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For theories with noncanonical commutation relations, the generating functional
(S-matrix) is constructed at a formal level, as a Hamiltonian path integral.

Introduction

When quantizing dynamical systems within the Hamiltonian formalism, it is
usnally assumed that the phase variables satisfy, at equal times, the canonical
commutation relations. Bearing in mind that the parametrization of the phase
space is rather arbitrary, we must note that this method depends on a choice of
the special class of canonical coordinates. A natural step towards achieving a
completely coordinate-reparametrization invariant version of the Hamiltonian
formalism would be to consider the most general commutation relations,
subjected to the only restriction that they should be selfconsistent. Simul-
taneously, an interesting possibility would appear to extend the main results, to
be gained in the process, onto the phase space with nonzero inner curvature.

In the present paper, we are going to obtain a formal expression for the
generating functional, or the S-matrix, as a reparametrization-invariant path
integral in the phase space for non-degenerate theories with noncanonical
commutation relations of the most general type.

Unfortunately, our way of derivation of the final result is in this paper of a
rather intuitive character and is not, to this extent, completely satisfactorily
viewed upon from the point of the genuine operator approach. We will start from
the classical description with the Poisson bracket defined using an arbitrary
simplectic metric, and construct the classical action producing correct Hamilton-
ian equations of motion. Next we will construct an invariant analog of the
canonical Liouville measure to be used, finally, for defining the path integral.

It is true that our results require, in principle, a farther justification to be given
in the next publication within the framework of consistent operator quantization.
Nevertheless, the expression obtained in this paper for the generating functional
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(the S-matrix) can well be used in the field theory in its present form if interbred
with the usual rules of invariant regularization. In this sense, the status of our
result is the same as that of Refs. 1-5 as well as of that of every paper exploiting
the Hamiltonian path integral as a primary means to solving the quantization
problem. . '

1. Classical Action

In what follows, only the pure Bose case will be considered, for simplicity. At
the final step, we shall point out the necessary modification of the result necessary
to account for the fermion degree of freedom, if present.

Let there be a dynamical system with N degrees of freedom, described by the
original Hamiltonian

H = H(), (L.1)
given as a function of 2N Bose variables
1+ A4=1,..,2N. (1.2)

Define, for any two functions X(I') and Y (I') of the phase variables (1.2), the
Poisson bracket

{X,Y}=@0,X)0**(3,Y) (1.3)

with the antisymmetric tensor field

0**() = —o™(D) (1.4)
defining the simplectic metric, so that

T, T} = 0**(D). (1.5)
The requirement that the Jacobi relation for the bracket (1.3) should be obeyed
irrespective of the functions involved imposes the following basic condition on
the metric

w*?d, w5 + cycle (4, B, C) = 0. (1.6)

Assuming that the metric is nondegenerate, let us define its covariant compon-
ents, w,p, as elements of the matrix, inverse to (1.4)

W,y = 5§. (1.7)
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Then, from (1.6) one has
d,wpc+cycle(4, B, C) = 0. (1.8)
This locally implies the represgntation
Wap = 8,Vp— 085V}, (1.9)

with V, being a covariant vector field.
The metric (1.4) allows us to define the fields of a contravariant reper hZ(I")
and its inverse covariant reper A%(I")

o' = hiw@h}, = hiwQhs, (1.10)
hihg = 8%, hihi=0%  oQol =45, (1.11)

Henceforth, the small Roman indices run the 2N-dimensional tangent phase
space with the constant canonical metric @@, and its inverse .
The reper field, in its turn, defines in a natural way the connection of absolute
parallelism
A2, =h2a.h4, (1.12)
together with the corresponding covariant derivatives
VeV=0cV,— A2 Vy, VVA=9aVA+AL, (1.13)
Covariant derivatives of the reper fields are evidently zero

Vch; = 0, Vch: = 0. (1.14)

The Riemann curvature corresponding to the connection (1.12) is identically
Zero

aDA;C_aBA$C+AgEA§C_A$EAZE)CE 0, (1.15)

so that the parallel transport corresponding to (1.12) is integrable.
On the other hand, the commutator of the covariant derivatives (1.13)

[Vi, Vsl = —A5V,, (1.16)

determines the curvature of remote parallelism
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AG=AG—A%,. (1.17)

The tensor field (1.17) satisfies identically the relations
(V.ABc— AZeASc) +cycle (4, B,C)=0 (1.18)

that guarantee the compatability of Eqgs. (1.16).
Besides, relation (1.8) imposes the condition

w,pA 2.+ cycle (4, B,C) = 0, (1.19)

on the curvature (1.17).

