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Abstract

A review of recent developments in conformal quantum field theory in D-dimensional space is presented. The
conformally invariant solution of the Ward identities is studied. We demonstrate the existence of D-dimensional
analogues of primary and secondary fields, the central charge, and the null vectors. The Hilbert space is shown to possess
a specific model-independent structure defined by the § (D + 1)XD + 2)-dimensional symmetry and the Ward identities. In
particular, there exists a sector H of the Hilbert space related to an infinite family of “secondary” fields which are
generated by the currents and the encrgy-momentum tensor. The general solution of the Ward identities in D > 2
defining the sector H necessarily includes the contribution of the gauge fields. We derive the conditions which single out
the conformal theories of a direct (non-gauge) interaction.

We examine the class of models satisfying these conditions. It is shown that the Green functions of the current and the
energy-momentum tensor in these models are uniquely determined by the Ward identitics for any D = 2. The anomalous
Ward identities containing contributions of c-number and operator analogues of the central charge, are discussed. Closed
sets of expressions for the Green functions of secondary ficlds are obtained in D-dimensional space.

A family of exactly solvable conformal models in D > 2 is constructed. Each model is defined by the requirement of
vanishing of a certain field @, s = 1,2.... The fields O, are constructed as definite superpositions of secondary fields. After
that, one requires each field Q, to be primary. The latter is possible for specific values of scale dimensions of fundamental
fields (a D-dimensional analogue of the Kac formula). The states Q0> are analogous to null vectors. One can derive
closed sets of differential equations for higher Green functions in each of the models. These results are demonstrated on
examples of several exactly solvable models in D > 2.

The approach developed here is based on the finite-dimensional conformal symmetry for any D > 2. However the
family of models under consideration does have the structure identical to that of two-dimensional conformal theories.
This analogy is discussed in detail. It is shown that when D = 2, the above family coincides with the well-known family of
models based on infinite-dimensional conformal symmetry. The analysis of this phenomenon indicates the possibility of
existence of D-dimensional analogue of the Virasoro algebra. © 1998 Elsevier Science B.V. All rights reserved.

PACS: 11.25.Hf

Keywords: High-energy physics; Conformal field theory
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1. Introduction
1.1. Preliminary remarks

The present review describes a family of exactly solvable models of quantum field theory in
D-dimensional space. The studies of conformal models by the authors was initiated as far back as
1970s [1,2] and approached its essential developments in the recent works [3-6].

The conformal symmetry is usually treated as a non-perturbative effect pertinent to the
description of physical phenomena in the asymptotic region. Any dimensional parameters entering
the bare Hamiltonian are supposed to be immaterial in this region. Regardless of the specific
character of physical phenomena under discussion (the critical behaviour of statistical systems, late
turbulence or interactions of elementary particles, etc.), the systems in this region may exhibit
certain fundamental properties which are independent on the structure of the initial Hamiltonian.

Adopting this hypothesis, the following formulation of the problem becomes natural: one aims to
find a set of axiomatic principles which would completely fix the effective interaction in the
asymptotic region. It is straightforward to expect the result to be independent of the choice of initial
Hamiltonian. Formulated in such manner, the problem has been repeatedly discussed both by
physicists and mathematicians. As the most popular candidates to the role of the above principles,
the field algebra hypothesis and the hypothesis of the scale and conformal symmetry were
considered (see, for example, [7-11]). In the works [1,2,12] we have studied additional restrictions
which follow from generalized Ward—Fradkin-Takakhashi identities [13,64], provided that’the
latter are completed by the requirement of conformal symmetry. As a result, a closed set of
conditions defining a family of exactly solvable models in D-dimensional space was formulated.
Each model is determined [3,6] by a certain condition on the states generated by the currents and
the energy-momentum tensor. These states are analogous to the null-vectors of two-dimensional
conformal theories. This fact was first demonstrated on the example of the Thirring model in late
seventies, see Refs. [2,14]. A complete and detailed solution of several aspects of this approach was
given in the book [15] as well as in the works [5,6].

When concerning exactly solvable models, we imply the following feature: one may derive
a closed set of differential equations for any higher Green function. In addition one can deduce
algebraic equations for scale dimensions of fields and massless parameters analogous to the central
charge.

An important approach to obtain exactly solvable models in two-dimensional space was
developed in the works [16-19]. However, the case of D = 2 is exceptional since the conformal
group of two-dimensional space is infinite dimensional. The method developed in Refs. [16-19]
does not allow a straightforward generalization until the proper D-dimensional analogue of the
Virasoro algebra is found. What is essential in our approach is that the 4D + 1)(D + 2)-dimen-
sional conformal symmetry is assumed in the space of any dimension D. For the case of D = 2 this
symmetry is 6-parametric. Its generators

LO: Li, EO} Ei (]'])
compose the algebra of the group

SL(2, R) x SL(2, R) (1.2)
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which is the maximal finite-dimensional subalgebra of the Virasoro algebra. However, all the
conformal models found in the works [16—-19] may be derived in the framework of our approach
(see Section 4). Note that the form of the Ward identities for the Green functions of the en-
ergy-momentum tensor is prescribed by the symmetry under the group (1.2). The Ward identities
include the complete information on the commutators between the components of the en-
ergy-momentum tensor, as well as between these components and other fields. Thus, in the
approach based on the symmetry (1.2) and the Ward identities for D = 2, the infinite-dimensional
symmetry arises as an auxiliary result which is not presumed initially: adopting the formulation
described here to the case of D = 2 implies one to act as if an infinite-dimensional symmetry were
unknown.

A similar situation is likely to be realized in the case D > 2 as well. The structure of D-
dimensional models discussed below is analogous to the structure of two-dimensional conformal
models. We shall demonstrate the existence of certain analogues of primary and secondary fields,
the central charge and the null vectors. Moreover, we shall show that each of the models possesses
an infinite set of self-consistency conditions which provides the analogy with conformal symmetry
of two-dimensional models. Hence, one can expect that a definite analogue of the Virasoro algebra
should exist in D-dimensional space, the realization of the very analogue being observed in the
above models.

The principal difference between the conformal models in D > 3 and two-dimensional ones
consists in the following. The general solution of conformal Ward identities necessarily includes the
contribution of gravitational interaction, while the conformal solution of the Ward identities for
conserved currents includes the contribution of gauge interactions (see Section 2). Since in the
present article we restrict ourselves solely to the discussion of the models of direct (non-gauge)
interaction, the problem which arises is: how to eliminate gauge interactions from the general
solution of conformally invariant Ward identities? This problem is solved in Section 2. To facilitate
the understanding of these results, Section 5 contains the discussion of gauge interactions (gravi-
tational included) in four-dimensional space. In its course, all the main results of Section 2 are
reproduced on a slightly different standpoint. Moreover, a possibility of introduction of gauge
interactions into a family of models under consideration is also discussed in Section 5.

For the sake of illustration, the solution of several non-trivial models is presented in Section 4.
Guided by methodical considerations we restricted the discussion to the study of models which
demanded technically simple calculations. The latter models were meant to serve as illustration of
the principal ideas as well as the features of calculation technique developed in the paper. Besides
that, the class of models considered is the one that allows for the most evident analogy between the
structure of our approach and that of known two-dimensional theories.

The most physically interesting models require that the operator analogue of the central charge
should be introduced (the field P?~%(x) of scale dimension dp = D — 2, see Section 3). In particular,
we believe that the three-dimensional Ising model is contained in this larger class. Such models
demand a certain modification of the technique. Though up to that time the principal investiga-
tions had been already completed, we decided to refrain from surveying these new results in the
present review due to the two reasons: firstly, it appeared to be methodically inexpedient — since the
modified formulation mentioned above clouded the analogy with two-dimensional theories.
Secondly, the analysis of the more complex models called for cumbersome calculations which were
rather appropriate for the separate publications.
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The present review primarily deals with the Euclidean formulation of quantum field theory
[20,64]. Discussions concerning the structure of the Hilbert space of conformal theory will be based
on the formulation in Minkowski space with the metric g,, =(— + ... +).

A number of questions involved is sketched rather briefly: the more detailed discussion of those is
found in Ref. [15]. Especially the latter concerns the solution of conformal Ward identities for
D > 2, and the analysis of two-dimensional conformal models in the framework of the approach
developed in this paper. The work [15] includes also a consistent review of the main principles of
conformal quantum field theory in D > 2, see also [2,21,22].

1.2. Conformal symmetry in D dimensions

The conformal group of D-dimensional space is a (D + 1)(D + 2)-parametric group. It includes
ID(D + 1) transformations of the Poincaré group, as well as scale transformations and special
conformal transformations

- a x* + a*x?
X = Axf, xF o L
1+ 2ax + a*x

(1.3)

where 4 > 0, @" is an arbitrary D-dimensional vector. Rather than handling special conformal
transformations it proves helpful to use the transformation of conformal inversion R

R .
x* = Rx = x*/x2. (1.4)

A special conformal transformation may be derived as a sequence of three transformations:
conformal inversion, translation by the vector b* = a"/a?, conformal inversion again.

Each conformal field in D-dimensional space is characterized by its scale dimension which
determines its transformation properties under scale and special conformal transformations. Let
¢(x) be a scalar conformal field of scale dimension d,

ox) > M(x), o(x) > () p(Rx). (1.5)

The condition of invariance of the theory under transformations (1.5) leads to the following
coordinate dependence of two- and three-point invariant Green functions (see reviews [2,21,22]
and references therein): :

{@lx)elxz)) ~ (xiz)™¢, (1.6)
{olxy)olx)o(xs)) =glxis) W9~ 92 (i) "W —hThN2 ( J-dardmald (1.7)

where ¢y, @, @3 are scalar conformal fields with dimensions d,, d,, d3, and g is an arbitrary
constant.

Scale dimensions are the most fundamental parameters of conformal theory. Its values determine
the character of physical phenomena described by the conformal field theory. For example, the
quantities measured experimentally in the statistical systems near the 2nd-order phase transition
point are the critical indices. They govern the singular behaviour of the correlators of a free energy,
magnetization, etc. in the critical region. The above parameters are expressed through the scale
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dimensions of fundamental fields with the help of known relations [11]. Thus, scale dimensions are
experimentally observable in statistical systems. Viewing the conformal symmetry as an asymptotic
symmetry of the theory of elementary particles, the scale dimensions control the powers of growth
and decay of the effective potential in the asymptotic region. One can show (see Ref. [2,22,23] and
references therein) that the positivity axiom restricts the possible values of scale dimension to the
interval (in the case of the scalar field)

d>D/2—1. (1.8)
The lower bound in this inequality coincides with the dimension of a free massless field
dus = P2 =1, (1.9)

and is called the canonical dimension. The latter is fixed by the quantization rules. In the presence
of interaction we face up with renormalized fields

PrenlX) = 23'* Poan(x) - (1.10)

The renormalization constant is dimensional; hence, the dimension of the renormalized field takes
an anomalous value d # d.,,. Under the shifting of the regularization

2, -0, (1.11)

provided that no negative-norm states are present in the theory. One has, in accordance with
Eq. (1.8):

d>d.,.

This expresses the well-known fact that the singularity of the propagator in the presence of
interaction is more sharp than in the case of free theory (assuming that the states with negative
norms are absent).

Besides Egs. (1.6) and (1.7), the conformal symmetry conditions lead to several strong restrictions
on the higher Green functions. In particular, one has for the Green function of four ficlds (see, for
example, Refs. [2,22] and references therein):

{P1(x1)@1(x2)@(x3)Q2(x4)) = (x32) “x34) " “F 12 m), (1.12)

where F,, is an arbitrary function of variables
2 2 2 2 2 2 2 2
& = x12X34/X13X34, N = X12X34/X1aX23 (1.13)

known as harmonic ratios.

Thus the problem of the construction of the exact solution of conformal theory consists in the
evaluation of scale dimensions of the fields and “coupling constants” such as the parameter g in
Eq. (1.7), as well as functions of harmonic ratios entering the conformally invariant representations
of the type (1.12), which define higher Green functions.

Consider the operator product expansion of the pair of scalar fields ¢,(x)@1(x,) at neighbouring
points. The tensor fields @,(x) together with all their derivatives contribute to this expansion. Each
field @, is a traceless symmetric tensor

Py(x) = PYx) = Pp;,_ (%), (1.14)
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where [, is the scale dimension and s, is the tensor rank. Under the coordinate transformations (1.3)
and (1.4) the fields (1.14) transform as follows:

] A Ipl I R 2\—1 ]
Py nlX) = AP,y (Ax), By, (X)) = (XF) Gy (%) .. Guu (XD, .. (RX), (1.15)

where
gsxv{x] - 5.«\' -2 x.tnxv/x2 . (1.16)

Denote the mth order derivative of the field @,(x) as ®{™(x). Thus the operator expansion of the
product ¢;¢, is written as

?1(x)2(0) = Y A"(x)B{"(0), (1.17)

where Af™(x) ~ (x?)~@*4"k=mi2 For example, the contribution of the scalar field @%(x) and its
derivatives into Eq. (1.17) is

[®0] = go(x?) 1 +d:—bi2 {D6(0) + a,x,0,9(0) + a2x,x,0,0,9(0) + azx*OH(0) + --- }, (1.18)

where gy and a; are some constants.

The operator equality (1.17), like any other relation between Euclidean fields, should be
understood as a symbolic notation representing the asymptotic expansion of Euclidean Green
functions

{@1(X)p2(0)@1(x1) ... PuXa)D]im0 2 Y, AP DL O)D1(x1) ... Do) (1.19)

k,m
where @, ... @, are arbitrary conformal fields. The words “neighbouring points” mean that
x’«xt, 1<kr<n.

one can show [24] (see also Refs. [2,22] and references thercin) that the invariance under the
transformations (1.15) fixes all the coefficients a,, in the expansion series of the type (1.18) uniquely
and allows one to take an explicit sum of all the terms with derivatives of the field @,(x). The result
has the form

(D] = g« fdy Ot (x, 0@y, (), (1.20)

where g, is the coupling constant of the field @, and Q;‘{;“_’_{",‘,x is a known function, which expression

can be found in Refs. [2,10,21,22] and in the references therein. In what follows the operator
expansions of the type (1.17) will be written in a symbolic form

?1(x)920) = Y [, (1.21)

where [@,] is given by expression (1.20).
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One can show [2,10] that the problem of calculation of conformally invariant Green functions
(1.12) is equivalent to the problem of calculation of coupling constants and dimensions

G Ik (1.22)

of the fields @,. The examples of such calculations (in the approximation of skeleton graphs) may be
found in Refs. [12,15,58], see also references therein.

1.3. Conformal partners and amputation conditions

Let us introduce a unified notation ¢ for the pair of quantum numbers /, s. Each field (1.14)
transforms by irreducible representation of the conformal group [2,15,21,22] of the Euclidean
space. Denote this representation as T, The fields @, = @, and @,, = @,, transforming by
non-equivalent representations T,, and T,_, are orthogonal:

(Py(x1)Py (x2)) =0 if I #1, oF s #5p. (1.23)
This may be checked directly using the transformation laws (1.15). The pair of fields

D (x) = Dlx), Pix)=dUx), T=D—1, (1.24)
where |

c=(s), 6=0s)=(D—15) (1.25)
is an exception. These fields transform by equivalent representations [2,21,22]

j R | (1.26)
One has for the fields (1.24) (see Ref. [15] for the details):

(B(x)Ps(x2)) = SYM{B,, ... 8, }0(x1 — X3), (1.27)

where the notation “sym” stands for the symmetrization and subtraction of traces performed in
each group of indices y; ... g, vy ... vs. Below we call fields (1.24) the conformal partners.

Equivalence condition (1.26) is expressed by the following operator equality (see Ref. [15] for
more details):

Py, ulX) = J-dy Ay, ... pvinfX — VIOV s (1.28)

which will be used below in a shorthand notation

P,(x) = de A,(y)PAy) - (1.29)

The intertwining operator 4, coincides [15] with the conformally invariant propagator
Aa(xl 2) — A_u, T T v,(xIZ) = <¢L. u,(x1]¢£'. \',(x2)>
= (2m)""n(o)3 x1,) 7! sym{g,,,(X12) ... Guv(X12)} » (1.30)
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where g,.(x,) is given by expression (1.16), the notation “sym” has the same sense as in (1.27), and
n(o) is the normalization factor.
Consider the invariant function of three fields:

G (x1X2x3) = {P1(X1)@2(x2)PulX3)) = 9o Co(x1x2X3) (1.31)

where g, is the coupling constant, while the invariant function C4% is calculated using Egs. (1.5)
and (1.15) and has the following form [2,21,22]:

Clta(xy%x3) = (2m) P2 N(odydoWhcdy) ~( +a=i+902

o) R | T L e SR 5 T (1.32)
where
X X
).:?__,m(xle) = lﬁj(xlxz) e ;.ﬁ?(leCz) ey traccs, ’li:!(xlxﬁ) = (xl,f]” _ (x223).ll , (133)
13 23

and N(od,d,) is the normalization factor.
When applied to the Green functions (1.30) and (1.31), the operator Eq. (1.28) means that under
the suitable choice of normalization factor the following relations should hold:

A7 (x12) = 45(x12) , (1.34)
GEh(x,x,X3) = _[dx GoH(x1x2x)45 (x — x3), (1.35)
GI(x,x,X3) = ~[4:1:: Gy '(xy — X)G4%(xx,x3), dy =D —d,, (1.36)
and in the x, argument by analogy. Here G,, stands for the propagator of the field ¢;:
Gx12) = Cpdxoaeny = 7 —T@ (12 )7 (137)
12 1% d\A2 F(D/Z _ d) 2 12 s *

In what follows, conditions (1.34)-(1.36) will be called the amputation conditions.
As one can easily check by a direct calculation, the amputation conditions will hold provided
one chooses [2,15]
I'l+s)y I'(D—-1-1)

") = D2 —DT(D —T+s-1)’ ' (1.38)

N(cd,d;)

1/2

F(l+d,+d; H_D)F(dl +d22—f+s)r(!—d, —|2~d2+s)r(l+d1;dz+s)

2D—1—d;—d;+s D+l—d,—d,+s D—l—dy+d;+s D—Il+dy—d,+s
d 2 4 2 ¥ 2 £ 2

(1.39)
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for the normalization factors in Egs. (1.30) and (1.32). The calculations use conducted using
relations (A.1)+(A.3). One can show that the Green function G2 is expressed through the function
0%%° which defines the operator product expansions of fields, (see Eq. (1.20)):

_____®
“sinn(l — % + s)

X ‘{Qd‘d’ﬂ(x1x2|x3) - J.dx Alx3 — x)Q“"*‘*(xllex)} . (1.40)

G (x1x%3) = — g

The amputation condition (1.35) is the natural consequence of such representation.
Fields (1.24) have the same status. The latter means that when the field @, is present in the
theory, the field &; must also exist, their Green functions being related by Eq. (1.29):

(Bs(x)@1(X1) ... Pulx)) = |dy A7 '(x — YK Pe()P1(x1) ... PlXn)D (1.41)

where @, ... ®, are any conformal fields. One can prove [2,15] that the skeleton and bootstrap
equations are invariant under the change:

l—’D—l or d]__z —!'.D—dl‘z. (1.42)

This symmetry is also present in the system of the renormalized Schwinger-Dyson equations [25,64]
as long as its conformally invariant solution [1,2] is concerned. The transition from the fields @, ¢,
to the conformal partners @;, ¢z is equivalent to the transition from the formulation of the conformal
theory in terms of Green functions to the formulation in terms of vertices and propagators.

