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Abstract

Gauge-invariant BFV approach to geometric quantization is applied to the case of hermitian
symmetric spaces G/H. In particular, gauge invariant quantization on the Lobachevski plane
and sphere is carried out. Due to the presence of symmetry, master equations for the first-class
constraints, quantum observables and physical quantum states are exactly solvable. BFV-BRST
operator defines a flat G-connection in the Fock bundle over G/H. Physical quantum states are
covariantly constant sections with respect to this connection and are shown to coincide with
the generalized coherent states for the group G. Vacuum expectation values of the quantum
observables commuting with the quantum first-class constraints reduce to the covariant symbols
of Berezin. The gauge-invariant approach to quantization on symplectic manifolds synthesizes
geometric, deformation and Berezin quantization approaches.

1. Introduction

The present paper is a sequel to our paper [1] where a gauge-invariant approach
to geometric quantization was developed. It yields a quantum description for dynamical
systems with non-trivial geometry and topology of the phase space and, in particular,
allows for quantization of the entire algebra of quantum observables. The approach of
Ref. [1] is a global version of the gauge-invariant quantization method for second-class
constraints developed by Batalin, Fradkin and Fradkina (BFF) [2-5]. The approach of
Refs. [2-5] is a natural extension of the general BFV quantization method [6-11] to
dynamical systems with second-class constraints and curved phase space. The central
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element of the BFF approach is a BFF conversion procedure of converting second-class
constraints into the first-class ones by introducing extra gauge degrees of freedom [2,3].
Then the resulting system with the first-class constraints can be quantized according to
the standard BFV quantization method. In Ref. [4] BFF conversion procedure was
applied to dynamical systems with curved phase space. That is, a curved phase space
is described by second-class constraints in an enlarged phase space, these second-
class constraints are converted into the first-class ones according to the BFF conversion
procedure, and then the resulting gauge-invariant system is quantized.

In Ref. [1] this program was implemented for an arbitrary symplectic manifold
(M, w). In particular, this approach allowed us to quantize an entire algebra of classical
observables. It was demonstrated that the resulting algebra of Weyl symbols of quantum
observables is isomorphic to the quantum deformation of the algebra of classical ob-
servables known in deformation quantization [ 12-14]. Moreover, when the quantization
condition with metaplectic anomaly is satisfied, it yields a construction of the Hilbert
space of quantum states.

In the present paper we will apply the approach of Ref. [1] to the quantization
on hermitian symmetric spaces and, in particular, on the Lobachevski plane and two-
dimensional sphere. In this case, the presence of global symmetry G allows us to exactly
solve the master equations for the quantum first-class constraints, quantum observables
and physical quantum states. When M is a symmetric space G/H, the quantum first-
class constraints define a flat G-connection in the Fock bundle over M. Then physical
quantum states are covariantly constant sections of the Fock bundle over M with respect
to this connection, and they coincide with the generalized G/H coherent states [15].

The present paper is organized as follows. In Section 2 the main results of Ref. [1]
are summarized. In Subsection 3.1 classical hamiltonian mechanics on the Lobachevski
plane is considered. Darboux coordinates are introduced and it is shown that the Darboux
transformation leads to the classical version of the Holstein-Primakoff realization of
SU(1,1). In Subsections 3.2 and 3.3 classical BFF conversion is carried out in the
Darboux and covariant gauges. As a result, dynamical systems on the Lobachevski
plane are described by the physically equivalent gauge-invariant systems with first-class
constraints. Due to the manifest SU(1,1) symmetry, the master equations for the first-
class constraints are exactly solvable. In Subsection 4.1 direct quantization in Darboux
coordinates is carried out. It leads to the Holstein-Primakoff realization of SU(1,1) and
non-linear commutation relation between the operators  and 7 corresponding to the
classical coordinates on the Lobachevski plane. In Subsections 4.2-4.4 BFV quantization
of the BFF converted system with first-class constraints is carried out. In Subsection
4.2 quantum first-class constraints are explicitly found. Due to the SU(1,1) symmetry,
the quantum master equations turn out to be exactly solvable. These quantum first-class
constraints define a flat SU(1,1) connection in the Fock bundle over the Lobachevski
plane with the standard Fock spaces as fibers. In Subsection 4.3 the master equations for
physical quantum states are exactly solved. It is shown that physical quantum states, that
are covariantly constant sections of the Fock bundle with the flat SU(1,1) connection,
coincide with the generalized SU(1,1) coherent states [15]. In Subsection 4.4 the
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master equations for quantum observables are solved. It is shown that the vacuum
expectation values of quantum observables of our gauge-invariant system with first-class
constraints coincide with the covariant symbols of Berezin [16]. In particular, Berezin’s
multiplication formula for covariant symbols is obtained as a vacuum expectation value
(0].4;.4;|0). In Section 5 gauge-invariant quantization on arbitrary hermitian symmetric
spaces is considered.

2. Summary of the BFV approach to geometric quantization

This section contains a brief summary of the main results obtained in Ref. [1].

Consider a symplectic manifold M with non-degenerate symplectic structure w. In a
generic coordinate system x*, u =1,2,...,2N, a dynamical system with the hamilto-
nian H = H(x) is described by the hamiltonian equations of motion

x.#= [x#’H](l;‘B £ (2'1)

where the Poisson brackets are defined by the inverse of the symplectic form w,,; , w,, @*?
=&,

[x#, x" ]1pp = @*"(x) . (2.2)

The BFV approach to quantization of the system (2.1), (2.2) consists of three
steps [2-5,1]. First, one re-formulates it as a system with second-class constraints and
canonical Poisson brackets. Next, the second-class constraints are converted into the
first-class ones according to the BFF conversion procedure by introducing extra gauge
degrees of freedom. Then, the resulting gauge system is quantized according to the
standard BFV quantization method.

