ..) are raised and lowered by 6%, J,.

A symmetrization (anti-symmetrization) is implied for any set of upper or lower
spinorial (internal) indices denoted by alike letters. When this symmetrization is
carried out, the maximal possible number of upper and lower indices denoted by
the same letter should be contracted. We use notations such as

Aa---at:Aa(n)! Ai‘-;-i=Ai(n)’ éauﬁ"'éaxfI:(g)z(n),ﬂ(n)s
n n n (A.l)

0L--0L =010 da 9= damy UG
e e
n n

The three-dimensional world indices p, v, =0, 1, 2. The flat metric ,, has the
signature (+, —, —).
We often use the notations é(n)=1(0), n=0 (n#0);

[nl, =0 (1) at n even (odd). (A.2)

APPENDIX 2: THE shs(2|1) SUPERALGEBRA

The associative complex algebra aq(2; C) (associative quantum) [4] is formed by
the generating elements 4, (x=1, 2 are sp(2) spinorial indices) with commutation
relations

[qm, qﬁ] = 2ié’15' (A21)

In terms of Weyl symbols 4(q) of the operators A(g) the associative product of two
symbols is given by the formula

5
= 1 B. 2.
Ax B=Aexp (z e aqz) (A.2.2)
The basis in aq(2; C) is
Ton=(1/1 /(2D qaan)> 1=0,31,.. (A.23)

The multiplication (A.2.2) in this basis has the form
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il] +h—-h-—1

;\/ Ay, 1, )21 +1)Cm(zh)'B(ZIZ)’N%)Tv(ZM’ (A24)
3 1> %25 %3 3

Toiony * Tpiany =

where C are the spinorial C-G coefficients.
An arbitrary element from aq(2; C) has the form

A = Z AG(ZI)T1(21)’ (A.2.5)
!

where only a finite number of the coefficients 4*?? is nonzero.
Define in aq(2; C) a Grassmann parity of the generators and coefficients, by

U(Tpzn) =n(A**D)=0(1)  at/integer(half integer). (A.2.6)
The supercommutator
[4, B} ,=AxB—(—1)"DV"B) B 4 (A.2.7)

makes aq(2; C) into a Lie superalgebra shs(1|2; C) [3, 4]. The supercommutator
of two generators (A.2.3) has the form

h+bh—5—1

[Tueys Toam}a=2 % ——
R SACRYX T JA(y, b, )2+ 1)

x8(|4l L + 1y + L — I3+ 1)3) Coany pary,” P Toary,  (A2.8)

where 6(|4/,/, + 1, + I, — I3+ 1|,) appears due to the symmetry property of the C—-G
coefficients (A.3.15) and the definition (A.2.6) of the Grassmann parity.
The superalgebra shs(1]2; C) possesses an invariant symmetric bilinear form

(A4, B)=tr(4  B), (A.2.9)
tr(4(q)) = A(0). (A.2.10)

The Hermitian conjugation
9 =4,, A*=-4 (A.2.11)

gives rise to a real form shs(1{2) in shs(1|2; C).
In conclusion, note that it is possible to introduce a new basis in aq(2; C) by

()™ (g) ™

i/(I+m)! (I—m)! (9:=41> ¢2).

T! = (A.2.12)
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In this basis, the multiplication formulae (A.2.4) and (A.2.8) take the form

i11+lz—13—1

Th *T2 =%
T e AL L, )2+ 1)
x C[l[213 T13

mymymy < om3>

D+ bh—h—1
Th, T2} e=2%
: Y G AU b, )2+ 1)

x Chith  S(4l L+ 1+ — 1+ 11,) T?, (A.2.13)

mimamj

1

with C being the usual C-G coefficients.

APPENDIX 3:
A. The Clebsch-Gordan Coefficients [22]

According to the Raca formula, we have

cut -—(5(m+m’—m”)\/A(l,l’, 1")21"+1)

. \/ T+m)l (=m0 (' +m) )
(=D ( x(I'—m W (1" +m")W (1" —m")!