However, the symmetry (1.42) is broken in the Ward identities. The latter selects one of the fields
(1.24) to be a physical field. It is essential that the current j, and the energy- -momentum tensor
T, belong to the class of fields with canonical dimensions

lL=D—2+s (1.43)
and do not literally satisfy the equivalence conditions (1.29) (or (1.41)), since the corresponding

representations of the conformal group are undecomposable [21,26].
The same is also true for the conformal partners of the fields @, with the integer dimensions

L=D—-l=2-s. (1.44)
The Euclidean fields

Ju Ty (1.45)
have the canonical dimensions

li=D—1, Ir=D. (1.46)

Its conformal partners are the electromagnetic potential A, and the traceless part of the metric
tensor h,, (in linear conformal gravity). The Euclidean fields

A By (1.47)
have the dimensions (1.44)
ly=1 [,=0. (1.48)
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In the next section we discuss the analogue of equivalence relations (1.29) between the fields (1.45)
and (1.47). When D = 4, these relations coincide with the Maxwell equations and the equations of
linear conformal gravity.

Let us remind that any relations between Euclidean fields are understood as if they were placed
inside the averaging symbols. In what follows we examine the Euclidean Green functions

Gl(xxy ... X2n) = {ju(X)@(x1) ... 0T (X2) D, : (1.49)
Gxxy oo Xpm) = T (X)@1(X1) . PpulXm) D 5 (1.50)
Gil(xXy ... X25) = {AUX)P(X1) ... 0 T (x20) D, (1.51)
G::v(xxl e xm) = <huv(x)(pl(xl) et qom(xm) > s (152)
where @ is a charged field of dimension 4, and ¢, ... @, are neutral fields of dimensions d, ...d,,,
respectively.
The Green functions (1.49) and (1.50) satisfy the conformally invariant Ward identities
n 2n
a:Gi’;(xxl e Xop) = — [ Z dMx — xz) — Z o(x — xk)]G(xl cvs Xiza) s (1.53)
k=1 k=n+1
OGN oo K) = — |: Y 8(x — x)op — 05 Y, %(5(3: - xk)i|G(x1 e Xm) 5 (1.54)
k=1 k=1
where
G(xq ... X24) = {(x1) ---(9+(x2n)>s G(X1 .- Xm) = {P1(X1) --. Om(Xpm)) . (1.55)

1.4. Conformal partial wave expansions in Minkowski space

Consider the fields ¢;, ¢, and &, in Minkowski space. Let Q, be the positive frequency
representations of the conformal group of Minkowski space. On can show that for any values of
quantum numbers oy, = (I, ;) different from Egs. (1.43) and (1.44), the states

D, (x)|0> = M, . (1.56)

form a basis of the space M, of the representation Q,, see Ref. [2] and, for more details, [15]. The
Wightman functions

W dx12) = 0l@(x1)@(x2)|0), W 5(x12) = 0|Pq,(x1)P,(x2)|0) (1.57)

represent invariant scalar products of the states (1.56). The spaces M, of different irreducible
representations are mutually orthogonal

0|1D4(x1)Ps (x2)I0> =0 if oy # 0. (1.58)

All the states (1.56) form the basis in the Hilbert space of the conformal theory.
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Consider the states ¢,(x,)@(x,)|0). These states transform by an infinite direct sum of irredu-
cible representations and can be decomposed through an infinite set of states (1.56) (see Refs. [2,15]
and references therein):

0lp1(x1)pa(x2) = ) AdeX3 Q4% (x1x2]x3) €0|@g,(x3) , (1.59)
k

where A4, are unknown constants, Q%% is the same function as in Eq. (1.20) but written for the case
of Minkowski space. Decomposition (1.59) is called the vacuum operator decomposition [22]. It is
analogous to the operator decomposition of the Euclidean fields product, see Eq. (1.21). Taking
into account Eq. (1.58), we have from (1.59)

0] 1(x1)2(x2) P, (x3)|0) = Akjdx Q1% (x| X) We(x — X3) . (1.60)

The Lh.s. of this equality is a conformally invariant Wightman function.
Any higher conformally invariant Wightman function, for example

W(xyx; ... Xm) = 0[@1(x)@2(y)P1(x1) ... Pum(xXm)|0) , (1.61)

where @, ... ®,, are arbitrary conformal fields in Minkowski space, may be represented as an
invariant scalar product of the states

@2())@1(x)I0> and  Dy(xy) ... Pu(xm)[0) . (1.62)

Using Eq. (1.59) we find the conformal partial wave expansion of the Wightman functions (see Refs.
[2,15,22] and references therein):

W(xyxy ... Xm) = ), A sz Q1% (xylz)< 0| @u(2) P1(x1) ... Pr(Xm)I0) (1.63)
k

1.5. Conformal partial wave expansions of Euclidean green functions

The Euclidean conformal partial wave expansion may be derived from the expansions (1.63) by
analytic continuation into Euclidean coordinates [2,15], see also Refs. [10,21-24] and references
therein. Let us present several results. The notations and normalizations are chosen as in Refs.
[2,15], see Egs. (1.38) and (1.39).

Let ¢, y be neutral scalar fields. The Green function

Glzyay ... 2a) = (9(@)X(@)P(21) - #(Ta)} = (1.64)

Yy
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may be written in the form of expansion which represents an Euclidean analogue of expansion
(1.63)

(1.65)
1 Di2+imwm
g: - 2_1![2;: J.DIZ—iao dI MG} ’ (1.66)
1 r(p/2
o) = . 25(2m) P2 % n(o)n(6) (1.67)

n(o) is the normalizing factor (1.38), C, is the conformally invariant function (1.32) satisfying the
amputation conditions (1.35) and (1.36), which is normalized by the condition

“M— lor = 3 Brinea(a12) B8] (1.68)

The dots on internal lines mean the amputation of argument, see Eq. (1.36); d-symbols in the r.h.s.
are defined by the condition

Z 6aa'f{o-!) =f(0) ¥

Condition (1.68) holds for functions (1.31) when g, = 1, see Refs. [2,15]. The kernels of partial wave
expansions G, are determined, on account of Eq. (1.68), by the relation

(1.69)

On the internal lines J-functions are placed.
To a contribution of each field @,, into expansion (1.21) corresponds a pole of the kernel G, at the

point
6 =0,=(ln S, (1.70)
GPAxx1 ... Xp) = {Pp(X)P(X1) ... (X)) = Ay TES GofXXy ... X,), (1.71)

where 4,, is known constant [2,21,22].
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Note that due to amputation conditions, the kernels G, are invariant under the change ¢ — ¢
Ga(xx1 iss x,,) — G&(xxl i x,,) %

Each term [®,,] in the operator expansion (1.21) may be derived by the shift of the integration
contour in Eq. (1.65) to the right up to the intersection of the pole in the point (1.70). Under this,
one should use the symmetry of the integration contour in Eq. (1.71), the integrand under the
changes ¢ — ¢ and the representations of functions C, in the form of Eq. (1.40). As the result, we
have (see Refs. [2,21,22] for more details)

2nyg, .
Glxyxy .. Xp) & ) ( — EQD"Q - sm))sz Q4 2% (xy|2)GSNzxy ... Xu) (1.72)

where g,_is the coupling constant:

P )U(x2)Pm(X3)) = G0,Co (X1X2X3) .
The contribution of each pole into partial wave expansion may be written as [2,21]

LS

A Tes

0=t (1.73)
The r.h.s. of this formula contains the Green functions
G = {p(x)1(x2)Prl(x3)> , G = { Pp(X)p(x1) ... (X))
with the inner line corresponding to an inverse propagator 4,,* of the @,, field
Ap(X12) = { P(X1)Pr(X2)) .
The partial wave expansion of the function including four fields
I T3
G(z179z324) = {p(21)x(22)(73)x(24) ) =
Ty” - Iy
may be written as
(1.74)

where the function p(0) is defined by

Go(xx3X4) = p(0)Co(xX3X4) .
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The function p(o) satisfies the equation

pla) = p(d)

and has the poles in the points (1.70). Eq. (1.73) in this case can be rewritten in the form

p(om) [u‘;%s,,, p(o)] = —%- (1.75)

Consider the partial wave expansion of Green functions which include a single vector or tensor
field besides the scalar ones. To proceed we need explicit formulas for the other pair of conformally
invariant three-point functions:

(Dip®P,> and (Pip®,,) .
The Green function which includes the tensor @, _, and the conformal vector &}, has the form:

(difh ...y,(xl)(Pd(xZ)(pﬁ(x?l))

= {Ai,’f*(x 1X2)An  u(Xx2X3)

1 L ’
+ BXT Z gm‘(xlg)l::___ﬁ“m (xzx:g.) — tTaCES]} Atll (XIXZX3) - (]?6)

13 Lx=1
where 4 and B are unknown constants, ji, means the omission of the index,

{({+d—=10U'—5+ 1);’2( (+l'-d-s5—-1)/2 (xis)*(t'ht—Hs—l),fz' (1‘?7)

Ailt'(xlxzx.'i) = (xfz)_ x%a]_

To derive Eq. (1.76), Egs. (1.5) and (1.15) were used. The expression in curly braces provides an
example of typical tensor structures. It does not depend on field dimensions. We will use the
notation {4, B} for such structures:

(D}, .. u(x)@(x2)P(x3)) = {4, B}AT (x1x2X3). (1.78)

As another example, consider the Green function that includes the tensors ‘DL. .., and (Dﬂv. It
contains three terms

Py X1)P(x2) Ppi(x3))

13 \k=1

; 1 1 fia .
= {Aﬂ.,’fi(x,xz)l"; u(X2X3) + B |:A.:f’(x1x;}x—2 ( Z FvuX13)A%! . gy u{X2X3) — traces)
+ (ue>v) — trace in p, vi|

1 2 '
+C ["‘(xz )2 E GunX13)GuX13)20 g g, (X2X3) — traces}}d‘{ (x1x2x3), (1.79)
13

kr=1
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where A, B, C are unknown constants,
Alzr(x1x2x3) — (xgz)—ﬁ+d—l’—s+2}f2 (x§3)—(l+l'—d—s—2),l'2 (x%a]—{l’+d—i'+s—2),‘2 I (180}
It is convenient to introduce the notation analogous to Eq. (1.78)

(@L’ ...u,(xl)ﬁo(xz)dji:v(xa)) = {A, B, C}Alzr (x1x2x3) . (1.81)

Consider partial wave expansion of the Green function

e ¥

Gu(zyz: ... 2a) = (2 (2)py)p(z1) - - - (2a)) = r (1.82)
7] ¥

including the vector field @ of dimension /,. In this case the partial wave expansion is made up by
a pair of terms of the type (1.65), since there are two independent invariant functions

€8 =l (ru2%5) = (AR, AL} A (x1x,3),

(1.83)

C% = CSup..p (X1%2%3) = {A(IZ); Agz)}dlldl' (x1x2X3) .

It is useful to choose coefficients A{,,i=1,2 in such a way as to make the functions (1.83)
mutually orthogonal

— )

and normalized by the condition (1.68).

r— s
— — ooz

Then the partial wave expansion for the Green function (1.82) may be written in the form [2,15]
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where the kernels G{ , are determined, according to Egs. (1.84) and (1.85), by the equations

a o \ 4
G?(.‘.CI;...I“) = : = el : PE= 1}2 (187)
/ K ’

Each pole of kernels G, corresponds to a field which contributes to operator product expansion

®,(x)p(0).
There are two mutually orthogonal sets of fields

{®1m} and (P} (1.88)

contributing to this operator expansion

P,(x)p(0) = ). [P1.m] + Z [P2m] - (1.89)
The Green functions of the fields @, ,, and &, ,, are determined by the equations

(D m(X)p(x1) ... 0(x,)) = Ai.w TES GY (XX1...X,), i=12. (1.90)

a=0,

The orthogonality of the fields @, , and @, , may be proved by an analysis of the expansion for
4-point Green function:

T I3

G (1223324) = (B4 (z1)(22) D]} (23)p(24) ) = J (1.91)

& Iy

Let us put its expansion in the form

2 OnO

(1.92)
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where the functions p; (o) are determined by the equations

,0,:({7)0- e :U °!° . oy 2=1,2. (1.93)

Note that the diagonality condition for the expansion (1.92) together with the orthonormality
conditions (1.84) and (1.85) fix the coefficients A{, in Eq. (1.83) up to SO(2) transformation. Thus,
the choice of combinations of independent invariant structures in Eq. (1.83) is possible only on the
base of analysis of the Green function (1.91). The meaning of this result [2,3,15] may be easily
understood, considering the Wightman function

C0lep(x2) Byi(x1) Pyi(x3) p(x4)[0D , (1.94)
which represents an invariant scalar product of the states
Pi(x1)p(x2)I0> , Py (x3)p(x4)[0) . (1.95)

Apparently, all the fields, contributing into the vacuum operator expansion of these states, are
represented by the sets (1.88). If among these fields there is a pair of fields &, » and b, ,, with
identical dimensions and tensor ranks, one can always choose such their combinations
Dy = b+ pP,,w and D, = yP;  + 0B, that the states

Py m(x1)|0> and P (x5)|0) (1.96)
will be orthogonal to each other:

0[Py, m(x1) Pom(x2)I0> = 0. (1.97)
Thus the states (1.95) represent a direct sum of mutually orthogonal subspaces:

H, ® H, (1.98)

which belong to the total Hilbert space of the theory. The states @, ,(x)|0> span the basis of
H, space

Dy o(x)0> <« H, forallm. (1.99)
In analogy,
@, w(x)0> =« H, forallm’. (1.100)

Correspondingly, in Euclidean version of the operator product expansion, the orthogonality of
H, and H, manifests itself in the diagonal form of the partial wave expansion (1.92), with the
Euclidean Green functions {®, ,, ®, ,» being equal to zero

Py ml(X1)P2,m(x2)) =0

even when quantum numbers of fields @, , and @, ,, coincide.
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By analogy, one can consider partial wave expansions for the Green functions which include the
tensor field @Y, . It contains three different terms, since there exist three independent invariant
functions (see Eq. (1.81)):

Cf = C{ v, ..., (X1X2x3) = {AD, AD, AD}AS" (x1x2x3), (1.101)

where i = 1, 2, 3. It is useful to choose the coefficients 4{, ; from the condition

2
T101 T202 ;
QIO
—

This does not yet fix the A, 3 coefficients uniquely. Let us demand the expansion for the Green
function

z L3
G po (2172324 = (@ (21)(22)Bpo(23)p(74) ) = ﬁ .
x T4

to be diagonal [3,15]

H= gpl(a) e a e
T a
+ 3 p2(0) e e +Zel)

This fixes the choice of orthonormal basis of functions C¢, i = 1, 2, 3, up to a SO(3) transformation.
To make the choice of these functions unique, additional physical arguments are necessary, see
Section 2.

(1.105)
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In the general case, there exist three mutually orthogonal sets of fields [3,15]
{Pim}> {Par}s {Pan)> (1.106)

contributing to the operator product expansion @}.,:

PP(O) = X [P1m] + X [92,] + X [P34] (1.107)
The orthogonality conditions

(D1 mlX1) P2.(X2)) = {Py,m(X1)P34(X2)) = (P2 Ax1)P34(x2)) =0 (1.108)
hold even when quantum number of two fields from different sets coincide. The states

D(x1)p(x2)|0) (1.109)

span the sector of a Hilbert space which can be represented as a direct sum of three orthogonal
subspaces.

H, ® H, @ H,, (1.110)
Dy W(2)0) = Hy forallm, &, ,(x)[0> « Hyforallr, @;(x)[0) < H; forall k. (1.111)

The expansion of higher Green functions could be discussed no sooner than all the three
independent sets of functions (1.101) are found. Let us stress that the requirement of diagonality of
expansion (1.105) should be treated as one of the conditions that fix the form of these functions.
Resultantly, we have [3,15]:

o
ﬁ Z
] i Y]
o o (1.112)
+Z e > LR
a ] a

It is essential that the expansions of Green functions
(Pl ®1D; ... P, (1.113)

with any number of fields @, ... @, of any tensor structure, also have the form (1.112). The latter is
quite apparent from the above analysis. Besides that, one can show that this property is the
consequence [2,12,15] of exact solution to renormalized Schwinger-Dyson system.

Finally, let us consider several consequences of operator product expansions for the Green
function

Cpx)x(x2)P1(x3)P(x4)) (1.114)



22 E.S. Fradkin, M.Ya. Palchik | Physics Reports 300 (1998) 1-111

where @, @, are any fields. Its asymptotic behaviour in each of the two regions
1. %330, ie xi;«x3; xi4, (1.115)
2. x34 =0, ie x3,«xi; x3,, (1.116)

is determined by one of the operator produce expansions

O )X(X2)x -0 = Y, [Pl , (1.117)

D1(x3)P2(Xa)lxsm0 = 3 [Pi] . (1.118)

On the other side, two sets of fields
{#,} and {P} (1.119)

do not generally coincide. Each field &(x), contributing to the asymptotic region (1.115) should also
contribute to the asymptotics (1.116). The latter is caused by the orthogonality property of
conformal fields

{D)PYx)> #0 onlyifl, =1, s, = s;.

Hence two sets of fields (1.119) should have an intersection {&} which consists of the fields
&, and &, with the same quantum numbers:

{Bie{a,}, {B}e{d}. (1.120)
If such an intersection is empty, then the Green function (1.114) is zero. The states of a Hilbert space
Px)a(x2)I0> ,  P1(x3)P2(x4)0)
are orthogonal:
CO0lgp(x1)x(x2)P1(x3)P2(x4)|0) = 0.