First, a new set of variables p,, u =1,2,...,2N, is introduced and a new symplectic
structure on the enlarged phase space of both variables x# and p,, is defined

[x*,p.1ps =64 , (2.3)

i.e. the enlarged phase space is the cotangent bundle 7*AM. To reduce the number
of physical degrees of freedom, the new variables are subjected to the second-class
constraints [4]

Op=pp—Vu=0, (24)

where V,, = V., (x) is a symplectic potential

a,u.V;' _3VV,u,=a),u.v(~x)’ (25)
so that
[B,uvgv] = w,u,u(x) . (2.6)

If w is not exact, V is globally defined as a connection in the Kostant-Souriau line
bundle L over M with the curvature (—iw/h). Thus, under the substitution p, —
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—ihd,, the second-class constraints (2.4) can be interpreted as covariant derivatives
V. =4d, — (i/R)V, acting on the sections of L.

To convert the second-class constraints into the first-class ones, extra gauge degrees
of freedom are introduced [2-5] that are described by the canonical variables ¢,
a=1,2,...,2N, with the Poisson brackets

[da, b1 = —Aab, (2.7)

where Agp = —Apg is a flat symplectic metric with the inverse A%, A,,A% = &¢.

According to the BFF conversion method [2-5], abelian first-class constraints are
sought forin the form

Tu=pp—Wulx,¢) =0, (2.8)
[7.,T.1p=0, (2.9)

with the initial conditions
Tulg=0 =04, or Wy|g0 =V, . (2.10)
Abelian Poisson brackets can be regarded as zero-curvature equations (83 =3/d¢s)
Ry = 0,W, — 3, W, — 35W, AaydyW, =0, (2.11)

with the initial condition (2.10).

For every classical observable A = A(x) of the original dynamical system on M, a
BFF-extended classical observable A = A(x, ¢) is constructed so that it commutes with
the first-class constraints

[Z.. Alpg =0, (2.12a)

1.€.
DyA=0, (2.12b)
Dy, =8y — 0gWuAudy , (2.12¢)

and satisfies the initial condition
A(x, ) g0 = A(x) . (2.13)

Egs. (2.11) and (2.12) with the initial conditions (2.10), (2.13) can be solved pertur-
batively by expanding in the powers of ¢ and solutions are given by [1]

1
77! =pu— Vu— hz(ﬁa + EAZ_bd’ad’b

3 a VvV pdad = 1 ay ...q,
-4 Ry RS By ay by + Y Wi ey - pa 20, (2.14)
k=4

and
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1
A=A+ @”’3#A + EQ)"‘CP“ZVMMA

1
+g¢/ﬂ PP (vumz}laA Rﬂltllbz awtfﬂs vaapA)

4
o~ 1

+ Z EAalmakqsal . ~¢ak ’ (215)
k=4

where k% is a symplectic frame on M with the inverse A%, A% = Ab% — torsion-free
Sp(2N; ]R) symplectic connection, R 7 ~curvature of this connectlon W“l % — symplec-
tic “higher spin fields” that are expressed through the higher orders of the symplectic
curvature RZ’;, P = py AP hE, V. is a covariant derivative on M with respect to the
torsion-free linear symplectic connection [, # defined by Sp(2N;R) connection AZ”
according to the relation

aﬂh,‘i + A/‘ibAbchf, - rp.v PhZ =0, (2.16)

and RY,, is the corresponding curvature tensor, R% (A4) = Ry, () hGhE A

Geometrically, the BFF conversion procedure can be interpreted as follows. Consider
a bundle € over M with the fibers F ~ C> (R?V) (where (R?", A) is a flat phase space
of the variables ¢,) and the structure group G ~ Symp(R?*") of symplectomorphisms
(canonical transformations) of (R?¥, A). Then the first-class constraints 7, define a
flat connection D on £ and classical observables commuting with the constraints are
covariantly constant sections of £. Thus, to every classical observable A on M, the BFF
conversion procedure associates a covariantly constant section A of the Symp(R?V)-
bundle £ endowed with a flat connection defined by the abelian first-class constraints
(2.15).

Now one can carry out the quantization directly

[2#,p,] =iRél, X =x*,p, = —ihd,, (2.17)
[Ga> D] = —ilidap - (2.18)

The quantum first-class constraints are commuting operators [1]

ﬁﬂ:=%ﬁ=a”—%[vﬂ+(h;+n2 v(t%)q‘sa (2.19)
S A8y + S AR Bahrde + T
(D..D,1=0, (2.20)
where
W = —;A"bhb S (221a)
Gy = 1 28 e (Rups *Ros "0 + 2R 1y Ry "), (2.21b)
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and dots designate the terms of higher order in & and A. All the quantum corrections
are found from the commutativity conditions (2.20). (In Eq. (2.19), Weyl (symmetric)
ordering of the operators & is used.)

BFF-extended quantum observables .A commute with the constraints operators D,,

[D,, Al =0, ' (2.22)

and are given by [1]

. . @ 1
A=A+ (3, A+ R A) + E@"'zi)ﬂzvmm,«a

1,y o s 1
g P BB (Vs A — Ry s @P9pA) + (2.23)

where @# = (]Sa/l“bhg, V,ulm,,,,, = #V(#l .. .V#n), (pq - .- ) denotes (unweighted)
(2)
symmetrization, the quantum correction 4, is given by

@ 1 P, VP2, 003 5o vp
A= §§R#,,,, 0" 2wV 4 gy A + g Yw @ A , (2.24)
and the dots in (2.23) denote the terms of higher orders in d; and A. The quantum
corrections are found from the commutativity condition (2.22).

