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The generating functional of all quantum Green functions in an external field is found. The
Green function of a scalar particle in a constant and uniform external field is calculated with the
help of modified perturbation theory. Its infrared asymptotics is studied. It is shown that an
enhancement of the pole takes place, as in the vacuum case.

1. Introduction

There has been great interest in electromagnetic processes in external fields during
the last few years. This is accounted for, on the one hand, by the creation of the
intensive electromagnetic fields in lasers and the appearance of electrons and
photons of high energies, and, on the other hand, by possible astrophysical applica-
tions. In the above processes one can verify quantum electrodynamics in the domain
of high energies and large fields. The study of this phenomenon is of fundamental
importance because a correct description of the phenomenon in intensive external
fields is connected with the necessity of going beyond the framework of the usual
perturbation theory. For this reason the processes in the e? approximation in
different external fields [1-14] have been studied in detail lately with the external
field taken into account exactly (in this connection the constant uniform field and
the plane wave field or their combination are of a special interest because in these
external fields one can exactly solve the Dirac and Klein-Gordon equations and find
the one-particle Green functions). However, the contribution of radiative corrections
at high energies and intensive fields becomes essential. For this reason it becomes of
special interest to work out such methods of calculation of radiative corrections to
the processes in an external field which, in their final result, go essentially beyond
the scope of the usual perturbation theory with the external field kept exactly.

This is due to the fact that the generalized (with the external field being taken into
account exactly) Feynman diagram technique encounters essential difficulties caused

435



436 I.A. Batalin et al. / QED in external constant field

by the necessity of correct calculation of the vertex function in a self-consistent
approximation, since otherwise the results obtained are gauge noninvariant, and the
corresponding generalized Ward identities in the presence of an external field
[15-17] are not correct.

The most adequate method for solving this problem is the functional method
developed in papers [17,19]. With the help of this method a closed expression for the
generating functional of the Green function is obtained in [16,17,20] and the
modified perturbation theory is constructed.

The method of modified perturbation theory proposed in [16,17,20] leads to a
result which goes far beyond the scope of the usual perturbation theory. This
method appeared to be especially fruitful in quantum electrodynamics, because in
the first order of the modified perturbation theory the contribution of the soft
photons, both virtual and real, is summed completely. In particular, the first order of
the modified perturbation theory gave the possibility of obtaining the correct
asymptotic behaviour of the Green function and the cross section of the processes in
QED [16,20,21] in the double logarithmic approximation. Not long ago [22] the
method of the modified perturbation theory was also used in statistic quantum
electrodynamics.

These general results (which are beyond the scope of the usual perturbation
theory) will allow us to essentially advance in solving the problem of finding the
quantum Green function in the presence of a real external field.

In the present paper we consider the calculation of the one-particle Green
function of a scalar field in a constant uniform external field by means of the
modified perturbation theory. The Green function is found in the representation of
eigenfunctions of the Klein-Gordon equation in a constant field. Such functions
were first obtained in papers [12,13]. It was shown there that Dirac’s eigenfunctions
(in the spinor case) in a constant field diagonalize not only the Green function
without radiative correction, but also the Green function in the e’ approximation
(see also [8]). The use of eigenfunctions appears fruitful in the modified perturbation
theory because they contain considerable information about the dynamics of the
system in a constant field.

2. Generating functional in QED with external field

The principal value of the functional method is the generating functional of all
Green functions:

Z[g*, ¢, 7] = ¢ 018 [£%,. £, T]10), (2.1)
where

S[e*,¢,7] = Texp{ifﬁs(x)d“x} ,

R (x)=J,(x)A*(x) +£*(x)p(x) + 7 (x)é(x).
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C, = ,.{0]0),, is the probability amplitude for the vacuum to remain the vacuum,

|00 10)oy are initial and final vacuum states, J,(x) is the source of the electromag-
netic field A*(x), £(x) and £*(x) are sources of the scalar fields ¢ (x) and ¢(x)
respectively. Operators are taken in the usual Heisenberg representation (i.e. the
interaction between the fields is taken into account in the absence of the external
sources) and satisfy the equations

[2.(x)9"(x)—m?|p(x)=0,  F,(x)=id, —ed,(x)—eds"(x),
[9(x)*(x) —m?|o*(x) =0,  FF(x)=id,+ed,(x)+ed™(x),
[Og,, +(d,— 1)d;%3,d,| 4"(x)=L(x),  O=-3,0",
L(x) =e9*(x) B(x)p(x) —¢(F¥(x) 9" (x))p(x). (2.2)

A" is an external electromagnetic field, d, is a gauge parameter. Using the method
proposed in [16,17,20] one may show that the solution of the functional equations
for the generating functional (2.1) resulting from (2.2) has the form

Z[e*,8,7] = Cexp{H(AeXt+ ,‘;)

—zfd“xd“ys*(x)G(x P+ = )£(y)}

xexp(4i [ a*xdy,(x) D (x=1),(5). (23)

where G(x, y|a) is the causal Green function of the scalar particle in the “external”
field a,(x)=4;*"(x)—i8/8J"(x) satisfying the equation
[(ia“ - eaP(x))(ia“ —ea*(x)) — m2] G(x, yla)=8¥(x—y). (2.4)

II( A%+ 8 /i8J ) is the polarization correction to the action of the classical electro-
magnetic field:

H(A‘”“+—887) Spln[G( A+ gj)/c( |o)]. (2.5)

C is a constant to be determined by the condition Z[0,0,0]= 1.

Further, it is convenient to find a functional representation for the Green function
in an arbitrary field a,(x). To do this let us write G(x, y|a) in the form of the
inverse operator

G(x, yla)= —i_[)mdvexp{i(w2 —m*+ig)r}6W(x—y),

m,=1id,—ea,. ' (2.6)
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Following paper [20] let us write the Green function (2.6) in the form of a functional
integral:

4 00 o
G(x, yla)= —if (;1 p)4 e‘”""’”l) dpeim —iew
w

X /D4texp{—ifoy[tu(v’)zﬂ(v’) —2pﬂﬂ‘(y’)] dv’}q)(x,p, v|t),

(2.7)
where the function ¢(x, p, v|t) satisfies the equation
.99
—ig, = 2m,(v)d, ¢(r=0)=1.

D* is the normalized volume element in the functional space
v v v -1
D =[] d* (v’)[f I d* (v’)'exp{ —if t“(v’)t“(v’)dv’}] i
»'=0 v =0 0
Let us consider the subsidiary function ¢(x, p, »]4™", u) satisfying the equation
% (2n () 4, ()G, Br=0)=1
lav— m ity u”vtvd), ¢v—)—.