A3l
Xz,: t!(l+l’—l”—t)!(l—m—t)!(l’+m’—t)!) ( )
x("=V+m+("—1—m +1)!
with the following symmetry properties
CII’I"’ "=( 1)1+1 -1 Clil'" s (A32)
Ut o= (=) et (A33)
We define CXU .=0if I"¢ [|I-1'],1+1"].
The orthogonality relations are
Y Cotnm Conimam = 8" s (A34)
my,
Z Cglllzrizmcgllzrln m= 5m1. miamz, my* (A25)
ILm
The triangle coefficient is
I+ =10 {d-=-r+1" ' =1+1")

I+ +1"+1)
The Wigner 9j-symbols
jll j12 j13
jZl j22 j23
j31 j32 j33
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are determined by the relations

v J2
Y CHn Ol C Clth Chitl = Ky R k[
(B pzmymamim3) 11 sz J'
(A3.7)
v J2 J i 22 J
ki ky k=@ + )25+ D)@+ D)Rk+1){k, k; k) (A3.8)
Jv J2 J v j2 J'

By permuting any two rows or two columns, 9j-symbols are multiplied by the sign

(= 1)Ehi=1I, (A3.9)

By the definition, the 9j-symbols are equal to zero if at least in one row or one
column the triangle condition is not fulfilled.
B. The Spinor Clebsch-Gordan Coefficients

In the representations so(2, 1) one can introduce a spinor basis T,ay,x=12
such that

Th=Ti 12 (A.3.10)
I—m I+m

Then to the formulas in the weight basis

Tow= 2 Comm TEO", (A3.11)
P
TEO = Y U (A3.12)

there correspond the formulas in the spinor basis
Ty, p2rm =; Coan, perny, 7(21")T;1(,21;?’), (A.3.13)
TSt = C_'w(zr’),u(ﬂ)'ﬂal')Ta(zn,ﬂ(zl')~ (A.3.14)
The relations (A.3.3-A.3.7) in the spinor basis have the form
Caianpan,”® = (=171 Cpary wan,”@”, (A.3.15)

21"y &2, p(2Y _ §8(210) § p(21)
Z Ca(ZI),ﬂ(ZI'), C/(zl”l, - 5::(21)513(21'), (A.3.16)
Iz
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(20), B(21" 2"y 21"
Caim, P Coany parny " = 8561, (A.3.17)

A G 6(2ki). 6(2k) D
Cuzy), Cpny, Cizjn.ak,” !

Ji B2 J
% Cpia, e in PP Coprwn™ = ke k2 k| Cagppn™™ (A3.18)
1 2
v J2 J

One can readily obtain the explicit form of the spinor C-G coefficients if one note
that (A.3.13) is an expansion of the multispinor T, gy into symmetric multi-
spinors. As is known [23] the formula of expansion into symmetric spinors is

T _y (20! 2 (21" +1)!
22D T e (2s) (20 (141 417+ 1))
xS(2u—1—1"+1")6Q2s—1+1"—1")
X 82+ 1—1"—1") Exnuy pay T &5 pasys (A3.19)

(L1 _ YU+ —s5=1)
T Gansen = @i+ —s— 0,800 = (A.3.20)

(a---B---),p implies complete symmetrization with respect to o and B. Denoting
the coefficients in (A.3.19) by (c(/, ', 1"))? one can write (A.3.19) in the form
(A.3.13) introducing the coefficients

Caan g, = (L1 1) Gy, pauny S iaer b2y (A3.21)
u=I1+1"—1", 2s=141"-1', 2u=0U"+1"—|,
Cy(ZI"]’a(ZI),B(ﬂ') — C(l, l’, lll) éau(Zu),B(Zu)éj((gﬁf(Zr), (A.3.22)

@t @+ :Il/z
(l+l!_l")! (l+lll_ll)! (l!+ln_l)! (l+ll+llf+ 1)! .
(A.3.23)

c(l,l’,l”)=[

Note that all the formulae (A.3.12, A3.11, A4, A5 A7) and (A3.14, A3.13,
A.3.16-A.3.18) are obtained from one another through a transformation of the type
(A.3.10).

APPENDIX 4: THE WIGNER FuncTiONs [22]

d! n __I_Z(—I)P\/(l-l-m)!(l—m)!(]+m')!(l_.m,)!
m,m'<2)_2’ > pl(—m' —p) (I+m—p) (m"—m+ p)! ,

(dﬁn,m'(ﬁ))71 = (dﬁn,m’( _ﬁ))’ din,m'( _ﬁ) = din',m(ﬁ)’
5 L () (8= s e (3) = (=177l (2).

n= —/
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APPENDIX 5: THE REPRESENTATIONS OF THE D=2+ 1
SUPERCONFORMAL ALGEBRA 0sp(N|4) FOR ANY SPIN

Fic. 1. The adjoint representation of osp(1|4).