This statement can be formulated in terms of partial wave expansions in the following manner: the
poles of kernel p(o) of the expansion

@ ?, o1
o
o o (1.121)
d, g2

x/

correspond to the fields @ that belong to an intersection of sets (1.119).
The most interesting consequences of this statement may be obtained from the analysis of Green
functions for the energy-momentum tensor or the current. Examining the Green functions

{Tw@T o™y or {j@ip*>,
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one can find the operator product expansions

Tulx1)e(xz) or  ju(x1)elx2). (1.122)

Suppose that the fields contributing to these expansions are found. Then one can expect that the
latter contribute, as well, to the operator product expansion of fundamental fields

o(xq)x(x2) (1.123)
since the Green functions

{pxe*jy and <@xo™* Ty
are non-zero. Thus from the analysis of the conformally invariant solution of Ward identities one can

find some of the operator contributions into operator product expansions of fundamental fields. This is
done in Sections 2—4.

2. Conformally invariant solution of the Ward identities

2.1. Definition of conserved currents and energy—momentum tensor in Euclidean conformal
field theory

As already mentioned in Section 1.3 to the current, energy-momentum tensor and their con-
formal partners, undecomposable representations of the conformal group correspond. The latter
belong to the so-called representations in exceptional points (1.43), (1.44), studied in Refs. [21,26].

Denote any undecomposable representation as Q. Let M be a space of such representation. The
characteristic property of these representations is that in the space M there exists a subspace which
is invariant under the action of group transformations:

Mo M. 2.1)

In the case of current and energy—momentum tensor the subspace M, consists of transversal
Euclidean conformal fields ji, T},

0uiu(x) =0, 8,T,x)= (2.2)

Indeed, consider the transformatlon laws of the fields j,(x) and T ,,(x) with respect to the conformal
inversion (see Eqgs. (1.15), (1.43)):

. 1
Jl) S i) = o1 Gus(x) JRX) , (23)
1
T (%) = To(x) = P 9up(X) Gvo(X) T po(RX) . (2.4)
As may be easily demonstrated by a direct check, after transformations (2.3) and (2.4), the fields
Jux),  Tix) (2.5)

beget the fields j'i, T’} that are also transversal:

0LJux)=0 L 05 ju(x) =0, 0T ,(x)= 0 - O5T"(x) =0. (2.6)

.I'-lj.ﬂ
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An analogous result is valid for the conformal partners (1.47). The invariant subspace M, in this
case consists of the longitudinal fields

AR"H(x) = Bypo(x) , - (2.7)

M) = 0,h(x) + ) — 3 Bpdiba), (3)
where @q(x) is the scalar fields of dimension d, = 0, h,(x) is the conformal vector of dimension
d,= — 1. As may be easily checked, under the action of conformal inversion

4,0~ A,3) = (1/x)g,() ARX), (29)

Buod) = (%) = Gul2) o) polRX) (2.10)

the conformal fields (2.7) and (2.8) transform to longitudinal fields

A" (x) = 3% 9i(x) @.11)
W 208(x) = O H(x) + O,k (x) — 1_2) 0,0y (x), (2.12)
where
@o(x) = @o(Rx),  hy(x) = x?g,,(x)h,(Rx). (2.13)
To prove the results (2.6), (2.11) and (2.12), we have employed the relation
. O = (1x%) giubor . (2.14)

More detailed calculations may be found in Ref. [15]. Thus in the case of fields 4,, h,, the invariant
subspace M, consists of longitudinal fields (2.7) and (2.8), respectively.

As it is known from the group theory, any undecomposable representation may be coupled to
a pair of irreducible representations:

Qo, 0. (2.15)
The representation Q, acts in the invariant subspace M,, while the other, in the quotient space
M = M/M,. (2.16)

Correspondingly, one could consider a pair of different conformal fields, the first being transformed
by the representation Qo, and the second, by the representation (. Hence, there exist two types of
conformal fields with canonical dimensions (1.43), and two types of conformal partners with
dimensions (1.44). This means that Euclidean conformal field theory comprises two types of
currents and two types of potentials:

2y, and A, A, (2.17)
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Each of these fields transforms by an irreducible representation of the conformal group. Similarly,
one has a pair of types of irreducible conformal fields for each of T, and h,,:

7% T, and K, Home. (2.18)

uvs
Furthermore, one can consider the fields j,, T, or A,, h,, which transform by direct sums of
irreducible representations (2.15):

Q®Q0. (2.19)

It is important that for the fields with canonical dimension the conditions of equivalence of
representations are different from Eq. (1.29). The latter are substituted by the conditions of partial
equivalence [21,26] which manifest themselves mdependently among the representations of the
type Qo, and among the representations of the type 0. This means that the relations of type (1.29)
hold independently both in the transversal and in longitudinal sectors.

From the above arguments it follows that different possible definitions of the conserved currents
and the energy-momentum tensor in the conformal theory may be given. A more comprehensive
discussion of these definitions is given in Ref. [15] (see also the next sections of the present article).

uv

2.2. The Green functions of the current

For simplicity we shall discuss the case of an Abelian theory in the space of dimension D > 3. All
the results obtained below are easily generalized to the case of non-Abelian theories.

Introduce the notation Q; for an irreducible representation defined by the transformation law
(2.3) and acting in the space M;. According to Eq.(2.15), there exists a pair of irreducible
representations

J;, and QY (2.20)
corresponding to irreducible conformal fields '

Jdx) and jix), 85j(x)=0. (2:21)
The space of irreducible representations (2.20) will be denoted as

M;= M,/M%, MY¥cM;. ' (2.22)

By analogy, Q 4 denotes an undecomposable representation defined by the transformation law (2.9)
and acting in the space M 4. For a pair of irreducible representations

Q% and 0, : (2.23)
the pair of irreducible conformal fields

AR"(x) = 0,00(x),  Aux) (2.24)
correspond. The notation -

Mt = M,, M,=M, /M (2.25)

will stand for the spaces of irreducible representations (2.23).
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The representations (2.20) and (2.23) are pairwise equivalent [21,26], see also Refs. [27-29]:
Q;~0%, 0f~0a. (2.26)

The equivalence conditions are expressed by the operator relations

AL(x) ~ J‘dy D (x — V), Jix) = de Diifx — »A, ), (227)
where the kernels D}'® and D}, coincide with the invariant propagators

Dr¥(x12) = (A (x1)AV"(X2)) = Cagulx12) Bx12) ™" = C40507 Inxi; , (2.28)
C, is the normalization constant, and

Diiy(x12) = {Julx) ¥ (x2)>, 07 Dpix42) =0. (2.29)

The explicit form of the expression of the conformally invariant propagator D}, depends on the
dimension of the space. Introduce the regularized conformal fields j; and Aj with the dimensions

E=D—1+e¢, E=D—E=1—¢, (2.30)

J

The regularized propagator of the current

DL (x1a) =< Fsi) sl = Cﬁ gudxia), 231)

where C; is the normalization constant is divergent when ¢ — 0 for even values of D:

& 1
Dy(x13) ~ (6,11 — 8,0)) 75— + O). (2.32)
(2x12)

The factor (x?,)"?*27¢ is singular for even D > 4. Thus we set

1
Dtr( ) (5,”D - apav) W, D-Odd, (2 33)
WXi12) = .
g lim, .o eDZ,(x15) ~ (3,400 — 8,8,) 0P~ 472 3(x,,), D-even.

Here we utilized the relation [30]

1 1 %2 4
PRI L~ T eTD2+kIk+ 1)

Thus, for even D > 4 one has a pair of invariant functions D, and D}, . We shall show in Section 6
that these functions are related to a pair of irreducible representations Q ;and QY and define the
propagators of irreducible fields j, and j . In the case of odd D the situation is analogous, and will
not be discussed here.

Note that when D = 4, Eq. (2.27) coincide with the equations for electromagnetic field in the
o-gauge:

O%8(x) . (2.34)

(6,0 —8,0,) A\(x) = jiilx), AL"%(x) = a0} jdy In(x — y)?8, ,(») - (2.35)
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Let us stress that in conformal theory these equations are the consequences [27-29] of the
equivalence conditions for irreducible representations (2.26).
The usual equivalence conditions may be written in any of the forms:

P,(x) = J.dy Ao(x — Y)Psly) or Pz = JAdy Adx — y)@o(y) - (2.36)

Unlike this, Eq. (2.27) cannot be inverted since the kernels D8, Dyj, are degenerate. The group-
theoretic reason behind this consists in the fact that the elements of the spaces
MI/M' and M ,/M'$"® are the equivalence classes. Each equivalence class {uhs

{Ju} © M;/M¥ 2.37)

includes a set of functions with different transversal parts. In particular, if the field Ju < {ju}, then
the field j, =j, + j." also belongs to the same class

o G = hu=Ju 3 < {0} (2.38)
where j‘;," is an arbitrary transversal field. Analogously, each equivalence class
{4} = M /Mms (2.39)

consists of the set of functions with different longitudinal parts:
if A, < {4,}, then A4, + At c{4,}, (2.40)

where A!°° is an arbitrary longitudinal field. Thus any representatives of the equivalence classes
{j,} and {4} can enter the corresponding r.h.s. of Eq. (2.27), see Section 6 for more details.
As an example let us consider the Green function of the current

Gf:(xl X2X3X4) = {@(x 1)fP+(x2)X(x3)fg(x4)> ) (2.41)

where y(x) is a neutral scalar field of dimension 4. The general conformally invariant solution of the
Ward identity

05Gl(x1x2x3%q) = — [8(x14) — 0(x24)I<p(x1)0 " (x2)x(x3)) (2.42)
can be written as [2,15]

Gilx1x2X3%4) = Kiit(x1x2Kp(x1)9 " (x2)x(x3)) + Gii(X1x2X3Xa) (2.43)
where GY is an arbitrary transversal conformally invariant function

05Gl(x1X2x3%x4) =0, (2.44)
and the function K, has the form

K34(x1x5) = %n—mz r(l—;) (%) O ), (2.45)

O K (x1x2) = — 0(x14) + 0(x24) .
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The set of functions differing by their longitudinal parts may be viewed as a definite equivalence
class (2.37). Introduce the conformally invariant function [5]

Gi™ (x1x2%3%4) = @) " (x2)u(x3) A" (Xa)) = gali(x1x2)<@(x1)@ " (x2)x(x3))
1 5 x%.; a:
=3 940, In —= {p(x1)p ™ (x2)x(x3)) » (2.46)
X24
where g, is the coupling constant. According to the first equality in Eq. (2.27) we have
GA™ (x1X2X3%4) = J‘dx DioP® (x4 — x)GY(x1X2X3X) . (2.47)

On the other hand, the set of transversal conformally invariant functions G, see Eq. (2.44), forms
a space of irreducible representation QY

G = MY . (2.48)
Due to the second equality in Eq. (2.27) one has

GY(x1X2X3X4) = -[dx D (x4 — x) GA(x1x,x3X), (2.49)
where

G (x1x5X3X) = <(P(x1)fp+(x2)X(x3)/qv(x)> (2.50)

is an arbitrary conformally invariant function of the field 4,(x).

It is natural that the general conformally invariant solution of the Ward identities includes the
contribution of electromagnetic interaction described by the field 4, .What is problematic is how
this contribution could be extracted explicitly. The latter is especially important when one concerns
the models neglecting electromagnetic interaction. This problem is a complicated task in the case of
conformally invariant theory. The longitudinal part of the first term in Eq. (2.43) is not conformally
invariant. The invariance could be achieved only after a certain transversal (also non-invariant)
correction to the longitudinal part is added. The latter is defined up to an arbitrary conformally
invariant function which could be added to the second term in Eq. (2.43). So the question on the
electromagnetic contribution into the first term remains open. Similarly, extracting the contribu-
tion of the gravitational interaction poses the problem in the case of Green functions of the
energy—momentum tensor, see Section 2.5.

The mathematical origin of this problem is concealed in the fact that the representations due to
the transformation laws (2.3) are undecomposable. Hence the first step should consist in the
transition to the direct sum of irreducible representations (2.15):

0-0® Q. 2.51)

The representations of the type Q, are related to the contributions of gauge fields, while the
representations of the type Q are related to the contributions of the matter fields. However, the
representations J are defined in the space of equivalence classes. Thus, from the mathematical
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viewpoint, the problem of extracting of the unique solution to the Ward identities (in the absence of
gauge interactions) is equivalent to the formulation of definite prescription which would uniquely
fix the choice of representative in each equivalence class.

The above prescription could be formulated on the ground of the following arguments. Repres-
ent the Euclidean current j,(x) which transforms by the direct sum of representations (2.51), as
a sum of two terms

Ju(%) = Jux) + ji(x) . (2.52)

This decomposition is conformally invariant. It becomes unique if thc following condition is
satisfied: the states of the Hilbert space generated by the fields j, and ji; are mutually orthogonal.
The physical meaning of the first term is discussed in detail in Scctlon 6.1. The second term in
Eq. (2.52) corresponds to the contribution of electromagnetic interaction and is related to the field
A, due to the second of Eq. (2.27). One can show that the above requirement of the orthogonality
ﬁxcs the choice of representative in each of the equivalence classes {j,} and {4,} uniquely, i.e. each
representation (;, 0, becomes realized in the space of functions. Simultaneously, Eq. (2.27)
become invertible. A more detailed discussion of this construction may be found in Section 6, see
also [15] as well as the next sections of this paper. Let us emphasize that all the above is valid for
the space of any dimension D > 3. The case D = 2 is exceptional and will be discussed separately in
the end of this section.

To put forth the program described above, let us consider the operator product expansion
Ju(x1)(x,). According to Eq. (2.52), it includes two types of contributions

Jux)e(x2) = Ju(x1)@(x2) + jii(x)e(xs) , (2.53)
where
Jux1)e(x2) = ; [PL], jfx)elx;) = Z [Ri ] (2.54)

Let us require that two sets of fields

{P{} and {R}} (2.55)
should be mutually orthogonal

(P{R!>=0 forallk,m (2.56)

even if their quantum numbers (dimensions and tensor ranks) coincide. This ensures the ortho-
gonality of the states (see the end of Section 1):

Jux1)@(x2)0>  and  ji(x1)e(x2)|0) , (2.57)
{P(x1)@ ™ (x2) Julx3) Jii(xa)> = 0, (2.58)

as well as the unambiguity of the decomposition into the sum (2.52) for the solution of the Ward
identities. Below we demonstrate, in particular, that the expression (2.43) for the Green function
G/, satisfies conditions (2.56) and (2.58).
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2.3. The solution of the Ward identities for the Green functions of irreducible conformal current

All the fields (2.55) that arise in the operator expansion j,(x)@(x;) can be found analysing the
Green functions { j,@j,@ . Consider its connected part

Gl(x1X2X3%4) = CJulx1)p(x2) ju(x3) ™ (X4)conn - (2.59)
The Ward identity for the latter has the form

B Glx1xax3xa) = — [3(x12) — 8(x14)]<@(x2)0 * (x4) julx3)) , (2.60)
where

Co(x1)p T (x2) j(x3)) = KP(x1x2)<@(x1) T (x2)) (2.61)

and K3*(xyx,) is the function (2.45).
In accordance to Eqgs. (2.52) and (2.58), represent the Green function (2.59) as a sum of the pair of
terms

Gl(x1X2X3X4) = Gf;v(xﬂzxax«t) + Gli(x1x2x3%4) 5 (2.62)

where G}, = {j @jy¢) is the transverse function:

O Gy(x1X2X3X4) = a"f’GL",(x 1X2X3Xg) = 0. (2.63)

The first term in Eq. (2.62) is uniquely determined from the Ward identity and only contains the
contributions of the fields P{. As shown in Refs. [2,3], see also [15] and below, it has the form

G;fv[xlxzxaxd = Ki'(x2x4)Ki"(x2x4)<c,a(xl)(p+(x2)> . (2.64)

The second term in Eq. (2.62) only contains the contributions of the fields R} .

To derive these results and to formulate condition (2.56) in terms of higher Green functions, it
proves useful to apply conformal partial wave expansion. Let us start with the Green function
(2.59). Its expansion has the form (1.92) after one sets @%(x) = j,(x) in this formula. The two terms in
Eq. (1.92) can be identified with the two terms in Eq. (2.62) if the transversal functions are chosen
for C%

C3 = Cils. o (x1%X3%3) = D@L, (x1)p(x2) jiF(x3))

~{SD_Z;de+S,1}A}(x1x2x3), (2.65)

where

Aj' {x1x2x3) - (]z_xfz)—(l+d—s—1)+2).l’2 (%x%:!)—[l—d—s+ﬂ—2}|{2 (_%x%:!]—(d+s—!+ﬂ—2)f2 ] (266)

The notation (1.78) has been used in Eq. (2.65). One can show [2,12] that
O CyY, u (x1x3x3) = 0foralll. (2.67)

By oo iy
Such a choice of the functions C$ guarantees the transversality condition (2.63) to hold identically.
Conditions (2.56) and (2.58) also turn out to be fulfilled due to Eqs. (1.97) and (1.84). Thus the poles
of the kernels p;(¢) and p,(o) in the expansion (1.92) determine the contributions of the fields
P/ and R/, respectively.
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The total set of the normalized functions C7and C3 is determined by the orthogonality
conditions (1.84) and (1.85), the transversality condition, and the diagonality condition of the
expansion (1.92). The more detailed calculations are presented in Ref. [2], see also [3,15]. It is
useful to represent the result in the following form. Introduce the functions

C‘; = Il;,(,,ul von fhy (xlexS) — <¢:!| ...u,(xl)ﬁa(xz)A}fng(xab E)
Cs = Chppsy o (X1%2%3) = (B}, (x1)B(x2)A,(x3)) ,

where @ is the conformal partner of the ficld ¢. These functions can be derived from the functions
7 and C3 through the amputation by the arguments x,, x3. Under the normalization (1.84), (1.85),
these functions read

Cy = Chyp .. (x1%2%3) = 2m) 22N y(0, (D — 2 + 1 — d — 5), 134} (x1%2%3), (2.68)
€7 = Cluy . (axaxa) = Q)22 2692 R (0, d){(U + d — D — ), 1} A} (x1x2%3) . (269)
where
2{3+3)H2
Ny(o,d) =

d+s—)D—-2+1—-d+5)
o(1+d+s—D\ (D+l—d+s\ (D-l+d+s) (l+d+s e
. 2 2 2 2
d+s—1 2D —1—d+s l—d+s D—l—d+s ?
r(S2=) (B r (252 r ()
1/2
F(l—d;s+D)F(l+d—|2—s—D)r(l—t;+s)r(D—I;d+s)
Niy(o,d) =

2D —1—d+s d+s—1 D—Il+d+s l+d+s )
r(BEE) (R ) () (B )

(2.70)

(2.71)

Txixsns) = @) 04 0B (o] J DR ) rATETIE, (2.72))

Cg o CEZ‘::‘HA ee My (x1x2x3) » (2‘73)
3D —1—d—4+: -

5‘5~{+s S T ) 1} AYxyx,x3) . (2.74)

The expressions for the renormalization factors in the last pair of functions are presented in Refs.
[2,3,12]. Their explicit form is irrelevant for what follows.
The higher Green functions of the fields Py, R

CPix)p(x2) .. 0 (X2n)) s CRUXDP(X2) ... @™ (X20) (2.75)

are given by the expressions (1.87) for i = 1, 2, respectively, after one substitutes the functions (2.69)
and (2.74) into them. Below we consider the models with no regard to electromagnetic interaction,
having the property that G,(x;x,x3x,) =0, or

(R )(x3) ... ¢ " (x24)) = 0. _ (2.76)
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In virtue of Eq. (1.87) with i = 1, 2, the condition of vanishing of the fields R/ can be written in the
form

-[d)’i dy, Glzp.p, i (X 1Y) Juy2)e(y)e(xs) ... @ (x20)) =0. (2.77)

Condition (2.77) will hereinafter be referred to as the irreducibility condition of the conformal
current, or the condition of absence of the electromagnetic interaction. Note that Eq. (2.77) select out
the class of theories in which all the Green functions of the current are uniquely determined by the
Ward identities; see also Section 6 for details.