Note that $(u = 0)= ¢. It is not difficult to find the solution of this equation:

o= exp{ —21'./:[eau(x - Zf:t(?\)d}\)-h%u"(y')]tﬂ(w)du'} .
Separating the external field 4;*" and the “radiative field” 8/i8J* from a, and

making some simple transformations we obtain [20,23]

G At —— | = — ¢ o 2
(x, yI ext 8 ) lf d 1/ e_ip(x_y)f dve—z(m —ie)y
i8J @ )4 A

v 8
xexp{ —2e | P*(v’)—————dv’ } ¥Y(x, p,v|A™, u)| 0>
o =26 [P0 g Sy & | Y6 P

Y(x, p, v|A™, u) =fD4t exp{ —ifv[ﬁ(y'|t, A) — u#(V')t"(V')] du'} . (2.8)
0
where

L(v|t, A™) = [t“(v’) —2p,+ 2eAz’“(x - 2f:t(>‘)d}‘)]t”("l)
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is the classical action of the particle in the external field 4",

)
du,(v') ’

Substituting (2.8) into (2.3) we obtain for the generating functional Z[£{*, &, J] the
expression

Z[£*9$3 J] = Cexp{fd“x fw% e—i(mz—ie)s

So

(<1 _o+<exp( [P ey )>)}

Xexp{ fd“xd £*(x)f dpeitmi =i

x<exp(—2ef0vpu(,,)w( o) )> s(y)}

Xexp{%i[d“xd"yJ“(x)DM(x—y)J"(y)}, (2.9)

Pr(y)=—i x(v’)=x—2f:P(7\)d}\.

where

= —8— % ext
<A(8u)>x,y_A(8u)Y(x’y’le ’u)|u=0:

Y(x, y,v)d™, u) = f

7ip(xAy)Y(x’ P, VlAext’ u) ,

(2m)°
Dﬁ“’(x)=v[((2i4k4 ;w(k)elkx

D,, (k)= —(g,.k?+(d,- 1)k#ko)f°°_ re¥dr. (2.10)

— ity

Some remarks about expression (2.9) are in order. It is known that the expression
for Z[¢* &, J] contains divergences before the programme of renormalization is
carried out. It is convenient to carry out this programme after all the calculations
have been done. To do so it is necessary to regularize Z[£*, £, J] (2.9), so that the
divergences are absent during the calculation. As in papers [16, 20] this can be done
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by introducing the cut-off s, for the proper-time of the particle in the polarization
term in (2.9) and the cut-off ¢, for the photon proper-time in (2.9). As long as s, and
t, are not zero, the whole expression (2.9) is finite. After carrying out the programme
of renormalization it is necessary to remove the regularization by making s, and ¢,
zero. The resulting renormalized expressions should not depend on s, and ¢,.

In (2.9) one may carry out the partial functional differentiation over the sources
J* of the electromagnetic field 4, by expanding (2.9) into a series in powers of the
sources £* and ¢:

c'z|ex, ¢, 7] =c"'Z[0,0,7]

o0

x, d*y, 5*(xk)$(J’k)j(; d”ke_i(mz_ie)pk

XCXP{ Y Ayt LB, (J)}exp{+ fae 4 Ep——

ny,ny=1 m=1

X[exp[ Z1R -—Zef@“(s mas’}

x ¥(z, z; 5|4%, 0)| o0 — Y(z2, 2; s|0,0)}}

n
X I_I_II Y(xp yis v A, )] umo

Xexp{%ifd"xd“y]"(x)D,‘,(x—y)J"(y)}, (2.11)
where

Anl,nz=2ie2fv"'dv’fynzdv”P,f‘l(v’)Dp,,(x,,l(v')—xnz(v"))P"”z(v"), (2.12)
0 0
B, (J)= —2ie v’ [ 4% I*(x) D, (x = x,,(+)) B, (v, (2.13)
0
R, = 4ie2j:ds’ j:"ldv’ @”(s')Dw(z(s’) —xnl(v’))Pn"l(V’) , (2.14)

7Y — __8__ N\ _ m
P =iy )T TR AN
Fr(s) = —i—— ', 2(s)=z=2[ PN, (2.15)
SUF(Sl) s’
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and

Z[0,0,J]= Cexp(H(Ae’“ + %))exp{%i[d“x d*yJ*(x)D,,(x —y)J"(y)}
is the generating functional for the photon Green functions. To carry out the
complete functional differentiation over the sources J, one should expand II(A™ +

8/i8J) into a series with respect to the functions G(]4 + 8/i8J). In this way we
obtain the following expression for Z[§*, &, J1:

cz[gw, 8, 4]1=c71210,0,1+ T (- TT [ @ttt (x)E0)
n=1 . =

n n
xfwduke-‘<m2-f€>”kexp{ > 4,.,+ 2 B, (J)
0 * 1

ny,ny=1 np =1
ods ey

_fd4zf —S—CA'('"Z_'G)"‘Y(Z,Z,SlO,O)}
So

oodS

oo
X {1 + Z _ l_[ fd4zp _C —i(m?—ie)s,

5 LGt LBu(0)+ ¥ A}

1 a=1 o, 0 =1

r
X l_IIY( as Za» al“lext v )lv 0}
a=

n
1% 1_1—11 Y(x;, yi v/ A% ) uzo

Xexp{%ifd"xd"yf“(x)D,”(x —y)J”(y)}, (2.16)
where
- fo "d f ds’PE(») D, (x,,(v) — 2.(s))B2(s"),  (217)
B, (J)= —2ief0sads’fd“x.f"(x)D,w(x —2,(s"))92(s"),
Ay, = 2iezfsuds’ fsalds" @;‘(S’)Dpy(za(s’) —zal(s”))@o:(s”) ,

(s = ~ig——s,  z()=z.-2 f:’@a(k)dx. (2.18)

.,,,( s')’
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The expression for Z[£*, £, J] will have the simplest form if we neglect the
polarization effects. Then we obtain:

n!

Z[‘f*,g,-’] = [l + i_o: (—1)" kljlfd‘txkd{‘ykg*(xk)g(yk)

X
S

0 ) ) n n
dvke’("’z_")”*exp{ Y 4, .+ 3 B"I(J)}

ny,ny=1 n=1

X [_]___[1 f’(x,, Vs v/lACXt? ul)|u=0:|

xexp{%i [ d4xd*yI4(x)D,,(x ) I y)}. (2.19)

If we are interested only in the Green functions of the scalar particle, the
expression for the generating functional becomes still more simplified:

zl[en£.0]=1+ £ I TT [atndtd(x)E0)
n=1 ) k=1

Xexp{ Z A"]le} [_]-_Ilff(xl’ yl’VflAem’ul)lu=O- (220)

np,ny=1

Using (2.16) one can write the one-particle scalar Green function in the form

G(x,y)= —iLwdvexp{~i(m2—ie)v+A1'1}

1+ i 1 . fd‘tzpfoo&vﬁefi(mz—is)sl,

?(za? Zas salACXl’ Ua)|v=0)
1

X
&
o
P e
M-~
0
-]
+
-
LN
Y
B
P
o

Xexp{ - fd“z fwT e {m sy (z, 2, s]0,0)} Y(x, y, »]4%, u)| ,_0-

(2.21)

When neglecting polarization effects this expression takes an especially simple form:

G(x,y)= —ifowdvexp{ —i(m®—ig)v} X (expd; 1), ,- (2.22)
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Consider now expression (2.20) in detail. Suppose we know a complete set of
solutions of the eigenvalue problem.