+ 'L]_ ; t 1\/
-1-20

-5 - 1 -1
s 8*2 828 [}

1
2

FiG. 2. The representation (s, 5)@® (s — £, s — 1) of 50(3, 2), ¢: the conformal weight of the generator;
I: the signature of the so(2, 1) representation; O: the Bose generators; @: the Fermi generators; the
operators S, and Q, act along the arrows —and «, ic., rise and lower the conformal weight, Tespec-
tively; (e, f., @,, b, 8,, ¥, —the set of fields corresponding to the ordinary conformal supergravity
generators.
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APPENDIX 6: LINEARIZED EQUATIONS OF MOTION FOR THE CONFORMAL
HiGHER SpIN FIELDS IN D=2 +1

The linearized equations of motion (6.2) have the form’

L(s,c) _ (s,c) (s.c+1)
R on= 0,00+ Als, ¢,1) 0,055,

— B(s, ¢, 1) 0,2y 05551 1)
€6 6 D) OSSP — (=0, (A61)

where real coefficients A(s, ¢, 1), B(s, ¢, [), and C(s, ¢, [) are nonzero if and only if
the corresponding arguments s, ¢, and / lie in the domain (4.18).

The equations R'(s,c,I)=0, except for R%(s,s, s)=0, contain the fields of
conformal weights ¢+ 1 only algebraically (below we sometimes use short-hand
notations such as w(s, c, ), R(s, ¢, I) and &(s, ¢, [)). These equations can be solved
recurrently in c= —s, —s+ 1, .., 5. As a result, all the (s, ¢, /) fields get expressed
through the “physical” field w(s, —s, s) up to a gauge transformation. At the first
step ¢ = —s, the field w(s, —s+1,s) and w(s, —s+ 1, s—1) enter in the equation
RX(s, —s, s)=0 only algebraically. The field w(s, —s+ 1, s— 1) transforms under
the gauge transformations with parameters (s, —s+2,[)(I=s—2,s—1, s). It can
be put to zero by fixing a gauge which spoils the symmetry under these transforma-
tions (this is analogous to the b, =0 gauge which breaks the K-symmetry in confor-
mal gravity). The field w(s, —s+1,s) can now be expressed in terms of the
derivatives of w(s, —s, s) alone. It is not difficult to show that in the general case
as well (for the fixed s), the fields of conformal weight c + 1 can be expressed in terms
of the derivatives of weight—c fields up to gauge transformations. It would suffice
to show that the number (n,) of independent equations in (A.6.1) with fixed s
and c is equal to the number of w(s,c+1,/) field components (/=|c+1|, ..., 5)
diminished by the number (n,) of gauge parameters &(s,c+2,7), (I=|c+2|, .., s):

s

nl—n2=<3 ZS: +1- Y (21+1))

I=1cl 1=|c—1}

—(3 D VIES DY (2l+1)>=0 ' (A6.2)
I=|c+1f I=1c+2|
(the second sum inside the first bracket is subtracted in accordance with the
linearized Bianchi identities satisfied by the curvatures present in (A.6.1)).

Thus it follows that all the fields are expressed through the derivatives of
w(s, —s, s). The equations of motion for w(s, —s, s) are order —(2s+ 1) differential
equations of the form

L(s, _
Ruv:vaz&)s) - 0 (A.6.3)
7In the zeroth order the flat dreibein %} 5" = 0,,). while all other fields are equal to zero. When

considering the free case, we drop out the internal indices.
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Calculate now the number of the degrees of freedom off the mass-shell for the
conformal field of spin s+ 1 (s=0, 1, 1, )

ngﬂ'shell =n(w(s’ -5, S)):—H(J(S, —.S", S))
—n(8(s, =5+ 1,5))—n(&(s, —s+1,5—1))
=32+ 1) — (254 1) —(2s+1)— (25— 1)=2. (A.6.4)

We have shown that the set of fields w(s, ¢, ) describes “conformal pure spin
states” with spin s+ 1 and with two degrees of freedom off the mass-shell.

Calculate now the total number of the degrees of freedom off the mass-shell in
the N-extended superconformal higher spin theory in D=2+ 1. The generators
(4.30) with a fixed degree of homogeneity k + 2s=2s_,, transform under an irrep
of the superalgebra osp(N|4). The corresponding gauge fields furnish an osp(N|4)-
supermultiplet with maximal spin s.,,+1. The number of off-shell degrees of
freedom for this supermultiplet is

2Smax 1
B Smax —F Smax =2 -1 k Ck =2C2-’n_xu 3 Cq=_p‘_— A.6.5
( ) ( ) k‘éo( Ve Mo e q' (p—q)! ( )

For N=1and N=2, C%m =0 for all s,,,=1, 2, ..., 50 the necessary condition
for the supersymmetry algebra to close is satisfied for the N=1 and 2 conformal
supermultiplets.

When N > 2 this necessary condition is broken for only a finite number of super-
multiplets with 25, < N—1.
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