From expression (2.23) for quantum observables, the star product *r on the sym-
plectic manifold A1 with symplectic connection I” is obtained in the “unitary” gauge

¢.=0[1]

Axr B=(A*B)|g=0 =AB + %iﬁﬁ#A o' 3,B

1 1
—ghvamA (‘)MM’V‘WVVHQB - Zgih}EMmmA WS T L B L
(2.25)
where
1
Lppops = Vuuops + ng(m,uz Awﬂa)Awpaaa . (2.26)

and @tt-HnPlePe = gt ¥ Thig star product coincides with the star product
known in deformation quantization [12-14]. Indeed, in Darboux coordinates, operator
L can be rewritten in the form

Lppops = Opapaps — 3r€#,ﬂ2‘9ﬂ3)p + 0L 1, @ )o@ 0, (227)

and the third order term in Eq. (2.25) coincides with the Chevalley cocycle §7. of
Refs. [12-14].

Next, the Hilbert space representation of the algebra of quantum observables is con-
structed. The operators ¢, are separated into the creation and annihilation operators (In
Ref. [1] we have selected the gauge degrees of freedom so that their creation opera-
tors generate states with negative norm, Eq. (6.1) of Ref. [1], similar to the temporal
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component of the electromagnetic potential. Then to obtain the physical Hilbert space
one has to use the quartet mechanism, as in electrodynamics. Here we select the gauge
degrees of freedom so that they generate positive norm states. )

[a,al1=nsf, (aHt=af, ij=12....N. (2.28)

(Comparing to electrodynamics, if one chooses a complex polarization on M, x#* —
(z%,Zg), then ¢ is a counterpart of Ag, 7 is a counterpart of As and z is a counterpart of
the physical degrees of freedom.) The quantum ghosts and their momenta are introduced

(we consider the minimal sector only)
Cr=ct,  P,=int (2.29)
T #Tack )

and the Fock vacuum is selected
a0y=0, i=1,2,...,N. (2.30)

The minimal BFV-BRST operator {2 is given by

N=crt,  T,=—ik (a#— %Wﬂ> , (231)

with the quantum constraints ’f;, where the “gauge field” W = W(x,at,a) is now a
Wick ordered operator.
Physical quantum states |iJpnys) must satisfy the master equation

D onys) =0 . (2.32)

Locally, in the coordinate neighborhood X of the point xp, the general solution for
physical quantum states is given by

|thonys) = U (x, X0) |¢phys0) » (2.33)

where the operator of parallel transport from xy to x € I is defined by
. X
U(x,x0) = P exp é/W . WedeW, (2.34)
XO
and |phys0) = wphys,ﬂ(af) |0} is an initial condition independent of x.

Similarly, for the quantum observables which are now hermitian operators commuting
with £, a general solution is given in the form

A=uA Ut , (2.35)

with the x-independent initial condition Ay = Ay(&t, &). Globally, |phys) are covariantly
constant sections of the Fock bundle.

Let Ro = {2} ...a}]0), k =0,1,...} be the standard Fock space, G- the group of
unitary operators in 7Ry and Fq - the associative algebra of hermitian operators in Ryg.
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Consider a Fock bundle R M over M with fibers F ~ Ry and the structure group
G. Then the BFV-BRST operator 0 defines a flat connection in RM, and physical
states are covariantly constant sections of RAM with respect to this connection. Further,
the adjoint operator ad{? defines a flat connection on the associated bundle FM of
hermitian operators over M with fibers F ~ F; and the structure group G/U(1) acting
on the fibers by conjugations 4.A !, Then the quantum observables A are covariantly
constant sections of FM with respect to this connection. In Ref. [1] it was shown
that, in the case when the infinite-dimensional structure group G can be reduced to
its maximal finite-dimensional subgroup isomorphic to [Sp(2N;R) ® U(1)]/Z,, the
necessary and sufficient condition for the existence of the Fock bundle RAM over
a symplectic manifold M coincides with the corrected quantization condition with
metaplectic anomaly known in geometric quantization [17-21], i.e. the first Chern class
c1(LK'?) = ¢;(L) + Lci(K) of the line bundle LK/, where L is the Kostant-Souriau
bundle and K'/? is the square root of the determinant bundle K, must be integer

1 1 [,
%/MZ;/R,,ez, (2.36)
X P

where Rj- is the Ricci curvature of U(N)-connection in the bundle of unitary frames
over M. The LK'/? is a vacuum (sub)bundle of the Fock bundle with sections (x)|0)
independent of &,T and a connection V + 14, where V is the symplectic potential and
Aj is the U(N) C Sp(2n;R) connection. It is also called the bundle of pure symplectic
spinors [18]. As we have stressed in Ref. [ 1], to quantize the entire algebra of quantum
observables it is essential to consider an entire infinite-dimensional Fock bundle with
the flat connection £2, rather than only the line bundle LK'/? which generally does not
allow a flat connection.

3. Classical mechanics on the Lobachevski plane and classical BFF conversion
3.1. Darboux coordinates and the classical Holstein-Primakoff realization

Let us consider a Poincaré model of the Lobachevski plane realized as a unit disc on
the complex plane D; = {z : |z| < 1} with the Poisson brackets

(2,218 =i(1—z2)%. (3.1)

The SU(1,1) symmetry acts on D; by fractional-linear transformations

_az+p _(apB
Z_)Z'g_ﬁz_'_&’ g-(ﬁa)’ gESU(lal)o 7 (32)

and D; can be represented as a coset Dy = SU(1,1)/U(1). At the infinitesimal level,
generators of this symmetry are hamiltonian vector fields with the hamiltonian functions
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i 1422
L=+ : ,
0 2(1—22‘) (3-32)
iz
Li=y=0s (3.3b)
iz
L_= ,
-2z (3:30)

It is easy to check that the functions (3.4) do indeed satisfy the su(1,1) commutation
relations with respect to the Poisson brackets (3.2)

[Lo.Lylpg ==Ly , (3.4a)
[Ly,L_]g=—2L . (34b)

One can introduce Darboux coordinates on the Lobachevski plane as follows:
E=(1-z22)"",  E=(1-2)7'z, (3.5)
and the inverse transformation is
z=(1+£H7'%, 1=0+&H7E. (3.6)
In the new coordinates the Poisson brackets (3.1) acquire canonical form
(£.818 =1, (3.7)

and the su(1,1) generators (3,4) take the form

Lo=5(2¢E+1) . (3.82)
L, =i(1+£5)'%, (3.8b)
L_=i(1+£HVE . (3.8¢)

We will call this Poisson bracket realization of su(1,1) classical Holstein-Primakoff
realization since it is a classical form of the oscillator realization of su(1,1) discovered
in Ref. [22] (see also Ref. [23]).