T TR Y ()= Py (%), m(x)=id,—edT(x),  (2.23)

where { k } is a set of quantum numbers ({k } contains the quantum number p?). Let
us call such functions eigenfunctions. In the constant uniform field such functions
were first obtained in [12,13]. Suppose, further, that the eigenfunctions form a
complete orthonormalized system of functions with respect to the scalar product

(9.9) = [d*xp*(x)¥(x): (2.24)
(¥ k¥ (1)) = iy ay»
(%}‘P(k)(x)‘l”{k}(}’)=8(4)(x_)’)- (2.25)

(If the eigenvalues are discrete, then 8, (4, in (24) is Kronecker’s symbol and if
they are continuous, then 8, (4, is the §-function.) With the help of the eigenfunc-
tions one can construct the causal Green function of the Bose particle in the external
field 45 without radiative corrections:

‘P(k}(x)‘PTk)(Y)

G(O)(x’ yIAeXt) = Z 2 2 . (2'26)
{k} p—m + ie
which satisfies the equation
{wlf’“(x)'rre’""(x) —m? } GO(x, y|A™)=8®D(x—y). (2.27)

If we represent ( p? — m? + ie)~! in an exponential form, the Green function (2.26)
can be written as

GO(x, y|A™)= _i/(; dpeitm'—tew )) eipzp‘i'{k)(x)‘l’?k}()’) . (2.28)
{k}

On the other hand, the Green function G©@(x, y|4") can be obtained using
expression (2.8):

GO(x, y|A™) = —ifw dve "= ¥(x, y »|4%,0). (2.29)
0
Comparing (2.28) and (2.29) we have

f’(xa y,v|A™,0) = > eipzy‘[/(k}(x) \V{k)()’) . (2.30)
{k}
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Using (2.24) and (2.30) we obtain an important property of eigenfunctions:

fd"x d*y ¢‘fk)(x)?(X, Y, V|Am,0)4/(k')()’) = eip2"8(k},{k') . (2.31)

Let us represent the sources £*(x) and £(y) as a superposition of the eigenfunc-
tions

£*(x)= Z a:('k}‘l’?k)(x)’ §(x)= Z a{k)*l’{k}(x)-
{k} {k}

Then the expression for the generating functional Z[a*, a] (2.20) has the form

2 (1" "
Z[e*,a]l=1+ X o Z l:[a:(kkp)a(kl{}
n=1 (K1}ooo o { Rt r=1

* —i(m?—ig)y .
X—[o dv,e »( [ exp{ 3, 1A"1’n2 ,
ny,ny= % -

where

8
A(—)>> = [ d%;...d%,d%,...d%,
<< 8u kl""’k’l;ki k, f 1 yl y

n

‘ ) 9 ex|
X ]._I‘V{k,)(xl)A(E) Y(xps Yp> Vp|A t, up)!u=o¢(k;)(yp)-
/=1 r=1

(2.33)

Expression (2.32) allows one to find the representation of Green functions in the
basis of eigenfunctions.

3. Green functions in constant field

Consider the constant and uniform external field
A;’“(x) =— %FF,,x". (3.1)

As can be seen from above the calculation of the generating functional and the
Green functions reduces to the calculation of the functional integral (2.8), i.e. the
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function ¥(x, y,»|4%, u). In the constant field (1) the functional integral (2.8)
reduces to the gaussian one. The function Y(x, p, |4, u) was found in ref. [23]:

Y(x, p, »|A™, u) = [detch(eF¥)] ~/*
Xexp{ifj:dv’dv"w“(x, P27 )G, (v, v"; v)n°(x, p, V”)} ,
(3.2)
where
7,(x, p,v’) =p,+ 3eF, x"+}u,(v)
G(v',v";v)=8(v'—v") +eFexp{2eF(v' —v")} [s(v’ —»”") + th(eFr)]

1, v >»”
E(V’ - V”) = O’ p =p”7. (3.3)
_1’ p < p*

Thus, the integral over p, in (2.10) also reduces to the gaussian form and we find

s yorla®) = s expl ity = i(x =) L(7)(x=)

k)

sh(eFr)
In =" }K(x—y, viu),

—35p
L(»)=jeFcth(eFr),

K(x= o) = expl 3 [ 4580w ()G v, 75 ) (07)

, eFexp(eFv) (v
+%z(x—y)——sh(%(F;)—)f0 exp(—ZeFV')u(V’)dv’},
G(v',v";»)=G(¥',v";v) — Sh%:;’) exp{2eF(»"—v"”)}. (3.4)

Substituting expression (3.4) into (2.21) we find the quantum Green function of the
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scalar particle:

I 00
G(xs J’)= dv
oy
chp{—i(mz— ie)y+A1 1_fd4z fooil_s_e—i(m’-is)s i 2}
’ so 3 (47s)

=} r dS
* (1 + X - fd4zﬂ fm—l g itm’—ie)s,
=17 p=1 5o Sp

r r . r
Xexp{ Z Cla+ Z Ala,al} : ]._.[1
a=

(47)2r

h( eF: S, -
X exp {_%Spln i(e—s“l_*_ %lfj(; dS'dS"U:(S’)GFY(S',S";Sa)UZ(S")})

eF i
h( eF
Xexp{%iexFy— i(x—y)L(v)(x—y)—1%Spln s (:FV)
g ~ FeeFV
1; ’ YT Y g o Y{ 4 1: _ e
+ 4lf£ dv’ dv”ut(v')G, (v, v 0)u?(v”) + 3i(x = y) )
x fve_z“’”'u(v’)d”’} (3.5)
Y u=0

If we perform the substitution z,+ x =z, in the integral over z, in (3.5) it is not

difficult to see that the Green function G(x, y) has the following structure:

G(x,y)=-exp{}iexFy}G,(x—y), (3.6)

where G,(x —y) is a scalar function of the difference x —y and of the constant
tensor F. Hence it follows that G,(x — y) may depend only upon arguments of the
form (x — y)K(F ) x —y), where K(F) is an even function of the field.