The Green functions of the fields P} are determined by the Ward identities. As an example, let us
consider the Green functions (2.41) and (2.59). The solution of the Ward identities satisfying the
conditions (2.77) reads [2,3,12,15]:

Cp(x1)@ ™ (x2)x(x3) ju(X4)) = Kix1x2)<p(x1) T (x2)3(x3)) , (2.78)
(fp(xl)(a(xz)fv(xs)‘;o+(x4)> = Kj'(x3x4)K$=(x2x4} {p(x1)p ™ (x2)) . (2.79)

Conditions (2.77) for these functions mean that the kernels p%(a) and pj(o) of the second term in the
partial expansion of the type (1.92) should vanish for both of these functions. As may easily be
demonstrated by a direct calculation (with the help of the integral relations (A.2) and (A.4)),

pX(0) = pi(o) = 0; (2.80)

see Refs. [2,15] for more details. So the fields R, do not contribute to Egs. (2.78) and (2.79). One can
find the expressions for the kernels p{(¢) and pi(s) corresponding to these functions [2,3,15]

F(D—A)

PO | (2m)P 1 _ 1 2

p!(a)__ﬁ_\/frz(D/2)(d+s l)(D 24+1—d+5) _—F(A)
2

l+d+s—D l—d+A4+s
i e

fag i
X [N(ed AN (o, d)] 2D—1l—d+s D—l+d—A4+sY’ =80
I &
2 2
where 4 is the dimension of the field y, N(od4) is the normalization factor (1.39),
; (2m)P= = 1
J —( — 1)5+1 2 e
r(l+a’+2~s—D)r(D—2 +2Imd+s)
x(D—2+1—d+s)"! (2.82)

d—1l+s+2 2D —1—d+s
(=) (B
In the course of calculations we have used the relations (A.2) and (A.4). The quantum number of
the fields P; are determined by the poles of the partial wave expansion, see, for example, Eq. (1.75).
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It follows from Eqgs. (2.81) and (2.82) that there exists an infinite set of fieldsP] of rank s and
dimension
=d+s, (2.83)
which contribute to the operator product expansions j,@ and @y:

Jux)e(x2) =Y [P, ole)ux2) = 3, [P]. (2.84)

5 5

The invariant three-point Green functions of the fields PJ have the form [2,15]:
<P£(x1)¢’+(x2)fp(x3)> =gj (Jz“xga)_m_zm 5‘:’ [&x%?,)—(n—z};z iﬁ: el (x3x,)]
x (3x12)P 722 Lolx1)p T (x2)) (2.85)

where g$ are known coupling constants. These Green functions may be shown to satisfy [2,3,12,15]
the anomalous Ward identities

/ r
Op (Pl ()9 (x2) julx3)) = gi( — 27 F(d)WE)s—lj
= 1
x Y [O% ... 0% 8(x13)0%,, ... 05 + (...) — traces]<@(x1 )@ *(x2)) , (2.86)

& Trd +s—k

where ( ...) stands for the sum of terms which arise after the transmutations of indices which enter
asymmetrically.

Higher Green functions of the fields P} may be evaluated from the Ward identities using
Eq. (1.87) for i = 1. The explicit form of these expressions will be presented in the next section.

2.4. Green functions of the energy—momentum tensor and conditions of absence of
gravitational interaction

Consider the Green functions of the energy-momentum tensor (1.50). Let Qr be an undecompos-
able representation defined by the transformation law (2.4) and M the space of this representation.
Introduce two types of irreducible tensors

T.(x) and Ti(x), 9,Th(x)=0, (2.87)
transforming by the irreducible representations
Or and Of, (2.88)

respectively. The representation QF is defined by the transformation law (2.4) on the invariant
subspace

T< My (2.89)
of transversal tensors T%, = M". The representation {; acts in the quotient space

My = My/M¥. (2.90)
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Denote the space of metric fields h,, as M. The space of longitudinal fields (2.8) which is invariant
under (2.10) will be denoted as M}°"8. Introduce the quotient space

M, = M/Ms (2.91)
Consider the irreducible representations

0y and 0, (2.92)
acting in the spaces

My and M,, (2.93)
respectively. Let us introduce two types of irreducible fields

here and  hy,, (2.94)

transforming by irreducible representations (2.92).
Consider the fields

Tuolx) = Toolx) + T, Bio(x) = HHx) + o), (2.95)
which transform by the direct sums of irreducible representations

Or® 0%, OF*® 0. (2.96)
Each of the Green functions (1.50) and (1.52) may be represented as the sum of two terms (2.95):

GIAxXy .. Xp) = GT XXy ... Xp) + G (XX ooe X) (2.97)

Gh(xxy ... Xp) = GBI (xx; ... %) + GE, (XX1 ... X) (2.98)
where G1,'* is the conformally invariant transversal function

0F GL T (xxy sie) =0, (2.99)

while G%'°"® is the conformally invariant longitudinal function

G208 (xx, ... Xpm) = OZG" (XX1 ... Xm) + OXG" (XX1 ... Xm) — % 8, 5Gh(xX1 ... Xm) 5 (2.100)
where

Gh(xX1 ... Xm) = {(x)@1(X1) ... @pulXm)D (2.101)
and h,(x) is the conformal vector of dimension d, = — 1.

Note that the decompositions (2.97) and (2.98) are not unique since both representations Q0 and
0, are defined in the space of equivalence classes My and M,, respectively, see Section 6 and [15]
for more details. Similar to the case of current we shall formulate the prescription which fixes
decompositions (2.95) uniquely. This prescription will be given in terms of certain constraints on
the Green functions G, which allow one to conduct an unambiguous evaluation of the Green
functions of Gf, from the Ward identities, and to relate G1," to gravitational degrees of freedom.

Let us demand that the groups of the states of the Hilbert space generated by the conformal fields
T ,(x)and T%(x) should be mutually orthogonal. The fields T, and ,, are related to gravitational
degrees of freedom. It is convenient to formulate the above orthogonality condition [4,15] in terms of
the states generated by operator product expansion T ,,¢. Represent the latter expansion in the form:

Tou(x0)e(x2) = Tlx1)(x2) + Tii(x1)e(x5), (2.102)
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where

Tn(x)o(x;) = g, [Pi1.  Ti(xi)e(x2) Z [RT]. (2.103)

We require the two sets of fields

(PT} and {RY} | (2.104)
to be mutually orthogonal

{O|Pf(x;) Ri(x,)|0> =0 forall k, k', (2.105)

even when the quantum numbers (dimension and ranks) of some of these fields coincide. The latter
guarantees the orthogonality of the states

T(x)e(x2)0> and  Tji(x1)e(x2)0) , (2.106)
which is expressed by the condition
(T lx0)@(x2) Thiy(x3)(x4)) = 0. (2.107)

The above remarks on the role of the fields (2.87) and (2.95) are based on the following
arguments. Note first that the irreducible representations (2.88) and (2.92) are partially equivalent
[21,26], see also Ref. [31]:

Or ~Qi"%, Qf~ 0. (2.108)

The equivalence conditions are expressed by the following relations between independent irredu-
cible components of (2.97) and (2.98)

Glav™"® (XX .. Xow) ~ J dy Djy e (X — ¥) GpolyXy ... Xm), (2.109)

where D%, ,, is the conformally invariant propagator of the longitudinal field hyore

D:’w.pcr (xl 2) o <h:lnng (xl) hlong ( )>

2
o Cﬁ [g;w(xlj.)gva(xl 2) * g,ur.r(xIZ)gvp(xl?.] — E 5}1\'5]‘)6] (2] 10)
where C, is a constant. Expression (2.110) may be represented in the form [15,31]
2 .
D::v.ptr (x12) = 05'Dy po(X12) + 03'Dy 5o (X12) — D 0,03 D palX12) (2.111)
where
5 1 2
D,u.pa (x) = Cﬁ xdg.up(x} S K xpg,ud(x) e E 5paxu . (21 12]

From Egs. (2.109) and (2.111) the representation of Gi‘"’g in the form (2.100) follows.
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The second condition of equivalence is given by the relation
G (Xxg ... X)) = J.dy DL (x — ) G (yx .. ) s (2.113)

where D;', is the transversal propagator. The general conformally invariant expression for the
propagator of the energy-momentum tensor has the form

D:'v.pcr (xl 2) = <T,u.v(x1)Tpr.r(x2)>
=Cr {g#p(xlz)gva(x12) + Guo(X12)gvp(X12) — 2 5;.‘5“} [xl ik (2.114)

In the space of odd dimension this expression is given by a well-defined function and may be
represented as [15,31]

1
DT ‘pﬂ (xl 2) ,f-lv pa (ax,) W s (21 15]
where
ir X (D — 2)
Hpo (0) = 5= 8,08, (5#pa B + 8,50, + 6,,0,05 + 8,60,0,)0
i ! 5= 9600 + 8,,0,0.0)
1 2 1 2
+ 3 (0up0ve + 0,50,,)0° — ( =1 OO0l (2.116)
H}.trv po — H:«“j‘! pe — H})ra- uv s H-Lr;.l pe — 0
J.[\" At (ax)Hit P ( ) Dth uv,po (ax) (2117)
arHY,, (0% =0. (2.118)

In the even-dimensional space the expression (2.114) diverges due to the singularity of the factor
(x2,) . Let us redefine this propagator as follows. Introduce the conformally invariant regulariz-
ation by an addition of a small anomalous correction to the dimension Ir of the field T,

Ip=D — B =D +e. (2.119)

The regularized propagator DF‘, oo Tesults from Eq. (2.114) after the substitution of the factor
(x?,) P ~¢for the factor (x%,) ~ . Define a new propagator for the space of even dimension D > 4 by

DT tpa (xl 2) g a hm ‘BDuv po (xu) (2120)

e—+0
Resolving the ambiguity with the help of relation (2.34) one gets
DL (x13) ~ HE, 5o (0)OP ™42 §(x,,), forevenD 2>4. (2.121)
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Thus, there are two invariant kernel DJ; ,, and D}, ,, for even D > 4. In Section 6 we show that
these kernels are related to a pair of irreducible representations O and QY%, and define the
propagators of irreducible fields T, and T%, . In the case of odd D the situation is analogous, and
will not be discussed here.

It is convenient to introduce the projection operators P and P"® onto the transversal and
longitudinal sectors. Owing to Eq. (2.117) the latter is done in a manner which is natural to
conformal theory, by setting

1
P}.lrv.pcr {ax) = ﬁ H_:trv.pa (ax) » (2.122)
long x tr x 1 2

'P.uv.ptr (a ) ¥ P_uv.pa (a ) = E éupévo + 5;105\’;: - I_) 5_uv5pa . (2123)
One can easily check that thus defined operator P}'8, has the following properties:

Ps. (0%) Pns, (8%) = Pings (0%), (2.124)

2

Pive @) = 0uPy po (8%) + 03P, o(0) — 5 0,403 P;,p0(0%) , (2.125)

where
1|D -2 1 1 1 1
Pp,pﬂ(ax) = 73 [D—_"—l apapﬁa oz~ (5,“,66 + 6110'6.9) 0 + D_1 5,,,,3,, 0O ] . (2.126)

Furthermore, one can explicitly check that the longitudinal propagator (2.110) satisfies the relation
Pir(0%) Dy adX12) = DipyadX12) - (2.127)

As follows from Egs. (2.115), (2.121) and (2.122) the transversal propagator of the energy-mo-
mentum tensor satisfies the relation

P::v,pa axl)Dg‘t;t.Et (xl 2) = ;{vtflr . (2128)
Using these relations one finds from Egs. (2.109) and (2.113)

PL, o ol0%) GE Py oo X ) = G165 o Xine) (2.129)

Pros (%) GEIS(xxt) ... X) = Glpe™H2003 234 X » (2.130)

Note that the remaining pair of irreducible functions, G™ and G* do not satisfy similar relations.
Each of these functions has both the transversal and the longitudinal components, and only the
whole sums possess the property of conformal invariance. As shown in Ref. [15], the requirement of
conformal invariance allows to reconstruct the transversal part of the function Gr, uniquely from
the longitudinal part which is known from the Ward identities provided that one chooses a certain
realization of the representation O . The choice of the realization in this case is imposed by the
orthogonality condition (2.107). As shown in Section 6, see also Ref. [15], the latter allows to
separate out the contribution of the gravitational interaction into the Green function (1.50) in an
explicit manner; see below.
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A resume consists in the following. The general solution of the Ward identities (1.54) represents
a sum of the two conformally invariant terms (2.97). The first one, G7, is uniquely defined by the
Ward identity and the requirement of the conformal symmetry. The second term is transverse, and
may be expressed through the Green function of the metric field by Eq. (2.113). In the space of even
dimension this equation takes the form:

Gy "(xX1 .. Xpn) = O22P, 50 (0 hpeX)P1(1) .. Prul(Xm) - (2.131)
In four-dimensional space it coincides [31] with the equation of linear conformal gravity:
O%h,(x) — D(8,05hv6(x) + 8,85h,0(x)) + %0,0,8,0:h04(%) + 36,,,[10,8;h,:(x) = Tir(x) -
(2.131a)

The longitudinal part G&°"¢ of the Green function G, = (h,,¢; ... p,,»> does not contribute to
Eq. (2.131). It is determined from Eq. (2.109) and may be calculated directly from the Ward
identities:

Gl (XX ... Xp) = — Zde Dy, f(x — VO T po(0)@1(X1) - @ulXm) (2.132)

where D, ,(x) is the function (2.112)
D;;v.p(x = y) — Pp.lt(ax)Dﬁv.Ar(x = .V) .
Thus, the functions
GI, and Ghlone (2.133)

are determined by the Ward identities, the function G%, remains arbitrary, and the function GL" is
expressed through it by Eq. (2.131) (or a similar one for odd D). To this pair of functions (2.133)
a pair of equivalent irreducible representations 0 ~ QI corresponds.

According to Ref. [15], see also Section 6, the Green functions (2.133) describe the contribution
of matter fields into energy-momentum tensor, while the function G:’w , as well as the transversal
function GJ,'* which expresses through it, are related to gravitational interaction. To this pair of
functions, GL,' and G%, , another pair of equivalent irreducible representations ' ~ 0" corres-
ponds.

Due to this, the theories which are free of gravitation interaction are selected by the following
condition: the energy-momentum tensor transforms by the irreducible representation Q7. Its Green

functions coincide with GL, :

(Tu(X)P1(X1) . @lXm)) = Gi(XXy ... Xp) 5 (2.134)

and, in virtue of the above arguments, are uniquely determined by the Ward identities.

2.5. The algorithm of solution of Ward identities in D-dimensional space

Condition (2.105) or (2.107) select out irreducible contributions of the energy-momentum tensor
into the Green functions (1.50). Let us formulate these conditions in terms of conformal partial
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wave expansions. Consider the Green function
G;{vpa (x1x2x3x4) = <Tgv(x1)(p(x2)Tpv(x3)§a(x4)>conn ’ (2135)
On account of Eq. (2.107), the latter may be represented as

G:vpa (x1x2x3X4) = Gg'vpg(xlxzxax‘t) + Giylae (X1X2X3%4) (2.136)
where
G.El'vpa‘ = <Tuvqofpo§0> ) G;Tvga' (T v(DTpa@> (2137)

The partial wave expansion of the Green function (2.135) has the form (1.105), if one sets
@' (x) = T, (x) in that formula. The invariant functions C{ = Cj,, entering this expansion may be
chosen so that the last term in Eq. (1.105) becomes transverse. The general expression for the
functions C7,, has the form (1.101) after one sets /; = D. We have

Co(x1X2X3) = B, (x)@(x2) T lx3)) = {AP, 4D, AD} AT (x1x2%3), (2.138)
where A{" are the constants; i, k = 1,2,3,
T(xlx2x3) - (éx ) (l+d—s— D+2},ﬂ'2( 3)—(T—d—s+D—2)f2 (%x%S}—(d+s—I+D—2)12 ' (2-139)

The coefficients A’ are determined by the orthogonality conditions (1.102) and (1.103) up to an
SO(3) transformation. Using this ambiguity, one can make the function C5,,(x2X,x3) transversal:

ngv(xlxzx‘.’») = {P,4(x 1)(p(x2)TL’v(x3)) s af g.uv(xlxzx?:) =0. (2.140)

One can show [3,15] that this condition leads to the following equations for the coefficients A,
k=123

1
p [P = & +)4P —5 —l4+d+ 949 =0,

—I—I)A‘f“-i-(l d— )A‘3’+(5— ) —d—s—D+2A4Y =0. ' (2.141)

Note that these equations have non-empty solutions only for s > 2, when all three coefficients
A are non-zero. When s = 0, 1, no transversal function exists, see Egs. (1.79) and (1.81). Under
this choice of C%,, the partial wave expansions for the Green functions (2.137) take the form, see
Eq. (1.105):

p.\'pa = Z Z dx dy Pi (G) Ct;xv(xxle.}‘d;l[x = y) C?pu (yx3x4} ’ (2'142)
G::rvpcr = Z dx dy p3(0—) Cgﬂv(xxlx2)A; l(x - y) C%po(yx3x4) ’ (2143)

One can show [3,15] that the function G,,,, is determined uniquely from the Ward identity.
Substituting expression (2.142) into this identity and using the orthogonality conditions (1.102) and
(1.103), one can evaluate the kernels p;(d) and p,(c) as well as the coefficients 4§ and A4{”, on
which the functions C{,, and C3,, depend. The problem consists in the diagonalization of the



40 E.S. Fradkin, M.Ya. Palchik |/ Physics Reports 300 (1998) 1-111

partial wave expansion of the general solution of the Ward identity (similar to the procedure
conducted in Section 3 for the Green function GJ,). It is discussed to a greater extent in Ref. [15],
see also Ref. [3]. In principle, this problem is not much complicated, though it calls for quite
cumbersome calculations to be published separately.