Relations (1.6)—(1.19) cover the main facts of the geometry of absolute
parallelism, associated with noncanonical commutation relations (1.5) at the
classical level.

Let us come back to our dynamical system described by the Hamiltonian (1.1)
and postulate the standard Hamiltonian equations of motion with the Poisson
bracket (1.3) for it

I = {4, H} = o(D)dH(). (1.20)

The dot designates the time-derivative.
As the next step, we are going to find the action .S to which the trajectory (1.20)
would provide the unconditioned extremum

oS

e @D~ 8,H(D). (1.21)

First of all, one should verify the fulfillment of the integrability condition

s B 828
ST2()oTA(t)  oTA()eT2(t)

(1.22)

After directly calculating the functional derivative of (1.21) with respect to
I'2(t"), one gets ’

é*s

STP(2)aT (1) = (30T — 330, H)6(t — ')+ @b (1= 1'). (1.23)

The part of (1.23) antisymmetric under the permutation (4, £) — (B, ") disappears
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in virtue of (1.8)
- (aAchj+ anA;aDwCA)fca(t - t') = O, (1.24)

so that the integrability condition (1.22) is evidently fulfilled.
Let us now write (1.21) as an equation in variations

38 = f (6THwz(DIE—6H)dt. (1.25)

After making the substitution I' — AI', with A a parameter, and choosing the
special form of the variation

SAT* =T*dA, (1.26)

we get the differential equation with 1 being an independent variable
d A B
H(S+ Hdt) =2 | IMw,(ADIMdt. (1.27)
This is integrated to
S= f (M@ M —HD)dt, (1.28)
where the designation
1
@)= f w5 (AD)AdA (1.29)
0
is used. Note in passing that the function (1.29) satisfies the equation

T0c+2)Bp = wyp. ‘ (1.30)

Besides, it follows from (1.9) that the function (1.29) may be locally presented
as

‘I-’AB=3AVB“3BVA, (1.31)

where the functions

AGE f‘ ViADda ‘ (1.32)
0
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obey the equation
T2+ )V, =V, (1.33)

Finally, it follows from (1.31) that the action (1.28) locally admits the representa-
tion

S =W — W)+ f (v,.I"— H)dt, (1.34)

where W designates
w(@D=7,Or, (1.35)
while I'; and Iy, are the initial and final points of the trajectory, respectively.

We conclude this section by the remark that, in accordance with (1.21), the
canonical transformation generated by G(I")

o4 = (I, G} = w*®(13,G(I) (1.36)

results in the usual dectrement of the action (1.28)
oS = G(r(i))— G(r(f))_ J‘{H, G}dt (1.37)

2. Invariant Measure and Path Integral

" Our further aim is to construct an invariant analog of the Liouville measure

pr=[][]dre. 2.1)

To this end, consider the variation of the Liouville measure (2.1) under the
canonical transformation (1.36) '

6DI" = (J-1)DI' (2.2)
where J is the Jacobian of the transformation

J—1 = 6Y(0) f 3,6T4dt = 6™(0) f (3,0")3,Gd. (2.3)

Let us transform the integrand in succession and exploit relation (1.8)
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(aAw‘w)GBG = - wAC(aAwCD)wDBagG

1
= 'z'wAC(aA Wcp— Oy p)0°%3,G
1
= _2'(0AC(6A Wpce + achD)wDBaBG
1
= — EwAC(aD we)wP2a,G

1
= — —2-(6,,1ndet w)w”?3,G

1 1
3 {Indet w, G} = —J[Eln det w] . (2.9)

The quantity w without indices under the determinant symbol denotes just the
matrix w,; with the lower indices, as it is defined in (1.7).
After substituting (2.4) into (2.3), we see from (2.2) that the measure

1
du @)= exp{i 5("(0)fln det wdt}DF 2.5)

is exactly invariant under the canonical transformations (1.36). Moreover, the
tensorial nature of the field w,;guarantees the invariance of this measure under
an arbitrary reparametrization of the phase space variables I'. We conclude that
the measure (2.5) is just the invariant analog of the standard Liouville measure
sought for.