The eigenfunctions of the problem (2.23) in the external field (3.1) can be found in
a covariant (see appendix) form:

"/(k)(x) = N(k)exp{ie¢(x) —ip;(n# x)—ip,(me x) _%Pz}

XH,(p)D,[we*], (3.7)
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where {k}={py, psn, pYw}, w=+1, n=0,1,2,...; the numbers p,, p,
are eigenvalues of the operators id/d(n_x) and id/d(m_x) respectively, »=
—3A 4N, A=[p?+ |e|H2n+ D]/ |e|&: &, H=[(F*+ Y2 F F]V/?;, %, F are
the invariants of the field (which we suppose are not zero), p = (|efJ0)/*((m, x)+
pa/eX), 1= (2e|&) /X (n,x)+ pi/eb), ¢(x)= — b(n.x)(n_x)
— 33 (m x)Ym_x), H,(p) are Hermite polynomials, D,[we'™ 1] are the para-
bolic cylinder functions, and n,, m are vectors which are solutions of the
equations

Fn =6bng, Fm = F3m, ni=+1,
m2i= -1, (n+n,)=(n+mi)=(n‘mi)=(m,m+)=0,
Ny = exp{3imv ) T(—»)(90/26) *(2ntVa )~/

Using the integral representation for the parabolic cylinder functions, one may show
that the eigenfunctions (3.7) form a complete orthonormal system of functions in the
sense of (2.24) and (2.25). Note that the following important property of eigenfunc-
tions (3.7) 1s valid:

fd4xd4y\l/?k)(x)exp{%iexFy - i(x—y)T(F)(x—y)} ‘I’(k')(J’) - B{k),{k’} .

(3.8)

Relation (3.8) permits us to prove that eigenfunctions (3.7) diagonalize not only the
Green function G©(x, y|4°), but also the quantum Green function G(x, y), eq.
(3.5). Indeed, suppose that the function G,(x —y) can be expanded as a Fourier
integral:

Gy (x—y)= fdkl...dk,f(kl,...k,)exp{—i(x—y) g‘, k,K,(F)(x —y)} :
(3.9)

Here / is the number of the independent structure matrices K(F) on which the
function G,(x — y) may depend. Then we have

[d*xd ¥, ()G (x, )by () = [dkey. .k, f (ks k)

de“xd“y ’{k)(X)exp{%iexFy—i(x—y) > k,»K,(F)(x—y)}tP(kq(y)~

j=1

(3.10)
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Choosing in (3.8) T(F)=X', K (F) we obtain

i= 1k )
fd4Xd4Y‘P?k)(x)G(X,Y)¢{k'}(Y) ~8ky (k) - (3.11)

Proceeding from this we can write

dp,dp,d
G(x,y)= Z Z/ e P; r’ ‘P{k}(x)G{k)\!’{k)()’)a (3.12)
w=+1n=0 2a

Gy = [dxd% ¥t ()G (x, )Y ) (7). (3.13)
Neglecting the polarization effects we obtain for G(x, y)

—i o« —i(m?—ieyw
G(k}= Zf dl’e ( ) <<epr1’1>>k,k. (3.14)

(4m)" "0

Let us rewrite the definition of the average ({ )}, , in a more convenient, for our
subsequent work, form:

<<A(%)>> fdxd“y k)(x)< ( u)>x,y‘p“"(y)' (3.15)

Relation (3.14) permits one to develop the modified perturbation theory for G4, .
To obtain the first order of the modified perturbation theory let us expand G, into
a series with respect to the radiative interaction. To within e? we have

Gy = ﬁfowd”e_amz_mj{u(”)(l + <<A1,1>>k,k/‘](k}(v))’

J(k}(”)=<<1>>k,k- (3.16)

According to [16,17,20] the first order of the modified perturbation theory consists
in the replacement

1+ <<A1,1>>k,k/-](k}(") - exP{<<A1,1>>k,k/J(k)(”)} -

Thus in the first order of the modified perturbation theory one has

<<epr1,1>>k,k = J{k)(”) CXP{ <<A1,1>>k,k/~]{k)(”)} ; (3.17)
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and for the Green functions in this approximation we obtain

GO, = “—;g—zf()”va{k}(p)exp{—i(mZ— ie)y + %} (3.18)

Substituting the solutions (3.7) into (3.16) and using expression (A.25) we find

Ty (#) = (477')2exp(l'p2p)gixj'{Kj (3.19)
Finally we have
e . . A1 1))k
GV, = — d { 2 _m?+ + —<< L1//k, } 3.20
& lfo vexp{ i( p>— m?+ ie)v N0 (3.20)

4. Calculation of ({4, >>; 4

Using the definition of ((A; ;) , from (3.15) we can write

LA e= fd4Xd4y‘V{k}(x)<Al,l>x,y‘p(k)(y)’ (4.1)
(Auadey= = Cres exp{ ety = (=2 L) (3 =)
. sh(eFr)
—1Spln " }Al,l(x—y,u), (4.2)
A (x—y,»)= fj;vdu’dv”a(x -y, v, v, v), (4.3)

a(x —y, v, v, v) = P“(V’)D'w(x(v’) —x(v”))P"(V")K(x —y,v|u) o>

(4.4)

where K(x — y, v|u) is determined by (3.4). To find (4.4) let us use the integral
representation of the photon Green function

D, (x(»)—x(»"))= f%l)w(k)exp{Zij:t(}\; v, v”)kaP"(}\)d?\} ,

t(A v, p)=0(A—v")—8(A—v'). (4.5)
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As a result we obtain

- d*k , 4
a(x—y,v,v",v)= f(-z?DM(k)exp{thk+2zqk}
T

X { —LiG" (v, v v) + [Kﬁfl"ﬁ(v’, v, v)+ (v, v)]
X[ka 2#‘1(’/,’ "'”’V)+f3”(plav)]}’ (46)

filv', v, v)= j:é(v", A v)e(A; v, v’)dA,

Ly, v, v)= fv(-;(v’, Asv)e(As v, v7)dh,
0

£, v)=3(x=y) sh(i?l;v) exp{eF(v—2v')}, (4.7)

e= ([ ANaN 1(As v, »)G (N, N5 0)e (X5, 97,
0

q=fvf3(7\,v)t(}\;u',u”)d?\.
0

The integrals over A and X in (4.7) are not difficult to calculate.

sh(eFs)sh[eF(» —s5)] S= [y —
eFsh(eFv) ’ ,

Q:

eFr

q=°41_l(x—y) sh(er)

»