The fields P (x) are determined by the poles of the kernels p,(¢) and p,(c), while the field R](x),
by the poles of pi(g). From what has been said it follows that the Green functions of the fields
P{ are calculated from the Ward identities, while the Green functions of the fields RT are
determined by the metric field E,”.

The higher Green functions of the fields P{(x) and R} are expressed through the residues of the
kernels

Gl = Gilxy ... Xm), G%=G3(x;...xn), G5 =G5(xy...xp) (2.144)

of conformal partial wave expansions (1.112) for the Green functions {T,,@; ... ¢,,». The first two
terms in Eq. (1.112) coincide with the function G'j‘,, see Eq. (2.97), while the third term, with the
function Gj,'". To calculate the kernels (2.144) it proves helpful to introduce the functions
Ci-’,n, amputed by two arguments. The latter enter into orthogonality conditions (1.102) and (1.103)
and into the equations of the type (1.87),

Cou(x1x2%3) ~ (DU )P(X2)h(X3) D s (2.145)

where @ is the conformal partner of the field ¢. In particular, one has for the kernel G5

Gi(x1 ... X)) = fdx dy C3,(x 1 x)) Ti(0)@1(X)P2(X2) ... PoulXm))

= J‘dx dy cgnv(xlxy}< T 1(X)@2(x2) ... @ulXm)) - (2.146)

The last equality is the consequence of orthogonality of the function C3,,, to the functions Ciuvand

Eﬂ\' :
J.dx dy C5,/(x1xy) Clu(x2xy) = J-dx dy C§u(x1xy) Culx2xy) =0 (2.147)

for all g, ¢’
The irreducibility condition (2.134) means that the kernels ps(c) and G vanish
pil@) =0, Gi(xy...x,) =0. (2.148)

Taking into account Eq. (2.146), one can rewrite these conditions as the following equations on the
Green functions of the energy-momentum tensor:

_[dx dy Cux1xyK T (1)@ 1(¥)@a(x2) ... > = 0. (2.149)

In the models where these conditions are fulfilled, all the Green functions of the energy-momentum
tensor are uniquely determined by the Ward identities.
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The Green functions of the fields PI(x) in such models are calculated from the equations of the
type (1.71)

(PI(x1)@a(X2) ... @mlXm)) = Ai TES de dy Co(x 1 Xy T (D)@ 1(X) - . OlXm)D (2.150)

a=a,

where C;, is the function (2.145) orthogonal to the transversal functions C%,, :
jdx dy Co(x1xy) Coulx2xy) =0 foralla,d". (2.151)

As will be shown in the next section, the only fields which may exist in the models satisfying
conditions (2.149) are the fields P{ with the quantum numbers o} = (d + s, 5). We will consider an
infinite set of such fields

(P} wherely=d+s. (2.152)
2.6. Conformal Ward identities in two-dimensional field theory

Two-dimensional space is specific by the property that both the current and energy-momentum
tensor are irreducible fields. When D = 2, there is no problem in the decoupling of Euclidean
transversal field T%,(x), just because this field is zero. Gravitational interaction in this case is trivial
and has no influence on the dynamics of matter fields. The representation of conformal group’,
given by the transformation law

05 Ti) = ﬁ G1oX)so() Trol RY) (2.153)

is irreducible. The energy-momentum tensor, being the traceless symmetric tensor, has two
independent components

Ti14+ T3,=0, Ty2=T3;. _ (2.154)
The transversality condition
9, Ti(x) =0
is equivalent to a pair of equations on these components, having the unique solution
TEEI=0.

The projection operator introduced above to utilize the decoupling of the subspace MY also
vanishes for D = 2, while the longitudinal projector P}38,(0/0x) is unity

0 o
P:arv.pa(a) = 0- P:P\.-r??m(éz) = I,_;-p‘pg' forD=2.

! The six-parameter conformal group is assumed.
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Thus any traceless symmetric tensor T',,(x) is longitudinal

a
Tolx) = PL"rga(ax) Tyol) = Tir(x)

and may be represented in the form
T () = 0,T(x) + 8, T (%) — 6,,0:T (%), (2.155)

av 1
Tu=2 Tl =5 Tu®), (2.156)

where T,(x) = 0,T,(x) is the conformal vector of scale dimension D + 1. Thus the irreducible
representation, given by the transformation law (2.153), is the analogue of the representation Qr,
which corresponds for D > 2 to the models where the gravitation is neglected.

From the above it is clear that the Green functions

<T,uv(x)(ol(xl) S v q’m{xm)>r <T,u\'(x)Tpa[y)(P I(xl) =¥ (Pm(xm)> (215?)

are uniquely determined by Ward identities. For the case of D > 2 this property is proved for the
conformal theories satisfying the condition (2.151), which fixes the realization of the representation
Or and simultaneously drops down the gravitational interaction. We have already mentioned the
similarity between such theories and two-dimensional models. In the next sections we expand this
analogy to a greater extent. For this reason, in the present section we keep the component form of
Ward identities (though, the complex variables are more useful).

The conformally invariant solution to Ward identities is given by Egs. (2.155) and (2.156).
Consider the Ward identities for the Green functions (2.157) for D = 2:

BT )os(n) . oulold = —| & o6 s = 505 3 deotx— w0 |

X LP1(x1) - Pm(Xm)> 5 (2.158)

where d, are scale dimensions of the scalar fields ¢, k = 1, ..., m. The r.h.s. represents the Green
functions for the vector T ,(x)

(T UX)@1(x1) ... OmlXm)>
Using Eqgs. (2.155) and (2.156), and the relation

é )=~ i Inx*, (2.159)
we find
1 m
(T w(X)P1(x1) .. (X)) = b { Z Joguapty 2 [(x — X1, 0F + (x — x3),05 — 8,y(x — x3)203]
k=1
i d
T &“‘_‘1‘;;5“5 Gl X — xk)} CP1(x1) ... OmlXm) - (2.160)
=1
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The anomalous Ward identity considered in the next section takes the form for D =2

O Ty (x ) T palX2)p(x3)p(X4) )
= - {5(—’513)6':’ + (x14)07* + 6(x12)03* — ; 03 [(x13) + 5("14)1}

X LT pox2)p(x3)p(xa)> + 05'0(x12) {TyolX2)p(x3)(x4)>
+ 850(x12) Typ(x2)@(x3)p(x4)) — 0,507 0(x12) Tya(x2)@(x3)@(x4)>

1 o1
- m C {aj\f’(az’aal = 5 5pan,)5(x12)

1
_Z (5\*,06:' + 5\'08;1 - (Spaa::l)[]x, 5(x12)} ((P(X3)(P(X4)> E] (2161)

where C is the central charge. Its solution may be also easily written down using Egs. (2.155),
(2.156) and (2.159).

For the sake of convenience in juxtaposition of some of D-dimensional theory results with those
of known two-dimensional models, let us list several formulas concerning the transition to complex
variables for D = 2

xt =x! +ix?, 8. =%(al Fi0,). (2.162)

Any traceless symmetric tensor in two-dimensional space has two independent components. Define
the complex components of the tensor V,, _, by the relations

Va=2"% |V 1 FiVy 1| - (2.163)
N N——
K3 g1

The contraction of a pair of traceless symmetric tensors ¥ and W has the form
23_2Vm vt Wy =ViW_+V_W,. (2.164)
In particular, we will use complex components of the tensor fields P, with dimensions d + s

P_E(X) = le ,..;u,(x) -

They read

Pi(z) = PEt(a) =2¢7% | PE gipite | (2.165)
—~— ~

8 s=—1
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Denote the components of the tensor
A5 (x2x3) = Ay} u(x2X3)

as A;4(x,x3). One can show, that

| S s 1 x5 \*
A5 (x2%3) = 5= [A2 (%) = 5= (ﬁ?ﬁ) (2.166)
where
A2 (x2x3) = AT'(X2X3) F iA3'(x2x3) = x:i.tz/xlileis . (2.167)

The components (1/x?)g+(x) of the tensor (1/x%)g,.(x) are

1
x5

900 = [91109) F igeal)] = —

Let us rewrite the Ward identities using the complex variables. Introduce 7. components of the
energy-momentum tensor

Ti(x) = Ty,(x) FiTy2(x). (2.168)
The Ward identities have the form
£ (T (00(X1) - Do)
= — {;31 O(x — x)0% — % 0% ;E:l did(x — xk)} {p1(x1) ... OmlXm)D 5 (2.169)
O3 Ta(x) T 4 (x)P(x5)0(xe))
= - {5(3613)3’53 + 81 0% — 5% [3(1y) + a(xmu} (T 2(52)0(x)0(x)>
— (01200 — 2820(x12)] < T+ (x2)0(x3)(xe))
— o 0% 0% B%6(x1 ) x)olxa)) (2.170)
Egs. (2.155) and (2.156) take the form
To() = 40.To(x), OT4(9=85Tu(0),

where

'Ti[x} = % (Tl(x) + ifz(x)) .
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The solution of the Ward identities (2.169) and (2.170) reads, in complex variables
(T +(xX)@1(x1) - @mlXm)D

{(m d '
=7 {kzl (x—“—)z+ Z oF — xB) }(fpl(xl) Ol Xm)) » (2.171)

1 4 d 2 1
<Tt(x1)mxz)cp(x3)qo(x4)>=E{(i LIS | _iag}

xi)?  (xf3)?  (xi)? k=2 Xik

X (T +(x)olea)olx)) + )4 (pleotxn)y.  (2172)

n* (xi

2.7. Ward identities for the propagators of irreducible fields® }; and T,

The conformally invariant propagators should be defined according to the assumptions on the
contractions of Euclidean fields

J.dx A (x)j, (), 'f dx h(X) T () - | (2.173)

In particular, such contractions enter to the equivalence relations (2.27), (2.109) and (2.113). The
definition of the propagators depends on the choice of representations (2.15) of the conformal
group, which are connected to the fields 4,,j, and h,,, T,, Consider the models satisfying
conditions (2.77) and (2.149). Only irreducible components

Jux), A%(x), T ul(x), Bi¥(x) (2.174)
are non-zero in such models, while the components 4 4(x) and h,, vanish:

fa,u(x) = Eﬂv{x) =0

The propagators of the current and the energy-momentum tensor in these models may be chosen
from the requirement of finiteness for the contractions

jdx dy A"(x)Dl(x — y)AY"), fdx dy Bx)Dyype(x — Y)Hgs () - (2.175)

As follows from Egs. (2.31) and (2.114), the latter property depends on the dimension of the space.
Here we restrict ourselves to the case of even D > 2. A somewhat modified recipe may be proposed
for the case of odd D. It will be discussed in the other paper.

Now consider the propagators of the current. The first contraction is finite, provided that one
utilizes the expression (2.32) for ¢ = 0. The propagator (2.32), though divergent, is formally
transversal for ¢ = 0. Its contraction with longitudinal fields enters the first expression (2.175). As

2 The total conformal propagators of current and energy-momentum tensor, see Egs. (2.52) and (2.95), are discussed in
Section 6.
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the result, the integral in Eq. (2.175) has an ambiguity 0 x oo . To resolve it, let us make use of the
regularization (2.30). As ¢ — 0, we get from Eq. (2.32):

aﬁ' va(xlznwo = —¢D—-2)" 1Cj o (% x%z}_ﬂH P (2.176)

It is seen that in the limit ¢ = O propagator (2.30) contains a finite longitudinal part. Using relation
(2.34) for calculation of the limit (2.176) we get the following Ward identity:

3t Gulleidxa)> = C; a30OP 272 §(x,4,), (2.177)
where C; is the independent parameter analogous to the central charge, and
C;=4n"P2(D)I(D/2) C;.

Note that one cannot use the limiting expression (2.177) for the calculation of the contraction
(2.175). The latter would break down the conformal invariance. One should calculate the integral of
the regularized expression, taking the limit ¢ = 0 only after that. Let us stress that such a definition
of the propagator is admissible in the theories which are free of electromagnetic interaction, where
Ay x)=0.

The condition of equivalence of representations Q; and Q'™ may be written in any of the two
forms

Julx) = J‘ dy Di(x — pAV™(y), ArHx) = f dy Di(x — y)uy) - (2.178)
The conformally invariant propagators D, = (j:}'",) and Dj, = (A4,A,) satisfy

Julx1)Ax2)) = -[dx DI (x1 — X)Da(x — x2) = 8,,0(x12) . (2.179)
The integrals in Egs. (2.178) and (2.179) are calculated with the help of regularization (2.30). The

normalization constant C, in Eq. (2.28) is calculated from Eq. (2.179) and is equal to

-Dj2
C..-l - %( s 1)D!2+1(2.‘,r)-0!2 F(D)EL - ( o 1),{)(2+1 (47[) 1

; TR C; (&150)

In the course of calculation we have used the integral relation (A.1).

It follows from Egs. (2.178) and (2.179) that in the class of models under discussion one can pass
from the Green functions of the current to the Green functions of the field A} This results in
a number of technical facilities, see Section 4. The Green functions which include several fields
Ale"® satisfy the following Ward identities [5]:

COP™ 2205 o) T (y2) Au(X) A, (x1) ... Au(X1)>
= 05 (y1)@ * (y2)ju(¥) A, (x1) ... Au(xi))
= — [0(x — y1) — 6(x — y»)] (¢(Y1)‘P+(J’2)Ag,(x1) e Ay (X))

+ Z 00(x — x.) <@1)@ ™  (¥2)Ap,(X1) - A, ... Ay (x> (2.181)
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where the notation 4, means that the field 4, (x,) is dropped. Here and below A4, is assumed to be
a longitudinal field

A (x) = A™¥(x) . (2.182)
The solution to the Ward identity has the form [5]

(@(61)0 F (x2) A (X1) - A (5> = (@) A2 Y2) e 22 01Y2) K@) * (7)) . (2.183)
where

Dj2+1 (4“) e 1

=2C,=2—1 2.184
Consider the propagator of the energy-momentum tensor. The second contraction (2.175) can be
made meaningful introducing the dimensional regularization (2.119) and I, >l =D — 5 = —&.

All the above statements concerning the propagator of the current, as well as relations
(2.176)—(2.180) are casily generalized to the case of the fields T ,,, hl3"8. In particular, one has for the
regularized propagator:

05D o(x12) = eCr[(D — 1 + (D + 1 — £)] ! {aﬂa‘.a,, (QT)M (8,505 + 8,00,)0
l + 8
ST it B D}(xu) D+1- (2.185)

Transition to the limit ¢ = 0 with the help of relation (2.34) will result in the following Ward
identity:

O T x )T polx2))

D—-1 1 - ;
=Cy {a,‘apa, ~ 3D (84905 + 8,00,)00 — D2 5,,,,6,,[1} OB=22 565, 5] , (2.186)

where Cy is the analogue of the central charge of two-dimensional conformal models.

When using partial wave expansions, both formulations, either in terms of the fields T},, or in terms
of h'°"¢, are equivalent. However, this transition is possible no sooner than the Ward identities for the
Green functions of two or more T},, fields are solved, due to the non-Abelian character of the latter.

3. Hilbert space of conformal field theory in D dimensions

Let M be a Hilbert space. The requirement of conformal symmetry together with several
assumptions of quite general character leads to rigid constraints on its structure. Any field model
may be formulated in terms of a certain consistent conditions imposed on the states of the Hilbert
space. In this section we study possible types of these conditions and consider the class of
conformal models issued by the latter. We demonstrate the existence of the subspace H of the
Hilbert space

HcM

in which the conditions fixing each model are formulated.
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3.1. Model-independent assumptions. Secondary fields

Consider a theory described in terms of a definite (finite) sets of fields. The latter fields will be
treated as fundamental. In the Lagrangian approach they are the very fields the Lagrangian is
constructed from. In our approach no model-dependent assumptions are made. The number of
these fields as well as their spin-tensor structure is supposed to be given. For the simplicity, let us
discuss the theory including one or two fundamental scalar fields

@(x), x(x)

having scale dimensions d, A. The ¢(x) field may be either charged or neutral, and y(x) is the neutral
field.

Then we make two model-independent assumptions:
1. The existence of the field algebra:

Pi(x1)Pi(x,) = Z (D] . (3.1)

It may be shown [2,12,15,21,22] that the latter result, being indifferent to a choice of bare
interactions, is a general consequence of renormalized Schwinger-Dyson system.

2. It is supposed that the field algebra includes the energy-momentum tensor and the conserved
currents (in the presence of internal symmetries). The latter satisfy the following conservation
laws (in Minkowski space):

0,T,(x)=0, 8,j,(x)=0 (3.2)

and have the canonical dimensions Iy = D,l; =D — 1.

The generators of the conformal group are expressed through the components of the en-
ergy-momentum tensor. If a symmetry higher than the conformal one will appear to be present in
the model, then its generators will also be representable in terms of energy-momentum tensor
moments. Analogously, the internal symmetry generators are expressed in terms of local currents.
For the simplicity, the Abelian symmetry will be considered here (though the most interesting
models ‘arise in non-Abelian case). Let us stress that no model-dependent assumptions on the
structure of either the energy-momentum tensor or the currents in terms of fundamental fields are
made. Being the “local symmetry generators” of the theory, the current and energy-momentum
tensor define the transformation properties of the fields. Equal-time commutators of their compo-
nents with the fields

3(x® — y°) [Toux), @)1, 3(x° — ¥°) Lio(x), @(y)], _ o(x® — y°) [Tou(x), x(»)] (3.3)

are considered to be given. Moreover, the algebra of the conformal group fixes the equal-time
commutators of energy-momentum tensor components up to gradient terms. An internal sym-
metry algebra fixes the commutators of currents components (the only terms admissible in an
Abelian case are the gradient terms). Thus the equal-time generators

[Tou(x1), T palx2)], Lio(x1), ju(x2)] - i (3.4
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are considered to be known up to gradient terms. Their choice defines different types of models (see
below).

These two statements, supplied with the requirement of conformal symmetry, would result in
a quite specific structure of a Hilbert space resembling that of two-dimensional conformal theories.
There exists a special subspace H in a total Hilbert space, which is begot by the energy-momentum
tensor and the current. We call this subspace the dynamical sector (see Sections 3.3 and 3.4).

The next step consists in a formulation of the dynamical principle that fixes a model. As we show
below, under a definite choice of anomalous (gradient) terms in commutators (3.4) the dynamical
sector includes special states, which may be set to zero with no contradiction to Ward identities.
These states are analogous to null vectors of two-dimensional conformal theories. Each of them
defines an exactly solvable model. The simplest models of scalar fields discussed in Refs. [4-6],
belong to this class of models, see also Section 4.