Using the action (1.28) found above and the measure (2.5), we can now define
the expression for the generating functional in the form of the following path inte-
gral in the phase space of the system

Z= jcxp{%[S+fJAFAdt]}du(ﬂ

= f exp{% f [1” fo lco,,,(/ll")ldzlf"—H(l")

1
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Here J,(t) denote components of an external source and, besides, an integration
over the auxiliary Fermi variables C#(¢) is defined with regards to the Gauss par-
ametrization '
1 i
(Det @)% = exp{ié‘”(O)fln detw dt} = fcxp {%fwMCBC‘dt} DC.
2.7

The external source J, in (2.6) is introduced, as usual, directly to the phase
variables I' so that the reparametrization invariance in (2.6) only occurs on the
mass shell. There exists, however, a simple way to define a source (I°) of
manifestly reparametrization-invariant variables, namely, of local components
of a virtual external force

3
or

B, = h;

= 0O —h49,H (2.8)

which corresponds to the change of the last term in the exponent in (2.6)
according to

JIt—>I"E, / (2.9)

Moreover, the variables (2.8) are most adequate as far as the calculation of the
path integral using the stationary phase method is concerned, since the mass shell
Z = 0 corresponds directly to the classical extremal, while the stationary phase
method deals in fact with expansion of the integral in powers of E. In view of the
abovesaid, it is reasonable to use the components (2.8) as invariant integration
variables instead of the original variables (1.2). Passing formally to the new
variables in (2.6), one finds after the change (2.9)

- . 1 a
zZ= f exp{é f [(r‘ f wA,(Al")).d}.—Hwﬁ}}h;‘A’;Dh{,’dJ")f""
0

+ [JwQd*— HIO) - Hhﬁ(vBVAH)hw+I"Ea]dt}DEDHD<D,
(2.10)

where I' is related to Z by the equation

w(DI*—8,HI) = h5DE,. (2.11)
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In the course of transition to the new variables (2.8), the Jacobian cancels out the
local measure (2.7), and, in its place, a nonlocal determinant arises, effectively
presented in (2.10) by the integral over the auxiliary Bose variables IT and ®.

The invariant variables analogous to (2.8), but in the configuration space, were
used before in our works®’ for getting an invariant functional formulation of
nonlinear chiral dynamics. -

Note also that within the present formalism, we have at our disposal a
connection (1.12) and covariant derivatives (1.13), so that we might write the
equations

AT,V e?(, ") = *(, ") ([, = 0, (2.12)

and define an effective action, considering an external source to g, as was
suggested in Refs. 8 and 9. We shall not, however, go into the details of such a
construction here.

To summarize our main result in this section is the generating functional, Eq.
(2.6) or Eq. (2.10). Both these expressions relate to the pure Bose case. We are
going now to point out the modifications necessary to cover the supercase, when
Bose and Fermi degrees of freedom are both present, as applied to Eq. (2.6), the
simpler one of the two expressions.

First of all, the phase variables (1.2) in the case of mixed statistics bear the
Grassmann parity

eT=¢,. (2.13)

The definition (1.3) of the Poisson bracket is now extended to

(X, Y}=X3 ,0"d , Y, (1.3a)
where 3 (?) is the right (left) derivative.
The metric w*” is reversible even matrix subject to the generalized antisym-
metry property

S(CUAB) =g, 1 &, o= - = (- l)cAeB' (1.42)

Relation (1.5) retains its form in terms of the brackets (1.3a).
The key condition (1.6) is now written as

0P8, (— 1) + cycle (4, B, C) = 0. '(1.6a)

The matrix w,; supplied with subscripts, inverse to the super-scripted matrix
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w*? is again defined by Eq. (1.7).
Rglation (1.8) and its local consequence are now extended to

8, 0pc(— 1)+ cycle (4, B,C) = 0, (1.8a)
Wap = 0, Vg+ 35V, (—1) T+, (1.92)

Now that these facts, basic for the supercase, are listed, we shall point an accurate
interpretation of Eq. (2.6).

First, the statistics of the sources J, coincides for each “A” with that of the cor-
responding I"*

e(J) = ¢,. (2.14)

Second, the statistics of the auxiliary fields C*is at each “A” opposite to that of
the corresponding I'*

e(CH=¢,+1. (2.15)

Then Eq. (2.6) is literally valid provided that the matrix w,; obeys (1.5) and
(1.8a).

3. Conclusion

As stated above, the most interesting aspect of the noncanonicity of commuta-
tion relations is due to the possibility of considering a curved phase space. Once
the curvature is here, one cannot define canonical coordinates in a finite region,
which drastically complicates the operational quantization. These difficulties
can, probably, be overcome appearing to the compensatory mechanism, like the
one used by us in the operational quantization of dynamical systems subject to
second-class constraints.!%!2 A possible alternative may be an efficient use of the
theory of symbols. For special systems with curved phase spaces (e.g., the
Lobachevskii plane, sphere, Gross-Neveu-like models), the most essential results
were, to the best of our knowledge, achieved by F. A. Berezin'® just within the
theory of symbols. We are going to come back to these problems elsewhere.
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