[e—ZeFV’ _ e—ZeFV"]

fi(v', v, v)=Le(v' —v") + %(e_z“’F("'_”") - l)(e(v' —»”) + cth(eFr)),
Ly, v, v)=1e(» =)+ %(CZEF(”'_"")— 1)(6(1" — ") —cth(eFr)). (4.8)

To integrate expression (4.6) over K, it is convenient to use the representation



LA. Batalin et al. / QED in external constant field 451

(2.10), having rewritten it first in a more convenient form:

D,,(k)=Dj(k)+Dx(k),

0 .,
D (k) =g, (k?+ie) ' = —ig, [ e*idr,

—ity

DX(k) = —k,k,(d,=1) [~ re*dr. (4.9)

~ ity

In accordance with this procedure it is also convenient to represent expression (6) in
the form of two terms:

a(x—y, v, v, v)=a*(x—y, v, v, v)+aX(x—y, v, v",v). (4.10)
Then for a?(x — y,v’,»”,») and aX(x —y,»’,v”, v) we obtain, respectively,

al(x—y,v',v",v)= —i[— %ié;‘(v’, viv) + (v, ) f, (27, v)]

X foo Ide—ift8 (v, v, V)fz“”(v’, v, )

—itg

xf IaBdt—i(f{"’(v’,v",V)f3,L(V',V)

—ity

0 ) 7)) [ Ly, (4.11)

—ity

ax(x - ) vi,r", V) = _(dl— 1){[ - %iG-‘w(V,’ v, V) +f3ﬂ(V,s V)fSU(V”a V)]

X fw 1,,dt + £, v, ) [ (v, v, v)

—itg

oo
Xf A Iﬂmﬁdt+( v, v, ) fi(v',v)

—itg

) ) zwﬁdz} . (412)
o

4
Ly.a= [ QK o ko exp{ikAk + 2igk},
"7 (2m) '

A=E+1. ’ (4.13)
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All the integrals 1, , involved in (4.11) and (4.12) are expressed by means of the
integral I:

4
I=f d k4 exp(ikAk + 2igk) = 1 2(df:tA)_l/?‘exp(—iqA’lq),
(27) (47)

(4.14)
I=— (A7) 0,  Lg=[%A7+(A7%) (A7Yg)4]1,
Lag=—[51(A;2(A7Y) o+ A3 (ATY) .+ A4 (A ),
+(A7Yg), (A7) (A719)4] 1,
Tyap={ —H(AZAZ + AZAZ + 4,00.0)
+3i(A,H(A7'9) (A7) g+ A (A7), (A7)
+A(A79), (A7) + A7H(AG), (A7) + 453(A70)u(A 7).,
+AZH(A79), (A7), ) +(A7Yg), (A7), (A71g) (A7 g) 6 ) 1.
(4.15)

Substituting (4.15) into (4.11) and (4.12) we obtain after cumbersome calculations

a"(x—y,v’,v”,v)=(4w)_2f_°jt(detA)Vzexp{-—i(x—y)g-silz%;—p—)-(x—y)}
: se oy M
X{—218(s)+2 (x Y)shz(eFv)(x ¥)

+ %iSpA‘l(l + 4eth%s—)]—)} dt, (4.16)

aX(x=y,v, v v)= —i(4m) (d, = 1) [ 1(deta)”V?

— it

-1
A

W(“’)}

Xexp{—i(x—y)
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eFr ch[eF(v — 2s)]
sh*(eFv)

X {(4[)_18(s) +i27*(x —y)[A*2

+A!

2e%F%ch(2eFs) _A_11'4sh[eF(v 2s)]] -

sh’(eFr) sh®(eFv)

1Mis)l2

2743 (x - y)A = —iSpA~
=)Ao ()= 2o
- 2 -
LSp A_12chh[eF(v 2s)] _ g2 [eF(v — 25)] ar,
sh(eFv) shz(er)
(4.17)
r,=ch(2eFs)—1,  7,=2eFt+ sh(2eFs),
r, = sh(2eFs) + 2eFtch(2eFs), 7,= + 2eFtsh(2eFs),
n=mr +4eFtr,,  A=(2eF) (7~ mcth(eF»)). (4.18)

Note that @ and aX depend on »’ and »” only in the combination s = |»" —»"|.
Therefore, when integrating over »’ and »” in (4.3) one has

ff”dv'dv’qb(s) - 2[”(» —$)é(s)ds, (4.19)
0 0
where ¢(s) is an arbitrary function. Thus
Al‘l(x-—y,v)=ny(v—-s)a(x—y,v,s)ds. (4.20)
0

If in accordance with the breaking up of the photon function D,,(k) into the parts
(9) one represents analogously 4, ;(x —y,#) in the form of the sum of two terms,
then A¥,(x —y,») can be considerably simplified. For doing this note the identity

ar

2ig- = {(x y)A~2

(x—y)—iSpA~ 1M} )

h2( F ) sh(eFv)

(4.21)

Using this relation and integrating over s by parts, the expression for A¥(x — y,»)
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may be represented in the form
2
— oo df —
A (= y.0) = $i(am) (- 1) [ U [exp{ —i%} - 1}. (422) -
~ it

Finally we obtain

A (x =y, v)=iv(8t,) '+ %i(%)*zf”(p—s)dsj“ (detA) 2
0 —itg
TlA‘l

8 sh(eF») (x_y)}

Xexp{ —i(x—y)

X {(x —Y)A“ZE;(J;T)(X -y)

+4iSpA~!

1 +4eFt—Ch[Z§((:F_D)2S)] )}

. 2 o d¢ =2
+Li(4n) (d,—l)f‘ (e, (4.23)

— ity

Substitute now (4.23) into (4.1). The result of this substitution is written in the form
- X1 e o -1,2
KA k= { —i—wlg Je (L) + ﬁfo (v—s)ds filto(detA) a/é

'rlA‘1 )

af R
% [K Jk’k;“B(L-F 8sh’(eFr)

+4iSpA—1(1 + derShleF(r=25)] )

sh(eFv)
i, L+ —mA ¢ (d,-1)
koK 8sh?(eFr) 4o 7!
o dt 1 sh(eFr)\ 2
Xf_no t [Jk’k(L+ 4t)—Jk,k(L)]}(det — ) :

L

(4.24)
Sh*eFy
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where

T (@) = [d*xd*y gy, (x) exp{ diexFy — i(x = y) 2(F)(x =)} ¥y (),

(4.25)
T oap(2) = [d%xd% (x =) alx = y) gty ()
Xexp{ YiexFy —i(x —y)2(F)(x—y)} ¥y (). (4.26)

Differentiating (4.25) over 2°f one can find the connection between these two
integrals:

3, o (2)

YT (4.27)

Jk,k';aﬂ(9)=i

Making use of the integral representations for the parabolic cylinder functions and
Hermite polynomials [24], the integrals (4.25) can be calculated to give

‘Ik,k’(g) = (4w)2[det(16&'22 - eze)] —1/43"P{ _iPX(F)p}s(k},(k’) )

4Q — eF

_ -1
x(F)=(2eF) i g5,

(4.28)

and p, is a four-vector:

p.p*=p*  ppt=pi+pi,
pi=pPp=p*+e|X(2n+1), pl=pLlp=—|e|I(2n+1),

= (92 +6%) N (E2+g,3?), L,=(1*+6%) "(g.,6>-F2).