This program is conducted in three steps. At first, the total Hilbert space of the conformal theory
is constructed in the framework of the first statement. As described in Section 1, the Hilbert space
can be represented as an infinite direct sum of mutually orthogonal subspaces M’

M=) @M. (3.5)

Each subspace M, is spanned by the states [2,15]
P(x)[0) , (3.6)

where @,(x) is any field entering the algebra (3.1). The states (3.6) for each k form a basis of the space
of irreducible representations of the conformal group. From this fact the orthogonality of subspa-
ces M, follows

0| P x1)Pi(x)|0> =0 form # k. (3.7)
The subspace of states
@(x)[0),  x(x)I0) (3.8)

also enter the sum (3.5). Thus the set of states (3.6) for all k may be considered as a basis of a total
Hilbert space M. All the states of fields ¢ and y of the type

P(x1)p(x2)0,  @(x)x(x2)@(x3)|0D,  @x1)(x2)@(x3)[0), ... (3.9)
as well as the states
Pp(x1)p(x2)|0),  Pr(x1)Pi(x2)I0) (3.10)
aEre ?lc:(;g;nposed into this basis owing to the statement (3.1) on the conformal field algebra, see
g. (1.59).

At the next step the second statement, that is, the existence of the energy-momentum tensor
and the current, is studied. The principal result consists in the fact that the choice of commutators
(3.3) and (3.4) together with the conditions of conformal symmetry makes possible to find the states
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of the type
Jux)@(x2)|0,  ju(x1)jx2)@(x3)I0, ..., (3.11)
Tpv(xl}(P(XE)iO)’ Tpv(xl)Tp:r(-xE)(p(xﬁi)}O)s Tprv(xl)X(xz)}O)a meuy (312)

and to obtain their expansion in the basis (3.6). This result is justified rigorously under the following
additional constraint: a current and energy-momentum tensor in Euclidean space transform by
irreducible representations of the conformal group. This constraint singles out a class of models of
direct (non-gauge) interaction of the matter fields for D > 2 and is expressed by Conditions (2.77)
and (2.149) (for D = 2 the latter hold identically). As shown in the Section 2, the Green functions

T il ™Ny CJpeestt™)y LT osc¥ls LTl s oos (3.13)

and, therefore the states (3.11) and (3.12) are uniquely determined by the Ward identities, provided

that Conditions (2.77) and (2.149) hold.
The expansion of the states (3.11) and (3.12) in the basis (3.6) is formulated in terms of Euclidean

operator product expansions. In particular, when applied to the states

Julx1)@(x2)[0>, T, (x1)p(x2)0>
these expansions read (see Section 2 and [2,3,15] for more detail)

Julx2)e(x:) =Y [P1], (3.14)

T_uv(xi’.)qo(xl) = Z [P.Z‘] ’ (315)

5

where P/ and P] are symmetric traceless tensor fields of the rank s with the scale dimensions
d=df =d +s.
This result is the consequence of the Ward identities, see below. In what follows we use the unified
notation
Pyx) = {P4x), PI(x)} = P,, .(x), ds=d+s. (3.16)
The fields P/ and PT may be either orthogonal to each other (ie. {(Pix;)P¥(x,)> = 0) or not,
depending on the model. When s = 0 both these fields coincide with the fundamental field
Pyx)|s=0 = @(x) . (3.17)

The fields P! exist only for a definite type of gradient terms in commutators (3.4); see below.

The fields P! and P! have the transformation properties similar to those of secondary fields of
two-dimensional conformal theories. The part way evidence to this is the presence of non-zero
Green functions

CPlotiy, (PTo* Ty, s#0,

which satisfy anomalous Ward identities. The Green functions {Plp*j,> as well as the Ward
identities for there functions are given above, see Egs. (2.85) and (2.86), and they are discussed in
more detail in Refs. [2,3,15], where the explicit expressions for the Green functions (PTo* T,,»
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may be also found. The commutators of fields P/ with the component j, are expressed through
the fields P/ in the usual manner and have, beyond that, anomalous contributions of the
fields Pi(x), where s'=0,1, ...,s — 1. The corresponding Ward identities also have ano-
malous contributions of these fields. In Section 4 we give the examples of such anomalous Ward
identities.

The commutators of fields P with energy-momentum tensor and current components include
anomalous operator terms

3(x® — y°)[ Toux), P{(¥)]

=i6P(x — O, PI + Y HE"@,, )6P(x — P (»), u=0,1,....,D—1. (3.18)
m=1

The analogous terms enter the commutator [jo(x), Pi(y)]. The I-?ﬁ"‘ operators in Eq. (3.18) are the
differential operators of rank s + 1

0
O,=—, i=12 ...,D—1; 6”=a—yp, u=01..,D—1.

The " derivatives act on the argument of a field PI_,(y) only. The A operators are the sums of
terms of the type

@ 8(x — Y@y ™, r=0,1,...,m,

which, in principle, could be calculated for any class of models. In the same manner, conformal
Ward identities for the Green functions
Gf::r.g, ,..p,(xxl eriE xm) = <Tuv(x)PI, .,.y.‘(x 1)(»0(x2) Lo (Pm(me (319)

satisfy the anomalous Ward identities

m

d
Z 5 aﬁé(x = xk)

k=2

G s, u (XX . X)) = — [i 8(x — x, )08 —
k=1
+ H{o (0%, 0(x — x1); 0™) {Py(x1)(x1) ... (X))
+ Zs: Hy (0%, 8(x — x1), ) Py (x)@(x1) ... @(Xm)> , (3.20)
k=1

where HY, are the differential operators which consist of the terms
@)1 8(x — xy) @%), r=0,1, ...,k.

The explicit form of these differential operators may be derived from the Ward identities for the
conformally invariant Green functions

{ T (X)Pdx)Ps(x2)), §=0,1, ....,8—1. (3.21)
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These expressions are in general very cumbersome. As an example consider the Green functions
{T,y@P;). The corresponding formulae were found explicitly in Refs. [3,15]. They read:

CPANOIT sl = aF ()02 30"

X |:'§j’ o — D 2)(6? o+ 0N T — tracc]
x (xi3)" P72 A0 L (xsxz)} Cox)p(x2)) + -+, (3.22)

where § =3 — 0, g7 is the coupling constant, and dots stand for quasilocal terms, see Refs. [3,15].
The Green functions (3.22) satisfy the Ward identities

OV Py, .. ux1)@(x2) Talx3)> = H (0™, 3(x13), 8) {p(x1)op(x2)> . (3.23)

The general expression for the operators HY for s > 2 depends on two parameters [3,15]. One has
for s =1;

D-2
Hf ~ & 05:07°0(x13) + Oy, Oy 0(x13)

3 I:a"’é[xl 3)O%" + 0y, 0330(x13)05" — —2- 0;20(x; gam} (3.24)

The fields having anomalous commutators of the type (3.18) will be called secondary fields
generated by the primary field ¢(x). A complete set of secondary fields will be studied below. Let us
remark that the origin and transformation properties of these fields are analogous to those of the
secondary fields in two-dimensional conformal theories.

Note also that no field other than fields (2.15) can enter the operator expansions (2.14) and (2.15).
Indeed, suppose that some field &, = @ with I, # d + s is present in the expansion (2.15). Then
there exists a non-vanishing Green function {@,¢T,,>. The Ward identity for this function has the
form:

O Po(x1)Pp(x2) T o(X3)) = { — (x13)05 — 8(x23)05 + -+ } {DPo(x1)(x2)> =0. (3.25)
In the last equality the orthogonality condition
(Po(x1)p(x2)> =0 iflo#d,s#0 (3.26)

has been used. Consequently, the Green function {@,pT) is either transversal, or vanishes.
However, the transversal functions cannot exist in theories satisfying the condition (2.149). Hence it
follows that

(Po(x1)@(x2)T u(x3)p =0 iflo #d, s #0. (3.27)
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The fields PT is an exception since its Green functions satisfy anomalous Ward identities. The r.h.
sides of the latter contain the terms ~ {¢(x{)@(x;)> besides the “usual” terms accounted for in
Eq. (3.25). Though, such anomalous terms are admissible only for the fields with dimensions d + s,
see Ref. [3,15] for details.

3.2. Green functions of secondary fields

Consider the higher Green functions of the fields P In the theories satisfying the conditions
(2.77) the latter are defined by Eq. (1.87):

(PYx1)@(x2) ... @™ (X20))

= A} res fdx dy €y, X 1)<GNPX)P(x2) ... 9™ (X20)) (3:28)
I=dts

where the functions C‘l,‘_ 4 ..., are given by the expressions (2.69) and (2.72), and may be represented

as

1, ...,u,(xlxlei) = (‘@L. .,.u,(x1)(5(x2)AL°ng(x3)> = aféi,i__,u‘(xlxzxﬂ ’ (3.29)
where

C:x,...,u.(xlx?.x:i) =(2n)” RiZ 20— HE N (U ) W (xsxz)zf: (x1%2X3) . (3.30)
Substitute Eq. (3.29) into Eq. (3.28) and bring it into the form

CPix)p(x2) ... 0" (X20))

= — 4 res fdx dy Gl u(erxp R IRIX2) . 07 (x20) (3:31)
=d+ts

The integral in the r.hs. is taken as follows. Applying the Ward identity, represent integrand
expression as a sum of terms, each term containing the factor d(y — x;). The term containing
5(x — y) does not contribute since it is multiplied by the power of the difference (x — y). Resultantly,
the integral over y evaluates due to the factors d(y — x;). As for the integral over x, note that the
function A%x,xy) entering Eq. (3.30) contains the factor [(x; — x)]~*'7*~9/2 see Eq. (2.72). This
factor is singular in the limit / »d + s. Represent the expression (3.30) as the sum of terms
containing this factor and then thread the symbol res; -4+, through the integral sign. Calculating
the pole of the integrand, we obtain the sum of terms each containing derivatives of 6(x; — x). After
evaluation of the integral over x, Eq. (3.31) may be rewritten in the form [5,15]

(P, )@(%2) o 0 (x2n)) = Pl (%,85) €0(x1) ... 07 (x20)) (3.32)

where f” . (x,0;,) is known polynormal of rank s in derivative the 0,, its coefficients being
dependcnt on the differences (x; — xi), k = 2, ..., 2n. As an example we display its expression for
s=1:

2n

Pi(x,8,) ~ [B"l—Zd y ("‘“‘ +24 Y (ﬁ;ﬁ] (3.33)

k=2 k=n+1 X1k

Next section contains expressions in more complicated cases.
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The Green functions of the fields P! are defined by Eq.(2.150) upon the substitution
ox = (d + s, s). The functions C9, entering Eq. (2.150) are orthogonal to the functions C3,0 SEE
Eq. (2.151), and can be represented in the form (see Refs. [3,6,15] for more details)

wa = C:w.u, on(X1X2X3) = <¢‘L‘ .,.p,(xl)ff’(xz)ﬁif’fg(xs)>

2
=03 By, ..u{(X1%2%X3) + 87 By, (X1%5%3) — 3 Ow0P Bl . ulX1X2%3) (3.34)
where B, ,, ., is the conformally invariant function

BL,;.. ,,.u,(x1x2x3)

=Py, .. (X1)P(x2)h,(x3))

. 1 5
~ {Aﬁ’(xlxz) A ulX3xg) + %7~ [ Y Gun(X13)A5 4 n(X3X2) — traOCS]}
k

13 Le=1
x Al(x1x,%3), (3.35)
@ is the conformal partner of the field o, h, is the conformal vector of dimensiond, = — 1, & is the
constant,
Z{r(xlexS) — (xfz)—(f—d—s-!—ﬂi— 2)/2 (x'.is) ~(l-d-s+D-2)/2 (X%:;)_“ +d—s5—D—2)/2 ) (336)

Substitute Eq. (3.34) into Eq. (2.150) and bring it to the form

(Py, . (X1)p(x3) ... @)
= —2A] res '[dx dy By(x1xy)O( T N@(x)@(x3) ... pxm) - (3.37)

The integral in the r.h.s. is calculated in the same manner as the integral (3.31). One can show that
the resulting expression takes the form

(Pl aX0)0() .. (X)) = B (%, 85,) <@(X1) ... 9(Xm) (3.38)

where P}, , (x, d,,)is known polynomial of rank s + 1 in derivatives. Its expression is presented in
the fourth section for the case s =1, m = 4.

3.3. Dynamical sector of the Hilbert space

Consider the states

Jux1)iVx2)@(x3) [ 03, Tpulx1)T palx2)ep(x3) | 0 . (3.39)

According to Eq. (3.1), the basis vectors of a Hilbert space may be found from expansion of the
states

Julx)PYx5) |05, T,(x1)P{(x2) | 0) . (3.40)
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It is possible to bring the result into the form of operator expansions?

Ju(x1)Pi(x;) = Z [Pi]+ Z [Pi], (3.41)

Tn(x)PT0e) = Y [PF1+ 3 P71, (342)
where

Pi(x) = {P}*, Pg°} = Py, () (3.43)

is a new family of symmetric traceless tensor fields with dimensions
dy =d+5s.

The fields PS. have the same properties as the P; fields, see Eqgs. (3.18) and (3.20).
Repeating the above steps again and again, we end up with a family of fields

Py Py, Py, ..., Pg™ ., 81+ 85+ - + 5 <5 (3.44)

spanning the basis of a subspace of total Hilbert space, to which all the states (3.11) and (3.12) belong.
The dynamical principle which governs the effective interaction, is formulated in this subspace,
called below the dynamical sector of a Hilbert space. The states

Tptv(xl)X(xl’.) J 0)1 T#v(xl)Tpa(xZJX(xl’l) | 0)3 e

also belong to this sector.

Since the dynamical sector is generated by energy-momentum tensor and the current, an
introduction of any consistent model-fixing condition on the states of this sector may be regarded
as a means of specification of an effective Hamiltonian. For a number of simplest models the
constraint on the states of the dynamical sector can be obtained directly from the initial Lagran-
gian [4,15]. For this purpose one introduces the conformally invariant regularization. The
renormalization constants z,, z,, z; (in models with two fields) remain finite as long as the
regularization is kept up. In the renormalized Schwinger-Dyson equations the term z,y is held,
leading to the greater transparency of the equations [4,15].

The above discussion is a subject of extensive studies in Refs. [2-6,15]. The fields P, were first
found in our works [12,32] as a consequence of conformally invariant solution to Ward identities
and later they were discussed in Refs. [2,33,34].

Note that the fields (3.44) have the properties analogous to those of the secondary fields in
two-dimensional theory. In the next section we show that for D = 2 the fields (3.44) literally
represent covariant combinations of secondary fields. Adopting the terminology of two-dimen-
sional theories [16], these fields can be viewed as the conformal family of fields generated by
a primary field ¢(x).

3 These expressions are written in a formal style. In fact, for each pair of values 5,5" > s there may exist several fields
P orthogonal with each other. The number of those depends on s, s".
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The dynamical sector might be completely fixed only when the anomalous contributions to
commutators (3.4) are given. The assignments of definite values to commutators (3.3) and (3.4) may
be thought as the way by which the quantization rules are taken into account effectively, leading to
a consistent definition of renormalized Schwinger—Dyson system, see Refs. [5,15]. For this purpose
it proves necessary to define operator product expansions

ju(xl)iv(xz), Tpv(xl)Tpo(xZ)! j,u(xl)Tpo(xZ)' (345)

It is apparent that the contributions to commutators (3.4) are solely due to C-number terms of
these expansions, or to operator terms comprising the fields having integer dimensions (which
cannot exceed dimensions of a current or energy-momentum tensor) and a definite tensor structure
(different for spaces with even and odd dimensions). In Refs. [3,4,15] the following anomalous
contributions are considered:

Juxi(x2) = [C + [P+ [Ta] + -, (3.46)
T(x)T po(x2) = [Cr] + [Pl + [Tac] + -, (3.47)
Tu(x1ip(x2) = [ol + -5 (3.48)

where [C;] and [Cy] are the C-number contributions to expansions. The constants C; and
Cy define the normalization of Euclidean Green functions

Guxlilx2)), Ty x1) Tpulx2)) - (3.49)

In the class of theories under consideration, the dependence on C; and Cr appears only in spaces
with even dimensions, see Eqs. (2.177) and (2.186).

The second terms in Eq. (3.46) and in Eq. (3.47) denote anomalous operator contributions of the
scalar fields P{x) and Py{(x), for which the following unified notation is useful:

P(x) = {P{x), P{(x)} . (3.50)
Both fields have the same dimension

dp,=dp, =D —2. (3.51)
The conformally invariant Green functions of the fields (3.50) have the form

CP{x1)PAx3)) ~ (Pr(x1)Pr{x3)) ~ (x15)7P"2, (3.52)

2 (D—2)/2
<qo(x1)<p+(xz)P..{x3)>~<qa(x11<p+(szPr(x3)>=g‘;( e ) o(x)et(x2))y,  (3.53)

2 2
X13X23

where g} is the coupling constant.
In two-dimensional space the fields P; and Py become constants

Pj{x)'ﬂ=2 - gfo PT(x)|D=2 = g? s (354)
{P(x1)P(x2))lp=2 = const., {@(x1)p " (X2)P(x3)>|p=2 ~ {Plx1)p(x2)) .