Let us compare it with the more frequently used realizations

iz _ip _im
LO = zf‘f’ L+ - 2§ » L_ 2‘f > (39)
and
Lo=3QeE+1),  Lo=i@+D), L =i (3.10)

Similar to the realization (3.10), after quantization the Holstein—Primakoff realization
yields the entire series of representations of su(1,1) with the lowest weights 1/(2F).
At the same time, similar to the realization (3.9), L, and L_ are hermitian conjugate

under the natural hermitian conjugation (£)! = £. Thus the realization (3.8) combines
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the desired properties of both realizations (3.9) and (3.10). The quantum Holstein—
Primakoff realization was first used in Ref. [22] as a means to diagonalize certain
hamiltonians. As we have seen, it can be interpreted as a quantization of the Darboux
coordinates on the Lobachevski plane.

3.2. Classical BFF conversion in the Darboux gauge

Our dynamical system with the Poisson brackets (3.1) and the hamiltonian H =
H(z,Z) can be represented by a physically equivalent system with the flat phase space
and first-class constraints. First, let us introduce canonical momenta p and j to z and
Z and a new symplectic structure with the non-zero Poisson brackets

[z.ple =1, (3.11a)
[Z.plm=1 (3.11b)
(the non-linear Poisson brackets (3.1) are distinguished from the flat brackets (3.11)

by the index w, as in [ , 1§p). Then the second-class constraints that reduce the number
of degrees of freedom can be chosen in the form

iz = iz

6=p+ ———o 0, 0=p— ——=~0, 3.12
P 3=z P=aa=z2) (12

and their Poisson bracket is
[6,81ps =i(1—22)72. (3.13)

Now it is easy to check that the original non-linear Poisson brackets (3.1) are recovered
as Dirac brackets with respect to the second-class constraints & and 8.

Our next task is to convert the second-class constraints into the first-class ones.
Following the receipt of Ref. [2-5,1], let us introduce additional canonical variables ¢
and ¢

[¢.dlps = —i . (3.14)

According to the BFF conversion procedure, the abelian first-class constraints are sought
for in the form

T=p+iW(z,2:¢.¢) =0, Tlp=0=6, (3.15a)

T=p—iW(z,7;¢,¢) =0, Tlgo=6, (3.15b)
and must satisfy the abelian Poisson brackets relations

[7,7]es =0 (3.16)

(W =W(z,Z:0,¢) is a function of z,7,¢ and ¢ to be found from Eq. (3.16)). As
we have discussed in [1], there is a gauge freedom in solving the Eq. (3.16). We will
consider two most interesting gauges, one is related to the Darboux coordinates (3.5)
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and the other is manifestly covariant under the SU(1,1) symmetry on the Lobachevski
plane (3.2).

Let us start with the Darboux gauge. First, canonical momenta to the Darboux coor-
dinates (3.5) are given by

1

7= (1-20)"{(2 - 22)p - 25} , (3.17a)

7‘r=%(1 — ) 2{(2-22)p - 2%}, (3.17b)
with the inverse

p=%(1 +EH M2+ D+ 87}, (3.18a)

ﬁ=%(1 +EHVHQ + £H T+ Em} (3.18b)
and

[&mles=1, [E7lm=1. (3.19)

Then the second-class constraints # and 8 (3.12) can be reduced to a new set of
second-class constraints 8p and 8p (D stands for Darboux)

0=2(1+ 26142+ £D0p + EBp} (3.200)

9= 301 +6D' {2+ D0 + £00} , (3.200)
with the inverse

0D=%(1'“ZZ_)I/Z{(2—-ZZ_)0—Z_29-}, (3.21a)

9D=%(1—ZZ_)I/Z{(Z—ZZ_)é—Z20}, (3.21b)
where

Op=m+ %if , (3.22a)

Op =7 — %i.f, (3.22b)
and

(6p.0plpe =i . (3.23)

Now, the Darboux second-class constraints can be converted into the first-class ones
1 -
Tp=0p+ip=7+ Eif—i—i(ﬁmo, (3.24a)

- = - 1 -
TD=0D—i¢=7’r—§i§—i¢z0. (3.24b)
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Further, the original first-class constraints 7 and 7 can be found by using the Darboux
transformations (3.6a) and (3.20)

T=p+2(Tl_Z—7_)+%(1—zz‘)"3/2{(2—z5)¢—z2$} ~0, (3.25a)
T=ﬁ—ﬁ—%(l —z2D)HQR -z20)¢ - 2P} ~ 0. (3.25b)

Indeed, it is easy to see that the Poisson bracket (3.16) does vanish.

BFF-extended classical observables that commute with the first-class constraints are
now obtained by substituting BFF-extended coordinates Z and Z for the original coordi-
nates z and Z in the original expressions for classical observables. Given the hamiltonian
H = H(z,7), the BFF-extended hamiltonian is H = H(Z, Z),

Z=(z+(1=2z0)'7¢) (3.262)
x[1 =274+ (z +(1 =z 2@) (2 + (1 —z22)2¢)171/2
Z:(Z) . (3.26b)

To obtain the expression (3.26) one first has to pass to the Darboux coordinates (3.6a),
make the shift £ + ¢ and £ + ¢ and then return back to the original coordinates z and
Z using the inverse Darboux transformation (3.6).