The integral J; ;. ,p(2) enters into (4.24) together with the matrix K=
A~ 2n/sh’*(eFp). Differentiating (4.29) over £2°f we obtain

2KQ

K
K4y ., (2)=4J, .. Q{ ———p—iSp———
k,k,a/?( ) k,k( ) P1692—e2F2p p16522—e2F2

} . (4.29)
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From (4.27) we have

%
iw (L) = (47’)26"‘”2"8{/(),“'}6611 SA?/

AL — 2\ 74
’ SSh (eFr) e’F?

=J, (L)(detA)l/z(d t2—L

xexp{ _IP\I/(S, t)P} ’

+
Y(s,1)=(2eF) 'In 221

="

2\ —1/4

1 T2
Jk,k'(L 4t ) =Ji, k(L)(det 402 FT;) exp{ —ipy(»,1)p}.

=y

/A
sherv)2
@) s
Note that J, ,(L)= Ji k(7 ) Substituting (4.29), (4.30) into (4.24) we get

KAL)k x LN S S i *
. Ko Tt - — — d M(s,t; , F ds
Iy () fr o 12’”fo(v ‘) sf~ito (560, 8)
+ 4 (d,—l)f [t%g(v,1; p, F)—1] dz
=b,(»;p,F), (4.31)

i . R
M(s,t;p,F)=g(s,t;p,F){p ——p+3iSp— 2},
TN 2T T

R = eF [2¢F1(3 — 2ch(2¢Fs)) + (1 — 8¢2F %?) sh(2eFs)] ,

-T2\ |7
g(s,t; p,F)= [det( T )] exp{ —ipy(s,t)p}. (4.32)

4e2F?

This expression diverges when r,— 0. Before proceeding to the renormalization
consider the case F= 0. In this limit

2(s+2t)2 + i }

M(s,t; p,0)=g(s,t; p,O){P 2s+1)?  Astr)

exp{ —ip’s*/(s+ t)}
(s+1)°

g(s,t;p,0)=
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Thus
<<Al 1>>E:; _ 3(! i S l'—_/ (V—S)de e—ipZSZ/(s+t)
J(k)(”) ‘ar 0

—ity

xpr 22 g, Lf”dsfw ey dr
(t+s) dmlo iy (145)

2

GRSV

—ity

e—ipzvz/(t+r)) _ 1) d:z
(t + v)

=b,(7; p), (4.33)

which coincides with the results of {20]. Consider the Green function
. © . 2 2 .
G{k}F 0——1.[0 dvexp{t(p - m +ze)v+b1(v;p)}. (4.34)

Let us separate the terms linear in » from b,(v; p) and rewrite (4.33) in the
following form:

bl(V’ p)= "i”Mo(P)'*'No(V’P)s (4.35)

where

My(p)= 2 Ly —f dsf M(s,t; p,0)dt,

—ity

NO(V,p)=i%‘/(;sdsfiiroM(s,t;p,O)dt+zy%fy dsf0 M(s,t; p,0)dt

o0
_ Ef dsfiitog(s,t;p,O)dt
« o drr, . -
+Z;(d,—1)f_”0 (v 15 p,0)-1]. (4.37)

Note that if we calculate the mass operator M,( p% m?) of a scalar particle in the e?
approximation and make the substitution m? — p? then we get just My( p):

Mo(P)'—'Ho(Pz,mz"Pz)- (4.38)

Therefore, the renormalization of My( p) may be performed in a standard way by

choosing the normalization point as p?=m?2 where m? is the experimental mass
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squared [20]. To do this let us represent M,( p) in the form

8M0(p)
sz 2

—
pr=me

MO(P)=M0(P2=m§)+(P2_mz) + M (p), (4.39)

where Myg(p) is the renormalized mass operator. Let us make in (4.34) the
substitution

v=2z,v, (4.40)
where z, is the renormalization constant of the wave function, and 8m? is the mass
renormalization

§m?=m?—m?. (4.41)
Then

Gl po= —izszdvexp{i(pZ_ mZ)(zy— 1) + idm’»
0

. . OMy(p)
—ivMy(p?=mZ)—iv —25=| - (p?-m)
y4 p2=mf
+i(p2—m§)v—ivMOR(p)+NO(v;p)}. (4.42)
The constants z, and 8m? are chosen from the conditions
dm?=M,( p>=m?), (4.43)
M,
z7,—1= __0_(217_) (4.44)
P |p-m
The integrals entering into (4.43) and (4.44) are casily calculated:
dm?= i—:_mg[(mﬁto)‘l+ 3 +1n(ym§t0)_1] , (4.45)
3a -1
2,—1= E[% +In(ym2,) 7], (4.46)

where v is Euler’s constant. The function Ny(», p), eq. (4.37), is equal to
[44 -1 [44
No(v,p)=— Edl ln(ymZtO) + E(:” —d,)In(mZv)+a(v, p)

a(v,p)—0, v 00, » (4.47)
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The diverging term —(a/47)d, In(ymZt,) ™" should also be related to the z, factor:
. @ -1
3, = zzexp( — In(ym2t,) ) i
In the ¢? approximation we have
~ a -1
-1= - [ - din(ym2,) " +11]. (4.48)

Let us return now to expression (4.31) and rewrite b,(», p, F) in the following
form:

Y JPPS B SN e = .
b,(v,p,F)= ity i fodsf M(s,t; p, F)dt

v
2m —ity

. o [es] oC .
+N0(V,p)+N(v,p,F)+zﬁva dsj(; M(s,t; p, F)dut,

(4.49)
. o v oo .
N(v,p,F)—-zzwj;sdsj(; My (s,t; p, F)dt
+i(d —1)f°°t[g(v t;p,F)—g(v,t; p,0)] ds
477 I o sdy Py sty Fo s
M (s, t;p, F)=M(s,t; p, F)—M(s,1; p,0), (4.50)

where Ny(», p) is determined by (4.37). In the last term in (4.49) and (4.50) we have
put the lower proper-time-integration limit equal to zero everywhere; on removing
the regularization they are finite. One can verify this fact by expanding the integrals
into power series with respect to the field and calculating the corresponding
integrals. Consider the first two terms in (4.49) linear in ». Let us write M(s, t; p, F)
in the form