The two leading contributions in Egs. (3.46) and (3.47) become c-numbers, their sum coinciding
with the term proportional to the central charge of two-dimensional theory.
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Note that for even D > 4 the fields Py(x) and T,(x) are secondary fields generated by the
c-number contribution Cr. Similarly, the fields P(x) and j,(x) are secondary fields generated by C;.
In conclusion we list the anomalous Ward identities based on the expansions (3.46)3.48). They
are derived from the conditions of conformal invariance of the r.h.s. and have the following form

[3,4,15] (see Ref. [35] for more details)
5 ulx 1 )ir(x2)@(x3)e " (xa)>
= — [0(x13) — d(x14)] Gulx2)o(x3)0 " (x4))
+ C3 0P 272 (x4 2)<@(x3)p " (X)) + B310(x12) Px2)p(x3)0 *(xa) , (3.55)
O Tl x1) T o x2)(x3)@(Xa))
= Cr {8,0,0, — (D — 1)/2D) (6,0, + 0,,0,)0 — (1/D?) 6,,0,00} OP~2"2 §(x1 )< plx1)p(x2)
— {0(x13)03 + 6(x14)0%* — (d/D)3 [6(x13) + 0(x14)]} (T po(x2)(x3)(x4)>
+ {F o0, 0%2) {Pr(x2)0(x3)p(x4))}
+ {[ — 6(x12)03* + (1 — (2/D) a)55*6(x12)] T po(X2)@(x3)0(x4)>
+ 3 (1 + a) [0} 6(x12) {Tyolx2)(x3)0(x4))
+ 87'0(x12) {T'y,(X2)p(x3)@(x4)) — (2/D) 6,503 6(x12)
x { T ax2)p(x3)p(xa))] + 3 (@ — 1) [6,,03' 6(x12)
X (T ag(x2)p(x3)P(X4)) + 04507 0(X12) CT 15(X2)@(x3)p(x4))
— (2/D) 6,403 0(x12) T i(x2)p(x3)p(x4) )1} (3.56)
where a as a free parameter and F, , , is the following differential operator:

1

(D 2) (2 +f)af‘a§' 5(‘x12)a;2

F, 0%, 0%) = [ (1 +f) 070507 d(x12) + ==

1 1
D —2) [/D + (D + 2)13;:35 8(x12)83" + 5 8,,05' 0, 8(x12)
1 D?>+2D -2 .
S (D-2? (Df+ —_f)T) 0y05'0(x12)lx,
500, 80008 — =2 5,050 8(x, )0
(D 2) volx, O X12 Z(D—Z) vpUs O O\ X12)0;
= (x )03:05* + S 07 8(x )05 0
T e D—Tp—2 " Tasrrte
D X24X2 -— o .
o= 2(D - 1)(0 = 2) at 5(-\:1 3)5vpaa at :| + (p 0') trace in P, a. (357)

Here (p < o) stands for the expression in square brackets with p, o indices interchanged, f'is a free
parameter.
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There are four groups of terms (each placed between curly brackets) of different origin in this
identity. The second group is due to common contribution of the commutator
8(x° — y°)[ Toy(x), @(¥)]. The third group is the P; field contribution. The fourth group consists of
anomalous terms due to anomalous gradient corrections to the commutator [ T, T'], which contain
the energy—-momentum tensor components. On account of Eq. (3.57), four free parameters enter
this Ward identity (for even D):

Cr.f 9% a. (3.58)

One can show that conformally invariant Ward identities corresponding to the expansion (3.48)
have the following form [15,35]:

O T2 )xs)o ™ (x0))
= — {60120 + B — 50T + Sl
< G2l (%)) — 361208 Gl (20
+ (1= 5 8) 25802 Clraloto (x>

+ b056(x12) GuX2)P(x3)p T (x4)> + (b — 1) 3,,07 8(x12) Gx2)p(xa)p T (x4)>,  (3.59)
where b is the free parameter,
05 Tyl 1ol x2)(x3)9 ™ (%))
= — [0(x23) = 6(x24)] {T{x1)p(x3)ep " (xa))

EE b{a}:’a(xl 2) Gl X1)@(x3)p " (x4)) + 8320(x12) Gulx1)@(x3)e T (x4)D

2
D Oy 0720(x13) el x1)p(X3)0 +(x4)>} ’ (3.60)

The free parameter enters both identities in such a way as to produce the same results after taking
the derivatives 03: in Eq. (3.59) and 3} in Eq. (3.60).

3.4. Null states of dynamical sector

Let us show that any dynamical model may be defined by a certain self-consistent constraint on
the states of dynamical sector. To do this, let us compose the superpositions of the fields (3.44)
having equal scale dimensions, see Eq. (3.85). Denote these superpositions as Q,. Let us choose the
coefficients in the superpositions in a way that ensures the “normal” form of its commutators with
jo and Ty,, i.e. the absence of anomalous terms (which are, for example, present in Eq. (3.18)). Then
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the field Qy(x) transforms as a primary field:
8(x® — ¥°) Ljo(x), @3] = — 6Px — Q)
8(x® — ¥°) [Tou(x), Q3)] = i6P(x — y)0,Q4(y) + -~ . (3.61)

In the last commutator the dots stand for the gradient term ~ 336”(x — y)QJ).
Such a form of the commutators is guaranteed by the following self-consistency conditions:

QI Py %,>=0 or (QF P9%T,>=0 (3.62)

forall s =0,1, ...,s — 1. These conditions ensure the cancellation of anomalous contributions
into the commutators (3.61) and, simultaneously, lead to the system of algebraic equations on the
coefficients of the superposition Q. This is discussed in detail in the next section using particular

examples.
Note that on account of operator product expansions of the type (3.42) the self-consistency

conditions (3.62) may be replaced by the following equations:

O™, - Ji ) =0, n=12, ..., (3.63)
or

K OT, s, 50 Taar =0 =12 oy (3.64)
which are equivalent to the set of conditions (3.62) for all values of s"

§=01

Suppose that conditions (3.62) are satisfied. Then the equation
Q4x)=0 (3.65)

gives a self-consistent condition on the states of dynamical sector. Any such equation defines
a certain exactly solvable model. The Lagrangean models also belong to this family, see Refs.
[24,15].

Consider the simplest model. It is defined by the requirement of vanishing of the field P, = P, "
having the scale dimension d; =d + 1

P(x) = Px)|;=1 =0. (3.66)
This equation means that the states P,(x)|0) disappear in the dynamical sector

P(x)| 0> =0. (3.67)
The Euclidean Green functions

{@(x1) ... 0" (X2mtX2n+ 1) oo XX2n+m)> (3.68)
will satisfy the following system of differential equations:

(Pyx1)@(x2) ... @ (X2n)t(X2n41) - X(X2n4m) = 0, (3.69)
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or, owing to Eq. (3.32)
Pp(X, N @(x1) .. @ (Xan)t(X2n+1) - XX2nsm)) = 0. (3.70)

The latter is a vector equation. Thus one has a system of differential equations for each Green
function. Consider the equations

P(x,0%) <p(x1)p* (x2)x(x3)) =0, (3.71)
Pj (x, ) Coplx1)e T (x2)j(x3)) =0, (3.72)
ﬁT..uv(xa ax) <(p(x1)(a+(x2)Tpo(x3)) =0. (373)

The P;, and Py ,, operators depend on parameters of anomalous terms entering Ward identities.
Since the coordinate dependence of three-point functions is known, we get the equations on the free
parameters of the theory, i.e. the scale dimensions

d A (3.74)

and the parameters entering anomalous Ward identities. (One can show that the additional
constraints on the parameters appear during the solution.)

Depending on the choice of anomalous terms in Ward identities (3.55) and (3.56) the following
three variants of a model are possible:*

Pi(x) + BPI(x) =0, Pj(x)=0, PI(x)=0, (3.75)

where f is a constant.

All these variants are dealt with in Refs. [4,5,15], see also Section 4. In the second and third cases
one of the two equations (3.72) and (3.73) survives.

A more complicated model is given by the equation

Q,uv(x) = Pluv(x) + {Iﬁpv(x) =0 s (376]

where « is unknown parameter and

va(x) = Ps(x) ls=2: P,mr(x) = P:I(x) |s=2,s.=1 .

Eq. (3.76) means vanishing of corresponding states in dynamical sector:

Q%) 0> =0. (3.77)
The Green functions (3.68) satisfy differential equations

0%, 0@(x1) ... @ T (X2)t(X2m+ 1) - M(X2nsm)» =0, (3.78)
where

QX 0%) = P(x, 0 + 0P, (x, ), (3.79)

*In two-dimensional space the PI(x) field is absent. For D > 3 it appears under the definite choice of anomalous
operator terms.
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and F'm,(x, 0%) is the operator which defines the field P,(x), see Eq. (3.32) or Eq. (3.38); ﬁm(x, 0% is
analogous operator, defining P,(x). The free parameters (3.74) as well as the parameters in
anomalous Ward identities are, similar to an above model, calculated from the equations

Qunlx, ) <@(x1)p ¥ (x2)xl(x3)) = 0, (3.80)

Qjn(x, 0) {@(x1)e* (x2)ja(x3)> =0, (3.81)

Q1 (X, 0%) {@(x1)9 " (x2) T14(x3)) = 0. (3-82)
Moreover, the following self-consistency conditions are present in this model:

Op, il ) {@(x1)P; (x2)ia(x3)> =0, D, X, 8) <@(x1)P; (x2)Tislx3)) =0, (3.83)

fixing the value of the o parameter. These conditions are non-trivial due to Eq. (3.18) and the
anomalous Ward identities for Green functions (3.19). As before, the three variants of a model are
possible:

Qin(x) + BQu(x) =0, Qux) =0, Qu(x)=0. (3.84)

As an example, in Section 4 we discuss the solution of the model defined by equation QJ,(x) = 0.
Finally, let us consider a general case

Q=P+ Y T s (), (3.85)

k=1 5,....5%

51 <85 < - <8, S1+85+ - +sH<s—1.
The coefficients a;,, _, are determined by consistency conditions (3.62) for each of the fields
P x) wheres; + - + 5 <5 <s.

No more principal differences with the previous model exist.
Some of the models are equivalent to Lagrangian models [15]. A possible conjecture is that the
three-dimensional Ising model corresponds to one of the solutions of a model

a5n=0.

The constraints on the states of dynamical sector, viewed as a means to define a model, were first
studied by the authors in 1978. It was shown [2,14,36] that the solutions of trivial models (the
Thirring model and gradient model for D = 4) are defined by these conditions. Later [33] this
problem was examined in a slightly different context. However, the far better understanding of this
scheme, especially its features related to the necessity of introduction of fields P3* [3] into
dynamical spectrum and to the role of self-consistency conditions, has come to us after the works
[16,18]. The scheme described above has a striking resemblance to the structure of two-dimen-
sional models. The states

04x) 10> (3.86)
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are analogous to null vectors of two-dimensional models. As will be shown in the next section the
states (3.86) for D = 2 literally coincide with null vectors, and all the two-dimensional models
known to the present time may be solved by the method described in this work without any
reference to Virasoro algebra, as if we were completely unaware of its existence. Having in mind the
explicit analogy between two-dimensional models and those described here, it looks quite probable
that the latter models should correspond to yet unknown realization of D-dimensional analogue of
Virasoro algebra.

4. Examples of exactly solvable models in D-dimensional space

We consider a solution of several models discussed above under assumption that only a c-
number analogue of the central charge exists, while the operator ones are absent:

P;(x)=Pr(x)=0. 4.1)

In the space of even dimension D >4 it proves useful to work in terms of the potential
A,(x) = A*")(x) rather than Abelian current j,, see Section 2.7. The self-consistency conditions
(3.63) take the form

(Qlp*A, .. A.>=0 k=12 ... (4.2)

4.1. A model of a scalar field

To illustrate the main ideas and calculation specifics we start with the simplest model in the
space of even dimension D > 4 defined by equation (see also [5,15])

Pi(x)=0. 4.3)

This model is a scalar version of the pure gauge model discussed in Ref. [36]. It is presented here
due to methodical reasonings.
Due to Eq. (3.31), the Green functions of the field P are calculated from the equation

<Pf;(x1)@(x2} e @ (X20))

= — A, res _[dyl dy, Ci(x191y )y 2)e(r)e(x2) .. ¢ * (x20)D 5 (4.4)
1=d+1
where A, is a constant and
Clx1x2%3) = AR(x3x2)(x3,) 4747 1DV (x35) " HAT 1T D2 (x3,)0dm1mDI2 (4.5)
Using the Ward identities (1.53) one can transform the r.h.s. of Eq. (4.4) to get
n 2n
— Ay res J‘dYI Y, Cilxiyix)— ) CL(xlylx,)} CQy1)e(x2) ... @ (X2)) - (4.6)
=3

I=d+1 r=n+1
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Note that the term containing &(y; — y,) is omitted: it is multiplied by the power factor
[(y1 — y2)?14 14~ 1~D2 and does not contribute to the integral. Let us thread the residue symbol
res;=4+1 through the integral sign and make use of relation

res ClL(x;x,x3) = 1L(D +2)| —02+2d (X13)y (x12) 4.7)
I=d+1 BT 2;‘(—D+4) ' x13 i )
2

which follows from Eq. (2.34) for k = 0. As the result we obtain
CPUx)P(x2) ... 7 (X20))

2n
=/11(D+2)?|:ax‘ 2dz ")“+2d 5 ("“’]«p(xo R 4.8)
r=n+1 1

where we introduced

1 P2

I ET
2

Eq. (4.3) leads to differential equations of the first order for all the Green functions of the model.
For n = 2 we get the equation

(4.9)

{a:r +2 [ G Pl | Crdl }} (Px)p(x)0* (x3)p " (x4)) = 0. (4.10)
12 X13 x14_
It has the solution
x%zx%-s ¢
{@(x1)p(x2)p T (x3)p T (x4)) = {p(x1)p " (x3)) {p(x2)p " (xa)) (m) : (4.11)

where {@(x) " (x2)) = (3x12) 7
Consider the self-consistency conditions (4.2) for the model (4.3). One must find all the Green

functions (Pip* A4, ...A, >, k= 1,2, .... Consider the simplest case k = 2 first. We have
H y Hy

CPUx1)P ™ (x2) A (X3) Ay, (X4))

= — A, res Jilh dy, c W(X1Y1Y2)00 iy (h)‘P(h)‘P+(xz)Am(x3)Au,(x4)> (4.12)

Employ the Ward identity:
0% GuX)plx 1)@ " (x2) A, (x3) A, (x4)>
= [ — 3(x — x1) + 8(x — x2)] {@(x1)e " (x2) Ay, (X3) Ay, (x4)>
+ 05,0(x — x3) <@(x1)9 T (x2)A4,,(x4)) + 07, 0(x — x4) {P(x1)p ™ (x2) Ay (X3)) - (4.13)
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As before, the first term ~ d(x — x,) does not contribute to the integral (4.12),

(Pix1)@ ™" (x2) A, (x3) A, (xa)) = Ay TeS fdy {0 Clx1yx3) <19 " (x2) Ay (xa))

I=d+1

+ 05t Clx1yxa) @)@ " (x2) A, (x3))
— Cllx1yx2) @)@ (x2)4,,(x3) A (x4))} (4.14)

Let us substitute the explicit expressions for the Green functions {pp*A4,), {pp* A4, A, > from
Eq. (2.183):

Cp(x1)p T (x2) A, (x1)A,,(x2)> = {P(x1)p T (x2)) Ay, (X1) A, (x2))
+ (9> 4001 X2)Ax1%2) <@(x1)p " (x2)) . (4.15)

Note that disconnected component of this Green function does not contribute to Eq. (4.14) due to
Eq.@3)forn=1:

x
[a::- + w%z—)] (ox)p* (x2)> =0. (4.16)
Recalling also that due to Eq. (4.7)
1
Oy res C‘f,(x 1X2X3) = — YD + 2)2d —5 gun(X13)0(x12) , (4.17)
I=d+1 X13

we find from Eq. (4.14)
(Pi(x1)p ™ (x2) A, (x3) A, (x4)

1
— Ay(D +2)(2d + g4) |: 5= G (%13) <@(x1)@ T (x2)A,,(x4)>

1
G Gund*14) <@(x1)@ +(xz)z‘lju,(st)] : (4.18)
Making analogous calculations in the general case k > 2 will lead to the following result:

(Piy1)e " (v2) Ay, (x1) ... A

= —Ap(D+2)(2d + gy [ e L g Ol — %)
X (@)@t (A (x1) ... Ay ) ... Am(xk»J , 4.19)

where the symbol 4, denotes the omission of the field 4,,(x,) in this expression. In the derivation of
this equation we have used the explicit form of the Green functions (p@*A4, ...4,), see
Egs. (2.183) and (4.15).
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According to the general program described in the end of the previous section, the dependence of
dimension d on the parameter C; is determined by the equation

CPUx 1)@ (x2)A,,(x3)) =0, (4.20)
while the vanishing of all the higher Green functions
(PO (1) Au(x1) .. A (x> =0, k=23... (4.21)

is interpreted as the infinite set of self-consistency conditions of the model. The Green function
{P,p* A, has the form

: 1
(PUx1)p ™ (x2)Ay(x3)) = — Ap(D +2) (2d + g.4) =, (X 13) {P(x1)@ " (x2)) .
Eq. (4.20) implies (2d + g,) = 0, or, owing to Eq. (2.184) .
D\] '1
= ( — 1\P/2 Dj2 = el
d=(-1) |:(41r) r (2)i| o 4.22)

Let us remark that the general expression (4.19) contains the factor (2d + g,) which is independent
on the value of k. So if Eq. (4.22) is taken into account, self-consistency conditions for the model
hold identically.

The model described here is the simplest D-dimensional analogue of two-dimensional exactly
solvable models: the Thirring model and Wess-Zumino-Witten model. The first one was solved by
the authors of the present article using the method discussed here as far back as in 1978 in the
works [2,14], and the second, in the work [37], see also Refs. [3,5,15]. Both methodically and
technically, the method of solution of these models is analogous to the solution of pure gauge
model. Not surprisingly, the results of the work [18] are reproduced in discussion therein.

4.2. A model in the space of even dimension D > 4 defined by two generations of secondary fields

Consider the second of the models (3.84)
1(x) = PL(x) + aPl(x) = 0, (4.23)

where « is unknown parameter, and the fields PJ, and PJ, are those appearing in the operator
product expansion of j,¢ and j,Pi:

Julx)e(xz) = [@] + [Pi] + [Phe] + -+,
Julx1)Pix2) = [@] + [PL] + [Phe] + -~ .
Both tensor fields have the same scale dimension

12:r2:d+2

(4.24)

Three dimensionless parameters exist in this model:

d,C; . (4.25)
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According to Eq. (3.62), these parameters are related by a pair of algebraic equations which may be
derived from the system

Qo> = (Pl i + ol Piyp™j> =0, (4.26)
QWP = CPLPF> + 2l PP} > =0. @27)

It is also necessary to convince oneself that the self-consistency conditions hold.
Below the solution of the model (4.23) will be found. We will obtain a pair of algebraic equations
for the parameters (4.25) and the closed set of differential equations for higher Green functions.