3.3. Classical BFF conversion in the covariant gauge

In this section we will give a solution to the classical zero-curvature equations directly
in the manifestly su(1,1) covariant gauge. We will start with the following ansatz for
the first-class constraints (3.15)

i
1—2zZ

i

T=0+

{z¢d + df(dd)}~ 0, (3.27a)

T=0-

5 (266 + 81 (4B} 0, (3.27b)
where f(¢p) is a real analytic function of ¢¢ to be found from the zero-curvature
equations subject to the initial condition f(0) =€, £ = %1.

As we have seen in Section 2, coefficients in front of the terms quadratic in ¢ and
¢ are nothing but the symplectic connection Az”. The symplectic connection is not
uniquely defined. For the Lobachevski plane considered as a symplectic manifold, it
can be set to zero, as we have done in the previous section. That corresponds to the
choice of the Darboux gauge. However, this Darboux choice is incompatible with the
Kihler structure of the Lobachevski plane and, therefore, is not SU(1,1) covariant. If we
require our symplectic connection to be compatible with the natural Kahler structure of
the Lobachevski plane, the symplectic connection is uniquely fixed and its coefficients
coincide with the Christoffel symbols of the riemannian metric on the Lobachevski
plane. We will call this choice covariant gauge. Then the coefficients in front of the
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quadratic term ¢ in the curly brackets in Eq. (3.27) are just the Christoffel symbols.
Now let us consider the term ¢ f(¢¢), which can be expanded in a series e(1 +
fidd + f2(pd)?+...). Coefficients in front of the linear term are just the components
of the SU(1,1)-covariant frame on the Lobachevski plane (two choices of the initial
condition in (3.27), e =1 and —1, correspond to the two alternate frame orientations).
The coefficient f1/(1 — zZ) in front of the third order term ¢’ is just a normalized
riemannian curvature tensor R,;,; of the Lobachevski plane. Generally, the coefficients
f1, f2, ... would have to be found step by step. However, in the case under investigation,
because of the SU(1,1) symmetry, zero-curvature equations are exactly solvable. Indeed,
calculating the Poisson brackets one finds

= i - 1 -
[T,T]PB=m(1+2¢¢)+m[¢f’¢f]m=0, (3.28)

and the equation to be solved takes the form
P+oxff=1+2x, x=¢¢, f(0)=¢. (3.29)

It can be immediately integrated to yield

f=e(l+¢d)'2. (3.30)

The arbitrariness in the sign (¢ =1 or —1) is all that is left from the gauge arbitrari-
ness after fixing the SU(1,1)-covariant gauge. Geometrically, these two sign choices
correspond to the two alternate frame orientations.

The first-class constraints we have found admit an elegant representation in terms of
the su(1,1) generators. Indeed, they can be re-written in the form

1
T=p+ .
1—2z7

T=p— 1_
1—2zz2

{ZLy+eL_} =0, (3.31a)

{zLo+eL } ~0, (3.31b)

where Ly and Ly are classical Holstein-Primakoff generators of SU(1,1)

Lo=5 (268 + 1), (3320
Ly=i(1+¢$)'/?¢ , (3.32b)
L_=i(1+¢d)%¢ . (3.32¢)

Thus, we have found that the first-class constraints are linear in SU(1,1) generators. The
arbitrariness in sign & corresponds to the automorphism of su(1,1), Lo — Lo, Ly —
—Ly.
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4. Quantization
4.1. Direct quantization in the Darboux gauge and Holstein—Primakoff realization

Before we proceed with quantization of our dynamical system with the first-class
constraints (3.31), let us consider direct quantization of the system (3.7), (3.8) in the
Darboux coordinates. Let us introduce creation and annihilation operators & and at for
the classical variables £ and ¢

[a,at1="n. (4.1)

Then the operators corresponding to the classical SU(1,1) generators (3.8) and to the
original coordinates (3.5) can be written as follows:

.1 1 .

L0=ﬁ( a+s), (Lt=1L, (4.2a)
I = %(1 +atey?a, (4.2b)
L, =71—i ta+a'a?,  (AoHt=L,, (4.2¢)
s=at(1+ata)~'2, (4.2d)
F=(1+ata)y~"%a, t=7. (4.2¢)

Note how the operator ordering is performed in Egs. (4.2). The combination ata is
treated as a whole operator (the number operator N = ata) and functions thereof are
treated as such (i.e. if we have a classical function f (£€) = fo+ f1E€+ f2(€E)2 +
the corresponding operator is f = fo+ fiata+ f2(a'a)*+.. ., and no normal ordermg is
performed inside the monomials (ata)™). Any excess creation or annijhilation operators
are put left or right, correspondingly (as in Wick ordering).

The operators (4.2a)-(4.2¢) satisfy the su(1,1) commutation relations

(Lo, Lil==%Ls , (4.3a)
(Ly, L 1=—-2Ly, (4.3b)

and for the operators £ and Z corresponding to the initial coordinates z and Z one has

[2,2]=—1——(1-zz)(1—2— 2) . (4.4)

To calculate the commutation relations the following properties of functions of the
number operator N are used

f(hat=a'f(N+n), (4.52)
f(WMa=af(N—-h) . (4.5b)
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The operators Lo, L+ are just the quantum Holstein-Primakoff generators of su(1,1).
Using Eqgs. (4.2) and the properties (4.5), one can calculate the su(1,1) Casimir
operator

C=-12+ %(i+i_+i_i+) =—-2-lﬁ (-2%— 1) . (4.6)
Thus, £ = 1/2F plays a role of the su(1,1) spin. Indeed, if |0) is a Fock vacuum vector,

al0) =0, (4.7)
then

Lolo)= 5210, L-[0)=0,  L,j0)=atlo), (48)

and |0) is an su(1,1) lowest weight vector with the weight 1/27. Generally, the lowest
weight is equal to 1/(2e«), where dimensionless constant « is a product of the Planck
constant and the square of the radius of the Lobachevski plane, a = Air?. For the sake
of simplicity we have set r = 1.