M(s,1; p. F) = M(s,1; p* = m2,0) +  p2 — m2) 2 (5:£.2.0)

+Mg(s,t;p, F),

2
MR(s,t;p,F)=M(s,t;p,F)—exp(—im2 a )

‘t+s
2 2
—3f G(s+26)° | .28
X(t+s) {m°—2(s+t) +i ) —expy —ime——
2 2
+1)+1 -
(S—tt%s——imzsz(s+2t)2(s+t) 2}. (4.51)

Then the integrals over s and ¢ in Mg(s,¢; p, F) are finite when 7, — 0 and we
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obtain for b,(»; p, F)
b (v; p, F)= —ivdm?—i( p>— m?)(z,— 1)v — ivMg(p, F)

.a 00 0 .
+12ﬂ_vj; dsf0 M(s,t; p, F)ds
v 0

+i;—ﬂ./(;sdsj; Mg (s,t; p, F)dt

o oQ
+No(v, p) + 1= (d=1) [ 1ga(v,1;p, F)dt,  (452)

0
a o0 [ ]
MR(P,F)':E./(; dsj; MR(S’t;p7F)dts

gr(s,t; p, F)=g(s,t; p, F)—g(s,t; p,0), (4.53)

where 8m? and z,— 1 are determined by (4.43) and (4.44). Thus we see that the
procedure of renormalization in the presence of a constant field is the same as in the
vacuum (F =0) and the constants of renormalization do not depend upon the
external field.

If we write the Green function G{}, in the form

Gy = ~i[ dvexp(i(p>—m?+ie)r+b,(v, p, F)}, (4.54)
4]

and make the change of variables » = z,»’ and the mass renormalization m?*=

m?2 — 8m?, we obtain
G((}c)} = ZZG{(}c))R ’ (4.55)

where G, is the renormalized Green function
GAr= —ifooodvexp{i(pz—m§+ ie)v+bip(v,p, F)}, (4.56)
bir (v, p, F)= —ivMg(p, F)+ Ng(»,p, F)
+i-2a;vj;wdsf0wM(s,t; p, F)di,
Ng(v,p,F)=N(v,p,F)+Ng(7, p),
Now (7, p) = No(v, p) + 3-dyIn(ymig) . (4.57)

Note that if we calculate the mass operator in a constant field in the e?
approximation and write it in the form

M(p,F)=/Ooodsfi]\?(s,t;p,F,mz)dt, (4.58)
ity

then the function M(s, t; p, F), eq. (4.32), is connected with M(s, t; p, F,m?) in the
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following way:
M(s,t; p, F)=M(s,t; p, F,m> > p?). (4.59)

Then our result for M(s, t; p, F) coincides with that of ref. [8), i.e. M(s,1; p, F)is
the kernel of the mass operator in the e? approximation. :

To find the infrared asymptotics of the Green function one should calculate the
asymptotic behaviour of b,z(»; p, F) when » — co. The terms linear in » contribute
to the position of the pole of the Green function. From (4.57) and (4.54) we see that
the pole of the Green function is at the point ’

pi—mi—-My(p,F)=0. (4.60)

In the vacuum there occurs, besides, the enhancement of the pole near the point
p?=m2[16,17,20] owing to the fact that the function Nyz(»; p) behaves logarithmi-
cally when » — o0, i.e.

Plin:oNOR(v,p) ~ %(3 —d)Inmlv.

Let us find the asymptotic behaviour of Ni(»; p, F) when » — . To do so we shall
act in the following way: when » — oo we write

N ;p, F
Ni(v; p, F)= Na(rip, F) Inm?y
In(m2v)
= f(p,F)in(mlv),
V>0
NR(V’p’F)=N(V’p’F)+N0R(V’p)’ (461)
where
IN(v;p, F
F(p.F)= tim y22PF) (4.62)
y— o0 aV

Substituting expressions (4.57) and (4.50) into (4.62) we obtain
% NN .
f(p,F)= V]irrolo{tzﬂv j; M(»,t; p, F)d:t

a

+E(d,—1)vj; tag(v,t;p,F)/avdt}. (4.63)
Thus, the Green function G}, near the point p*> — mZ — Mg(p, F)=0 has the form

—(+f(p, F)
Gy~ [p? = m2=Mu(p, F)] "7, (4.64)
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If =0 then
[44
f(P’O)“E;(:"_dI)’ (465)

and we obtain the well-known results [16,20]. If F+# 0, the function f(p, F)
depends upon the parameters p?, x = —(eFp)>m~° and the invariants & and 6. As’
the function f( p, F) is linear in the constant «a it is necessary to substitute p> — m?
near the pole (4.60), so as to remain within the accuracy.

Consider the crossed field (5= §=0). In this case f(p, F) depends upon one
parameter x and we have

o

27

o .
‘1‘2—;(294'61’,), x>1

(3_d1)s X<<1

f(p, F)= (4.66)

For constant magnetic field (8 =0,%<0) if —%/m%? <« 1, x> —%/m*?, the
results of the calculations for the functio?lcoincide with those for the crossed field.

(rF)
Appendix

Here we find the eigenfunctions of Klein-Gordon’s equation in a constant and
uniform external field A;"‘(x) = - %I';”x". These functions satisfy the equations

W:Xt(x)wexw(x)\p{k)(x)=P2'~P{k)(x)- (A1)
Consider isotropic orthogonal eigenvectors of the tensor £,

— =y _ _ = v__ :
F n"=bn,, E,n"=—bn,, E, m"=iXm,,

py 124

E @ =—iYm,, 6 3=[(F2+8)"75]"". (A2)

39

The vectors (A.2) are normalized by the conditions (nn)= —(mm)=2. If we
introduce the vectors n = 3(n+n), m,= 3(m+m), m_= 5i(m — m) satisfying
the equations

Fn,=bngz, Fm = F¥mz, n’=+1,
mi=-1, (n,n_)=(n,m,)=(nm_)=(m_m,)=0,

the tensor F,, and the field A5"(x) can be represented in the form

F;w=6(n—yn+v—n+yn—v)+3C(m—pm+v_m+p,m—v » (A’3)
AT(x) = —%(‘5[n_ﬁ(n+x) —n_,_“(n_x)] - %‘}C[m_”(erx)—m“(m,x)] .