The operators 3 and  corresponding to the original coordinates of the Lobachevski
plane obey an interesting non-linear commutation relation (4.4) with a renormalized
Planck constant /i/(1 — /). To obtain it, one just has to notice that

27=N1—-h+8)", (4.9)

=(N+RA+M7". (4.10)
4.2. Quantum first-class constraints: A flat SU(1,1) connection in the Fock bundle

Let us now proceed with the quantization of the first-class constraints (3.27). All

the phase space variables (z,p), (Z,7) and (¢, @) are canonical, so we can proceed
directly

t=2 p=—ihl, (4.11a)
P
7=7 5= —inl (4.11b)
Z2=2, pP= (?Z_ ) .
at:=¢, a=¢é [aal]=h. (4.11¢)

i a
D:= ET—Z I—ZZ {Zt,()+8z } (4123)
_ iz J 1 A o
L 4,12
D: hT 77 2?{zLo—+-sL+} , (4.12b)
[D,D]=0, (4.13)
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Geometrically, the Hilbert space R of our system with first-class constraints is a
Fock bundle over the Lobachevski plane with copies of the standard Fock space Ro =
{(ah)"0), n=0,1,2,...} as fibers. Moreover, the quantum first-class constraints define
a flat SU(1,1) connection (4.12).

4.3. Physical quantum states: Generalized coherent states as solution of the master
equations Q) =

Subspace of physical quantum states Rppys is defined as a space of covariantly constant
sections of the Fock bundle

DI‘/’phys) =0, D|¢’phys) =0, (4.14)
[Wonys) =¥ (2, Z;81)|0) , (4.15)

where ¢ is a function of z, Z and an analytic function of the creation operator at. Due
to the SU(1,1) symmetry, these equations can be solved exactly and the general solution
for physical states can be represented in the form

[Wphys) = U Wphys.0) » (4.16)

where the unitary operator I is a SU(1,1) group element and |$phys0) is an initial
condition independent of the point z on the Lobachevski plane

l¢phys,0) = ‘//phys,O(aT) |0> s (417)
where iphys,0 is an arbitrary analytic function of at.
We will look for the operator ¢ in the form
U =e L gPlogal- (4.18)

ut=u-! (4.19)

where a = a(z,7) and 8= B(z,Z), B = B, are some functions of z and Z to be found
from Eq. (4.14). Using the su(1,1) commutation relations, one finds

oU _ da +Ll+ 3,3 e—obr f o ePlogal -
az 8z

ap da -
( o+ (32 a_z")f“*)u’ (4.20)

and the equations for & and B are (for definiteness we set € = —1 in Eq. (4.12))
6___z 6 _sa_ 1

, - 421
9z 1-—2zZ Y9z 9z 1-zZ (421)

This yields a solution for the unitary operator u

U = e threfni-tDlogzl - (4.22)
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The second equation D|ifphys) = O is satisfied automatically due to the unitarity of u.
Note that I{ can also be represented in the “anti-Wick™ form

I) = ezL_e—Zn(l—zi)ioe—z'ﬂ . (4.23)

Remarkably, Egs. (4.16), (4.17) and (4.22) coincide with the definition of the gener-
alized coherent states for the group SU(1,1) [15].

Comparing to the general solution on an arbitrary symplectic manifold M, the parallel
transport operator which is generally represented by the P-exponent is evaluated exactly
since the structure group of the Fock bundle is reduced to SU(1,1).

To summarize, we have found that the physical quantum states, i.e. solutions of the
constraints equations of the BFF-converted dynamical system with first-class constraints
(4.14), coincide with the generalized coherent states of SU(1,1). Or, in geometric terms,
generalized coherent states are covariantly constant sections of the Fock bundle with the
flat connection (4.12) defined by the first-class constraints. Note that this definition
of coherent states allows for a generalization to the case when no group symmetry is
present. Indeed, one can define generalized coherent states for any symplectic manifold
M as covariantly constant sections of the Fock bundle over A1 with flat connection
defined by the BFV-BRST operator of Ref. [1]. Of course, no exact solution can be
obtained in the general case when no symmetry is present, as the master equations can
be solved only perturbatively.

Let us consider a state I/|0) that is gauge equivalent to the vacuum vector |0) (vacuum
state in the covariant gauge). It coincides with the standard SU(1,1) coherent state [15]

£)= (1 - 22)V/Refle|0), ¢=-2, (4.24)

or, expanding the exponential,

1/2
- 2 (Irin+1H)
= (1D — 2= "n) 4.25
&y =(1 -4 n=0<n!l"(%)) (£)"m) (4.25)

where |7) form an orthonormal basis in the Fock space (see Eqgs. (4.2))

l‘(l) 1/2
|n>=(m> L3[0) = (W)~ 2@N"0) ,  (nlm) =8um . (426)
' h

The inner product of two coherent states in distinct points z and w of the Lobachevski
plane is given by

(wlz) = (1 — z2)'/h(1 —wiw) /21 — ziw) /R (4.27)

(for z = w one obviously has (z|z} =1) .
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4.4. Quantum observables of the gauge-invariant system and covariant symbols of

Berezin

Quantum observables of our gauge-invariant dynamical system must commute with
the first-class constraints

[D,A1=0, [D,Al=0. (4.28)
A general solution to these equations is obviously given by
A=Ui, U, (4.29)

where Ay = Ag(af, @) is an initial condition operator which is independent of z and Z,
and U is the SU(1,1) gauge transformation (4.18).
Let us consider a vacuum expectation value A(z,Z) of the quantum observable .A