(A4)
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Let us perform the gauge transformation of the potential
A (x)=A7(x) +9,0(x),
$(x)= —16(n,x)(n_x)— 13 (m, x)(m_x). (A5)
This transformation is due to the fact that in terms of the potential A;f’“(x) it is

possible to separate the variables in eq. (A.1). If we transform the functions in
accord with the gauge transformation (4.5)

¥y (x) = explied (x)) ¥4, (%), (A.6)
then the functions §/,,(x) satisfy the equations
W,:em(x)'”'exw(x)‘!/(k)(x) =P2‘V{k}(x)’
w‘{e’“(x) =id,—ed;™(x). (A7)

Substitute (A.S) into (A.7). Then we have

32 . (9 2 82
[_ 3(n+x)2 (l a(nix) +65(n+x) + —3(m+x)2
_(ia(;j_x) +‘3‘3‘3(”’#‘)) Vi (x)=p(x).  (A8)

Carrying out the separation of the variables in (A.8) we obtain
\V(k)(x) = N(k}exP{ —ipy(n_x)—ip,(m_x)— %PZ}Hn(P)Dy[wei(ﬂ/A)”'] ’
p=e130)"[(m. x) +py/eX].  7=(2[e]6)*[(n,x)+p,/eE],

_ [+ 1e1%@n + )]
le|& ’

v=—3(1+iA), A

(A.9)

H,(p) are the Hermite polynomials, D,[we'™*1] are the parabolic cylinder func-
tions, p; and p, are eigenvalues of the operator integrals of motion /d/d(r_x) and
id/9d(m_x), respectively, N,y is a normalizing factor. Let us verify that for the
functions (A.9) the orthogonality condition (2.24) does take place and find in this
way the normalizing factor. Using the orthogonality condition of the Hermite
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functions we have

2 -1/2
(‘P(k},‘xb(k’))=N(=';c)N(k')(2W) (2¢*63C) /
x2"nWr 8, .8(p,—p1)8(po—p3)T, (A.10)
+ oo . 3 B
T= [ " drD,.[we™ /1] D, [we"/r]. (A.11)

To calculate the integral T let us make use of the integral representation for the
parabolic cylinder functions [24]:

D,Jwe/Pr]=T"Y(—v)exp{ — simv — %i'r2}foot_"_lcxp{ —Yit* —irr } dt.
0

(A.12)

As a result we obtain
T= 2|e|8(2w)2[F(—v)F(—v*)] _1exp{%iw(u* -v)}8, ,8(p2—p%).
(A.13)

If the normalizing factor Ny, is equal to
N =) ) e War )2 (=v)eim/® (A.14)
(k)—('n') 26 (2" v)e , .

the functions (A.9) are normalized by condition (2.24). Let us show that the
functions (A.9) form a complete set in the sense of (2.25):

i Z dPldpzdP2

n=0 w=+1 (2.,,)4 ‘P(k}(x)‘l’?k)(y)
1/2
= (%) fdpldpzexp{ —ip\(n_z)—ip,(m_z)}
x X ”n(P)v,.(P’)f+wJpzdp2, (A.15)
n=0 — 00
z=-—x+y,

= e/ 90— T(=*) L D,[0e ™ r]D,.[we /9],

w=+1
ve=—p—1, 1 =(20e|6)*[(n+y)+peE], (A.16)

o = [le|] ) ?[(m,y) +po/eX],
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where v,(p) = (2"nWr )~ ?exp(— 1p*)H,(p) are the Hermite functions. Let us find
[*®J,2dp? To do this let us use the identity I'(—»)I(=»*)= —=/sin(mv) and
introduce the new variable » = — 3 — Li[ p* + |e|I((2n + 1)]/|e|&. Then

—-1/2+i00

+ oo
f T.dp?=+i2|e|6 J,dp, (A.17)
— Q0

—1/2—ioc

sim(v + 3 . .
J,,=7rexP{2,m(V ) Y Dlwe ™D, [we /). (A18)
sin(7v) i1

The integral over » is calculated with the help of the Cherry formula [24]

i ei(w/Z)(v+ 1/2) ) »
fc .IOO—W Z D,,[we'("/“)T]D_,,,l[we z(1r/4),r/]Av
¢— 100 w=+1

= —dnid(r—1'), —1<Rec<0. (A.19)
Thus, choosing ¢ = — § in (17) we obtain
f+°°J dp?= —(2]e|86)*(27)’8(n,z) (A.20)
. p? P + . .

We see that this expression does not depend on the quantum numbers. Therefore
one may integrate over p, and sum over n in (A.15) using the condition of
completeness of the Hermite functions:

iov,,(p)vn(p')=a(p—p')=(lelsc)*‘/za(mz). (A21)

After integrating over p; we obtain the condition of completeness (2.25):

T by (¥ (1) =89(x-y). (A22)
(&}
To calculate the integral

Jk,k'(9)= /d"’xd“yxp’{k}(x)exp{%iexFy—izQ(F)z}x[/(k,}(y), (A23)

which occurs when calculating ({4 1)), ;> let us use the method of refs. [12,13].
Using this method we obtain

Jk,k’(ﬂ) = (41r)2[det(16{22 - eZFZ)] _1/4CXP{ _iPX(F)P}a{k).{k'}’

40 — eF

_ —1
x(F)=(26F) 'Ingo k.

(A.24)
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Proceeding from this expression we shall calculate the integral occurring in (2.24):
3J, o (2)

Jk k’; aB(‘Q)_ a0 28

=i, ()

x = {—ipx(F)p— iSpIn(16@* — e’F*)} . (A25)

Let () be an arbitrary function of £ which can be expanded as a series in £:

[+ 0] l (n R
; 5702,
Let us find the derivative of ¥ ¥,,(§2) with respect to Q8
0% (Q) ® q n—1
AN g(m k on—k-1
0 ZE) —F(0) kgo Qf 28kt (A.26)
Here we make use of the relation
aer n—1
laid k on—k-1
—_— = 0 2 . A.27
39,,/3 kg() pa®“ By ( )

Expression (A.25) contains derivatives of two types: dp%(2)p/32*f and
ISpF(RQ)/ a2k, Using (A.26) we have

SpF(2) = .(%),

3&2"3
2 F0) ok (onok-t
,,,,p F(Q)p= Y —— X (p2") (2" 'p)s. (A.28)
a2 a=1 ™ k=0 .

But the expressions (A.28) are included in (3.24) together with the factor K=
A~2q/sh?(eFr). Then we obtain finally from (A.28)

Kb SpF(2)=Sp|KF'(Q)],
2 5p5(2) = Sp[ K5(9)
KB aﬂaﬁp@(ﬂ)p =pF'(2)Kp. (A.29)
Using relations (A.29) we have
" K . 2 252
KBy 1r;ap(2) =4, 1 (R) PWP—ISP@KQ)/(MQ —e’F?)|.

(A.30)



LA. Batalin et al. / QED in external constant field 467

Substituting the expressions

AT

Q(F)=L(»), Q(F)=L(V)+W,

1
instead of 2(F) into (A.24) we obtain the relations (3.30).
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