A(z,2) = (0]4]0) = (0i1.A, 21"|0),
= (2] Aol2) . (430)
One sees that it coincides with the matrix element of the initial condition operator Ao

sandwiched between the two SU(1,1) coherent states.
The resolution of unity on the Lobachevski plane reads as follows:

/d,un(z,Z)Iz)(z! =1, (4.31)
with the measure
1 dz AdZ
d 2 )={-—1)—m—m—m—— . 4.32
mn(z,2) (h ) 2wl —22)? (4.32)

The normalization factor (% — 1) is found from the vacuum expectation value of
Eq. (4.31)

/ dun(z D|02) 2 = 1. (4.33)

Let us define an analytic continuation of the vacuum expectation value A(z,Z) as a
matrix element
_ {0tz 2) Ao U (w. w)[0) _ (2] Aol®)

Az w p p = . 4.34
() (Ot (z, 2) Ut (w,w)|0) (z|w) (4.34)

1t coincides with A(z,Z) at z = w, and the matrix element of the identity operator iis
equal to unity.

Now suppose we are given two quantum observables A, and A;. Then the vacuum
expectation value A(z, Z) of the product A1 Ay can be calculated as follows:

A(z,2) = (0 A1.4|0) = (0|14 0 Az 0 UT|0)
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- f dpin (ws ) (2| Ar o[ (7] A | 2)

(1 dw A dw _ (1 =z2) (1 —ww)
_<h 1)/2m‘(1—ww)zAl(z’wMz(W’Z) (1—zw)(1-wZ)

/A

(4.35)

where we have used Eq. (4.30), the resolution of unity (4.32) and (4.34).

Now, the composition (4.35) is nothing but the Berezin multiplication formula for
covariant symbols on the Lobachevski plane [16] (see also Ref. [15]), and covariant
symbols introduced by Berezin can be interpreted as vacuum expectation values of
quantum observables of the dynamical system with first-class constraints (4.12).

Thus, the theory of covariant symbols of Berezin can be deduced by quantizing
first-class constraints.

To conclude this section, let us construct quantum observables corresponding to the
classic expressions for the SU(1,1) generators (3.4). First, the initial conditions are
given by Eqs. (4.2) (initial conditions are operators acting on the fiber at the point
z =0). Then the su{1,1) quantum observables are given by

Lo=Ul, U, Lo=UF, UT . (4.36)

The corresponding covariant symbols defined as vacuum expectation values of (4.36)
can be easily computed

o

Loz, ) = O146l0) = 21Lol2) = 5 (o2 ) (4.372)
o . 1

La ) ={0l10) = ikl = 5 (255 ) - (437b)

LD = 01210 = it = § (1255 ) - (4.370)

They coincide with the classical observables (3.3) up to the normalization factor 1/ik.

5. Gauge-invariant quantization on the sphere

Consider a stereographic projection of two-dimensional sphere with the Poisson brack-
ets

(2,219 =i(1+22)%. (5.1)

The generators of SU(2) symmetry are hamiltonian vector fields with the hamiltonian
functions

i (1—2zz
Jo=3 (H—zz‘) ’ (5.2)




596 E.S. Fradkin, V.Ya. Linetsky/Nuclear Physics B 444 (1995) 577-601

iz

- , 5.2b
T+ 1422 (5.20)
iz
_ = s 5.2
1427 (5:2¢)

which satisfy the SU(2) commutation relations
[Jo. J+1pg =T+ , (5.3)
[T+, T-1pp =200 - (54)

We will consider quantization in the covariant gauge. Let us first introduce the mo-
menta p and p with the non-zero Poisson brackets

(z.ple=1, [Z,ple=1. (5.5)

Then the second-class constraints

iZ = iz

f=p+ ———— =0, =p— —— =0 5.6
P o +z2) P i+ (50)
satisfy the relations
[6,81p =i(1+22)72 . (5.7)
By introducing the gauge degrees of freedom ¢ and ¢,
[¢,dlpe=—i, (5.8)
the second-class constraints are converted into the first-class ones
1
T=p-— Z _} =0, 59
P 1+Zz_{zjo+s:7} (5.92)
- 1
T=p ~ 0’ =41 . 5.9b
p+1+zz‘{z‘7°+s‘7+} £ (5.9b)

where 7 are classical Holstein—Primakoff generators satisfying the Poisson bracket
relations (5.3), (54)

Jo=%(2¢d3 -1), (5.102)
Te=i(1-¢)'* (5.10b)
T_=i(1—¢d)' % . (5.10c)
Now we can quantize our system with the first-class constraints (5.8) as usual
d . d
;= b= —ih— 5=z p=—ih— 5.11
2=z P lhaz’ 7=7, p ’haz‘ , (5.11a)
at=d, a=é  [aa1=h, (5.11b)

and the quantum first-class constraints define a SU(2) connection
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a

i s .
Di=3T= P _{zjg +eJ-}, (5.12a)
_ I 2 a

ET = (92 1 e {2\70 + 8._7+} s (512b)

where J are quantum Holstein—Primakoff generators

.1

= (25ta —
Jo 2h(2a a-1), (5.13a)
L1
j+=ﬁaf(1 —ata)!? (5.13b)
|
J-=5- ata)'?a . (5.13¢)

Now let us consider Eqgs. (4.14) for the physical quantum states. The SU(2) operator
U is easily found from (4.14) (we set € = —1 in Eq. (5.11))

a - e—z'j+eln(1+zz')joezj~ . (5.14)

Consider a state 7|0),

10) = (14Dt Thj0y , £ = -2z (5.15)
Using Eq. (5.13b) one finds
1/2
1 4 1
) = —J310) = | — H (— - k) |nY, (5.16a)
1
- Atyn
|n) = \/W(a y'|0Y . (5.16b)
The inner product is
(mln):lrﬁ(l—k)ﬁ (5.16¢)
n! h e ’
k=0

One sees that, due to the presence of the square root in Egs. (5.13), (5.16a), for the
states |n) to be well defined and the inner product (5.16c) to be positive, the Planck
constant must be an inverse of an integer, i.e. A=1/(2j), j=1/2,1,3/2,2... (More
precisely, it is the dimensionless product of the Planck constant and the square of the
sphere radius  that must be integer. For the sake of simplicity we have set r = 1.)
When 1/ is non-integer, the product in (5.16c) contains both positive and negative
multipliers. Moreover, when i = 1/(2)), j =1/2,1,3/2,2..., due to the occurrence of
zero at k = 2j in the product [J(2j — k) in Eq. (5.16a), all states |n) with n > 2j + 1
vanish identically, and for the state {|0) we obtain the following decomposition

d [ (2))!

| v
=047 Y [ | @) (517)
m==j
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Thus, it coincides with the SU(2) spin coherent state [ 15,28] and the states (n!) ~'J 0},
n=0,1,...,2j, form a basis of the (2; + 1)-dimensional representation of SU(2). The
inner product of two coherent states in distinct points z and w is given by

wlz) = (L+wn) (1 +z22) (1 +w2)¥ . (5.18)

Thus, as expected, in the case of sphere the Hilbert space of physical quantum states,
that are annihilated by the quantum first-class constraints (5.12) and have positive norm,
is finite-dimensional and its dimension is equal to 1 + 1/A=2j + 1.

The solution for quantum observables is given by Eq. (4.29), where I is defined in
(5.14). Repeating the consideration of Section 4.4, one arrives at the Berezin multipli-
cation formula for covariant symbols on S [16]

oy s dw A dw
A(&U-—Q}-FU/m

[(1+zﬂ»)(1+wi)]2j

Az, w) Az (w, 7)

(1+22) (1 + ww) (5.19)

6. Gauge-invariant quantization on Hermitian symmetric spaces

Let us now consider a general case where the original phase space M is an arbitrary
hermitian symmetric space (HSS), M ~ G/H. There are two dual classes of HSS,
compact and non-compact. A non-compact HSS can be realized as a bounded symmetric
domain D in CV, and its dual compact HSS can be described by its stereographic
projection [ 15,24].

Let G/H be an HSS, and g, h are the Lie algebras of G and H, respectively. Then g
has a 3-graded structure

(M, M1 = 302 M7 — 300M; (6.1a)
(M}, P1=3%P, , (6.1b)
(M5, P l1=—35P°, (6.1c)
[P, PP]1=—2M5, a,b...=1,2,...,N, (6.1d)

where MZ are generators of H C U(N), ZZ,‘Z are the structure constants of the corre-
sponding Freighdental triple system, and P, and P? are raising and lowering generators
similar to L, and L_ (see Ref. [25]).

Suppose a non-compact HSS G/H is realized as a bounded symmetric domain D in
C¥ with the coordinates z, and z?, a, 8 =1,2,...N. Then the Kihler form

_id*InK(z,7)

=B
=3 an.97F dz, AdZ7, (6.2)

where K(z,7) is the Bergman kernel of D, defines non-linear Poisson brackets on D.
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To quantize dynamical systems on (D, ), the momenta p* and pg are introduced
and subjected to the second-class constraints, which are then converted into the first-
class ones by introducing extra gauge degrees of freedom. Next, the system with the
first-class constraints is quantized.

The extended Hilbert space is a space of sections of the Fock bundle RD over D,
) = ¢(z,Z,a")|0), where & ab are creation operators for the gauge degrees of freedom,

[a%, al] = hdg . (6.3)

The quantum first-class constraints define a flat G-connection in RD

a ~ ~
D=+ A ME + P (6.4a)
_ f A
Dp=55 — A MG - hEP, (6.4b)

where M¢, P? and I:’a are generators of a unitary representation of G in the Fock
space of gauge degrees of freedom satisfying commutation relations (6.1), (4, 4) is an
H-connection, H C U(N), and (h, k) is a unitary frame. The commutativity

[D*,Dg] =0 ‘ (6.5)

follows from the fact that G/H is an HSS [26].
Physical quantum states which are covariantly constant sections of the Fock bundle,

D|thonys) =0, Dplthphys) =0, (6.6)

can be written in the form

[pnys) = Z/Al|¢phys,0> > (6.7)

where I{ is a group element of G that can be represented in the form
U = eI PecfiMicSe” (6.8)

with the functions f?,F,? to be found from Eq. (6.6). Thus, the physical quantum
states of the gauge—mvarlant system coincide with the generalized coherent states for the
HSS G/H [15].

Similarly, the quantum observables commuting with the first-class constraints have
the form

A=UA U, (6.9)

and the theory of covariant symbols of Berezin [16] may be deduced similarly to the
case of the Lobachevski plane and sphere.
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7. Conclusion

The gauge-invariant approach to geometric quantization developed in Refs. {2-5,1]
yields a complete quantum description of dynamical systems with non-trivial geometry
and topology of the phase space. It synthesizes geometric, deformation and Berezin
covariant symbols quantization approaches into a unified theory.

In this paper quantization on finite-dimensional symmetric spaces was considered. In
this case all the master equations are exactly solvable due to the presence of symmetry.
Infinite-dimensional dynamical systems with symmetry constitute the next physically
important class. Applications to the models of conformal field theory may be espe-
cially interesting, as they could lead to some further insight into the geometric structure
and symmetries of exactly solvable models. The next class of applications is to the
quantization of dynamical systems without any global symmetry. In some cases the
topological structure of the phase space may still lead to the exact non-perturbative
solutions. Applications to the topological field theory [27] could be especially inter-
esting. Gauge-invariant geometric quantization also provides a natural framework for a
generalization of the notion of coherent states [ 15,28] to arbitrary symplectic manifolds.
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