4.2.1. Self-consistency conditions

We must prove that
QLo (r2)A4,,(xy) ... A (x)> =0 wherek=1,2.... (4.28)

Similar to the previous model, we will concurrently find the parameters (4.25).
Consider the Green functions of the field Pj,. According to Eq. (3.31) we have

Py ) T (v2) Ay (x1) .. A

= — A, res szl dz, C‘Lv()’ﬁlzz)a:‘< jp(22)<p(zl)(p+(y2)Au‘(x1)... A,u.(xk)> s (4.29)
1=d+2
where
CLv(x1x2x3] = A;;(x3x2)(x§2)_(’_“‘ ki (x%3/xf3)“+d_2 s (4-30)

The result is, see Ref. [5] for more details

<P,uv(yl)(p ® [yZ)A.u,(xl) sas Am(xk]>

1 1
= y4, {(gi +4(d + 1) ga) [ X, m Guuly1 — %) m Gunly1 — X))

rt=1
r#t

-~

x {p(y)e T (y2)A,u(x1) ... A, ...ﬁ,r ... Ay () — trace in ,u,v}
+ (4d(d + 1) e 2gA ( Z [ )2 g;.l p(,V1 _— xr)l{‘(nyr)

x (@1)0* (1) A, (1) - Ay .. A (00> + (ue>v) — trace in p,v})}, (4.31)

where 7 is the parameter (4.9), and hats on ﬁﬂ, and A% imply dropping of the fields A4, (x,), A,(x).
Note that for k = 1 the first term in Eq. (4.31) is absent:

CPL(x1)@ " (x2)A,,(x3)) = 7A2(4d(d + 1) — 29.4) 9.4

X [x% GuulX13) A1(X2X3) + (ue>v) — tracein u,v} {p(x1)p™(x2)) - (4.32)
13
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Consider the Green functions of the field PJ,. Recall that this field enters the operator product
expansion of j,PJ. Hence the analogue of Eq. (3.31) reads

(F{:(x,)(o(xl) (P+(x2n}>

= /E res de1 dy, ij. oty X1Y1Y2)K fg(}“z)Pi(yl)(P(xz) fP+(xzn)> s (4.33)

where AJ are some constants, and
C wonsX1x2x3) = (PL L (x1)P (x2) A" (x3)) (4.34)

is the longitudinal conformally invariant function. Here Pp denotes the conformal partner of the
field P,. Its dimension equals to D — d — 1. Note that the general conformally invariant expression
for the function of the type (P, ., P,A,> includes five independent structures. One can check that
only two independent combinations of the latter are longitudinal. The function (4.34) is longitudi-
nal due to equation of the type (2.77) for the Green functions {j,P, ... >. The general conformally
invariant expression for the longitudinal function may be shown to have the form

CL... mmalXrXaxa) = 03 O . . ofX1%2%3) 5
where

C‘L. ...g,,p(xlxzx-a)

5
Z gpu,(xl Z)A:t ...ﬁ,..,n,(x:!x?.) — traces in Hi..- #sj|}
=1

r=

1
= {i:‘(xlxg,)/’.ﬁ: . u{X3X2) + ﬁx—ﬂ |:

x%3 (I+d—D—-s5+2)/2
X(xlz)—{D+l—d"s—2).l’2 (T) ; (435)
X13
where f is arbitrary parameter.
Substituting Eq. (4.35) into Eq. (4.33) we get
(Pix1)@(x2) ... @ " (x20))
= — Aj res jdyl dys Chy . wpX191y203% Guy2)PH0)O(X2) .. @7 (x20)) - (4.36)

Thus the Green functions of the fields P which arise in the operator product expansions P,, j, may
be calculated from the Ward identitif;s as well.
The Green functions of the field P}, containing the fields A, have a similar representation

<Fiw{yl)¢’ +(y2)Au|(x 1) e A,u;(xk)>

= /Iz res '[dzl dz, Ciw.p(}’1z122)ai‘ <fa(zz)Pfa(Zl}Qf’+(}’2)A;¢l(x1} ---Ag.(ka s (4.37)

I=d+2
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where

C:w.p(xlx?.x?o)

1 :
= {)«:'(xlxs)'lﬂ(xsxz) + ﬁT [gpu(x12)A3(x3X2) + (ue>v) — trace in p, V]}
12

x2,) ¢+d-Dy2
x(x ) (D+1—-d—4)/2 (xla) ] (438)

The calculation of the r.h.s. of Eq. (4.37) is presented in Ref. [5]. The result is
(Ply )@  (v2)Au(x1) .- (x> = 2¢2(D + 24, 45(2d + g.4)

k

1
X {( ga +2d + 2) [ z m Guu Y1 — %) rlxr]}_gvp.(yl — Xy)

rt=1
r#&t

x {p(1)e (Y2 Ay, (x1) ... A, ... Ay, ... A, (x:)) — trace in u,v}

2 1
- (';1 [m Gu (V1 — X)A(y2x,) <cp(yl]¢’+(y2)A_u,(x 1) - e B (RND
+ (ue>v) — trace in ,u,v])} ; (4.39)
where
Ay =451 + D - 2)]. (4.40)

The symbols 4,, 4, mean that the fields A,(x,), 4,(x,) are omitted. For k = 1 the first term in
Eq. (4.39) is absent

(Fflv(xl)ff(xz)A,..(xa)) = — 29%D + 2)A,4,(2d + ga4)
1 :
X [E Gu(X13) 43'(x2X3) + (ue>v) — tracein ﬂ,":| {p(x1)p ™ (x2)) . (4.41)

Consider the self-consistency conditions (4.28). The Green functions of the QJ, have the form

(Qf;»(}’l)(P +U‘2)A#|(xl] e Ap(X0))

.. 1 1
= }’AZ {Nl ( . :Zl (y )2 9u #(yl )W g;x.v(yl = xl)

r#t

x {o(y)@ T (y)Au(x1) ... A, ... A, ... A,(x)) — trace in p,v)

k

+ N, ( Z I:GT'%_JC:F Gun (V1 — X)A5(Y2x,) <p(¥1)e +(.V2)Ap.(x1) ;ip.. e A (X))

=1

+ (ue>v) — trace in ,u,v:D} . (4.42)
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where
2rP2 A A
Ni=g2+4d+ 1)g, + —re 172 2d + g.) [g4 + 2(d + 2] «, (4.43)
(D - 2) Ay
'l ——
2
Df2
N,=4dd+1)—2g,— £% A4, (2d + g4 a. (4.44)
(D + 2) A,
' —
2
All the Green functions (4.42) vanish if one sets
) Nl = Nz = 0 .
This leads to the following equations:
gi+4d+1)g.+aN[gy+2d+2]=0, (4.45)
2g4—4dd+ 1)+ aN =0. (4.46)
where
2?2 A4,
= . 4.47
" 2

Let us remind that the coupling constant g 4 is expressed through the parameter C;, see Eq. (2.184).
Eliminating the factor aN from the system (4.45), (4,46) we obtain the equation which expresses
dimension 4 in terms of parameter Cj:

gi—4d*+d—1)g,—8dd+ 1)Yd+2)=0. (4.48)
One easily see that this equation has a solution satisfying physical requirements
d>D2—1, C;>0 | (4.49)

for any (even) space dimension D > 4.

4.2.2. Differential equations for Green functions of fundamental fields
Consider the equation

CQL(x)p(x3) ... 0" (x2,))> = 0. (4.50)

It represents a source to differential equations for Green functions {¢; ... ¢3,>. The Green
functions of the fields PJ, and Pj, are calculated from Eqgs. (3.31) and (4.36) for s = 2. Applying the
Ward identities to these equations, we get

(Pix1)@(x2) ... 9 F (x20)) = A, TeS J.d)u[)j: Chux1y1x )@ (y1)p(x2) ... @ (x20))

I=d+2

= Zﬂ CLv(xlyl x)e(ye(xa) ... @ +(x2n)>:| , (4.51)

r=n+1
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(Pl(x)@(x2) ... 0" (x2,)) = A, res J.dyl[i Clov o(x1y1x )X PI (1) @(x2) ... @ F(X20))

I=d+2 =2
2n :
Y. Gy x )XPiy)e(xs) ... ¢ *(J%))} . (4.52)
r=n+1
As the result we obtain, see Ref. [5] for more details
(PLx)P(X3) ... @ T (X20)) = Pix, 8) C@(x1) ... 0T (X20)D (4.53)
where
ﬁj ( a — ax,axs ¢ (xlr)ﬂ Xy & (x].r);( axl
.uvx'! x)_'}’AZ u Yy +2(d+1) _Z Wav'}' 21 % v—l—(;ﬁ—ﬂ")
r=2 r r=n+ r
n 2n
+4dd + 1) Z xlr ,pt(xlrv + Z (xlr);;(ler)v — trace , (454)
r=2 r=n+1 (xlr)
(PlLx)p(x3) ... 0 * (X20)) = P, 6"‘) (tp(xl) s @ (Xan)Y s (4.55)
where
ﬁ;’;,,(x 0™) = {P{(x, 0*)Pi(x, 0*') 4+ (ue>v) — trace} . (4.56)
Here Pj, and P! are the differential operators of the first order
D i (xlrp o (xlr},u
Pl,= —9A,<05 + 2(d + 2) Z + Z — |¢» 4.57)
r=2 r=n+1 XIr
Pi=v4,D +2) {a:- + 2d|: Z (x“)" + 2 (x‘;)"}} . (4.58)
r=2 1!' r=n+1 XIr

Note that the operator P! is given by Eq. (4.8).
Introduce the differential operator

0i(x, 0%) = Pi(x, 8%) + aPi(x,0%). (4.59)
where P, and P, are defined by Egs. (4.54) and (4.56). From Eq. (4.50) one finds
Qli(x,0) <@(x1) ... 0 (x2)> = 0. (4.60)

Thus we obtain a closed set of differential equations for any Green function of the model. Note that
@i, is a tensor operator. One can show that each Eq. (4.60) is equivalent to a set of several
equations of the second order in variables ¢, = x%x2,/x%,x2,. It can be shown that the tensor
equation (4.60) written in these variables is equivalent to a system of the three differential equations
of the second order. The derivation of these equations and their solution was published in Ref. [38].

4.3. Primary and secondary fields

The commutators of fields with the zero components of current or energy—momentum tensor
determine the transformation properties of the fields. The gradient terms in commutators might
turn out to be significant provided that a higher symmetry like the D-dimensional analogue of the
Virasoro algebra would be found. Above we have introduced the concepts of primary and
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secondary fields for D > 3. The fundamental field is primary by definition. The commutator of the
field ¢(x) with j, has the standard form

3(x® — y°) Ljo(x), ()] = — 6PA(x — y)o(y) . (4.61)

Similarly, the Ward identities in this case also have the standard form.
Note that the primary fields have the following property. Let @X(x) be any primary field of
dimension [ and tensor rank s. It is known that invariant three-point functions {®ip *j,> of these

fields are either zero or are transverse. The latter follows from the Ward identity

o <¢§(xl)¢+(x2)j#(x3)> = — [(x13) — d(x23)] <¢i(x1)¢’+(~’f2)> =0,

due to orthogonality of conformal fields {®i(x;)¢p " (x2)) =0, if s#0,l +# d. The transversal
invariant functions may not appear in the theory if the condition (2.77) holds. Thus one has

(PYUx)p T (x)julx3)) =0 if s#£0,1#4d (4.62)
for any primary field ®!. The Green functions

<P£(p+jy>s <P.;r(p+ ,uv>
are nonzero owing to the presence of anomalous terms in the Ward identities. The anomalous
Ward identities are pertinent to any generation of secondary fields.

The fields @ and QT are constructed as superpositions of secondary fields satisfying the usual
commutation relations (3.61). Due to the discussion above, see Eq. (4.62), the latter is guaranteed
by the self-consistency conditions (3.62) which are equivalent to Eqs. (3.63) and (3.64). It is essential
that the fields with such properties arise only for specific dependence of dimension on the central
charge (i.e. the parameter C; or Cr). The situation resembles the one in two-dimensional conformal
models, and the dependence mentioned above is analogous to the Kac formula.

To illustrate what has been said let us find the anomalous Ward identities for the case of fields
o Pf,,, F{l, and demonstrate that the dependence of dimension on the parameter C; is the
consequence of the requirement for Q4 and QJ, to be primary fields.

Consider the Ward identities in the case of the field -Pj. The most general form of anomalous
Ward identities reads:

0% CaX)PUx1)p(x2) ... @ (x20)) = — (x — x1) {PUx1) -+ @ (X2n))
+ adio(x — x1) {@(x1) - @ T (x2a)) + -+ 4 (4.63)

where the dots stand for all the “usual” contributions. To find the constant ¢ we consider the Ward
identity for the Green function {j;P,¢* A, . Using Egs. (2.181) and (4.19) we get:

a;,: <P{l(xl)¢+(x2)A,u|(x3)jF2(x4)>
— ;D= 272 35 CPUx,)0 ™ () Ay (x5 Ay 50))

2

1 - I
= — Ay(D +2)2d + g4) [— Guu,(x13)C; OL =272 05 (p(x1)p ™ (x2) A, (X4))

2
X13

- 1
+ C; 09 i x_f4 Gua(X14) <P(x1)@ +(x2]A;1.(x3}>} . (4.64)
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Finally we obtain, see Ref. [5] for more details
0% CJa)PUx 1)@ (x2) A, (x3)) = — [8(x — x1) — 8(x — x2)] {Ph(x1)p " (x2) A, (x3))
+ aduo(x — x1) {p(x1)p " (x2) Ay, (x3)) (4.65)

where a is the same constant as in Eq. (4.63). The derivation makes use of the fact that the Green
function {(P,p™ A4,,) is defined by Eq. (4.19) for k = 1. The constant a turns out to be

a= — 4,24 + g)C{ — YO+ (4w T (%) . (4.66)

Setting a = 0 we obtain the previous result (4.22): g, = — 2d. So this result is a consequence of the
requirement for Q/, = P to be a primary field.

Consider the anomalous Ward identities for the fields P, and Pi,. Each of them involves a pair
of independent parameters, one of the two being related to anomalous contribution of the field P,
and the other, with a contribution of the field ¢. Evaluating the quantity

C; 0P~ D72 95 (PL(x1)p(%2) A, (X3) A, (xa)
and making use of the results of Section 4.2, we get, see Ref. [5] for more details
3 Ua)PLx1)e ¥ (x2)A,,(x3))
= — [6(xs — x) — 3(x2 — x)] {Phx1)@* (x2)4,,(x3)>
+ by [B78(x — x1) (PUx1)@ ™" (x2)A, (X3)) + (1> v) — trace]

+ {bzaﬁafé(xl —x)+ bs [(’;”)“ 0%6(x; — x) + (].IHI'):I - trace}

2
12
X {@(x1)p* (x2) A, (x3) . (4.67)
One obtains the following expressions for the constants:
by = —%3bo(g9% +4Hd+ 1)g) [4:(D +2)2d + g1 ",
by = —4by=13bo[4dd+1)—29.],

where
bo = (— 1)P2+14m)P12 (g) CipyA,.

The coefficients in anomalous terms of the Ward identity for the Green function { j,Pi,@* 4, ) are
calculated analogously. This Ward identity coincides with Eq. (4.67) after the change PJ, — P,;
b; > b;, i =1,2,3 in the latter identity. The coefficient b; turn out to be

by = —3bo(2(d +2) + g0) [A:(D + 2Y2d + g1, b= —3b3=1%bo,
where

bo = Nby,
and the coefficient N is given by the formula (4.47).
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Consider the field QJ, = PJ, + aPj,. Let us demand this field to be primary. It means that the
Ward identity for the Green function

<j1Q_{n'(P+ Au)
should comprise “usual” terms only, This requirement leads to the equations
b1+txb_1=0, bz"“ab_zzo,

which are easily seen to coincide with Egs. (4.45) and (4.46). Thus Eq. (4.48) which relates the
parameters

d,C;

is the consequence of the fact that the field QJ, is a primary field. In Ref. [6] we show, see also below
Eqs. (4.89) and (4.94), that for D = 2 such an approach leads to the well-known [16,19] results. In
particular, the Kac formula [39] arises as a consequence of the second equation from Eq. (3.62).
This feature may prove useful in the derivation of the analogue of the Kac formula in D-
dimensional space.

4.4. A model of two scalar fields in D-dimensional space

Let us consider the model defined by the first equation from Eq. (3.75):
Pi(x) + BPi(x)=0. (4.68)

Analysing partial wave expansions of the Green functions {T,,¢T ,,¢* > and {T,,0¢ * > one can
show that after the setting

_ d(D —2)> — D(D* — 2D + D)
~ T (D=2)[dD -4 - DD - 2]

in Eq. (3.56) there exists a pair of mutually orthogonal fields P, and PJ,,
Tu(x1)(x2) = [@] + [P1,] + [P1,] + -, (4.69)

with one of them, say P7,, having a negative norm. Due to that the contributions of the fields
P{, and Pj, into each of the Green functions mentioned above, compensate each other. On the
other hand, the contribution of the field P; = P{, into the partial wave expansion of the function
{T,wpj," ) is still uncompensated, if the parameter b in the Ward identities (3.59) and (3.60) which
determine the latter function, equals to zero. One can show that

(Pi(x1)PJ(x2)> #0 onlyifb=0, (4.70)

but {P,P3,> =0 for all b. The calculations needed to prove these statements and to find the
solution of the model (4.68), are analogous to those in the previous sections (though are more
cumbersome), and will be published separately, see also Refs. [3,15]. Here we just present a final
result.
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Consider the equations

<P{¢(P+fv> +ﬁ<P,tT(p+Jv>=05 <P{¢(P+Tua> +ﬁ<P§(p+Tv9>:09 (471)

(Plo™ 1> + B{Pio™ > =0, (4.72)

(Pifx1)e " (x2)p(xa)e T (x4)> + BLPL(x1)p " (x2)p(x3)e ™ (x4)) = 0. (4.73)

One can show that for C; = 0 the first three equations lead to the following algebraic relations:
_ D(2d — D) _,d=D2+1)

1="5-1 ~ PP g+ 1" (4.74)

2d*(D* — 2D — 4) — dD(4D* — 5D — 6) + D32D — 1) = 0.
The solutions read:
d~27, A=36 forD =3,
d~365 A=44 forD=4,
d>~624, A=624 forD=26.
Eq. (4.73) gives
Pi(x, 8.,) <ox1)0 (X 2)(x3)p " (xa)> + PT(x, 8,) <o(x1)0 " (x2)p(x3)p *(xa)> =0,  (4.75)

where PJ is the operator (3.33), while P! is defined by Eq. (3.37) for s = 1. It is convenient to
represent the general conformally invariant expression for the four-point Green functions in the
form

G(x1x2%3X4) = (x§2x34) "¢ D&, 1), (4.76)
where
. X12X34 x§2x§4
{=In—"—, =Iln—5—
X13X24 X14X23

are the conformally invariant variables. Written in these variables, Eq. (4.75) may be shown to have
the form:

{A5(x2x3)G1(&, 1, B, By) + A7(x2X4) Ga(&, 1,85 8,)} P ) =0, (4.77)

where

Gi(&n 0,0, = {(e_‘f —e "—1)0 + 2e”* —e™" + 1)0:0,

+e S +e" —2e "+ 23} +2d (e_” —e t+ 9-2—;3—3) G



E.S. Fradkin, M.Ya. Palchik [ Physics Reports 300 (1998) 1-111 75

+2de"—e ¢ —1)0, +d (e‘¢ —e "+ I—l))

1 D =1
+4_5(d_5+ 1) [d+a¢)}, 478)

Gy(£,150,) = {(e"' +efN— 278+ )02 + 2" —e ¢+ 1)0,0, + (e " — e~ ¢ — 1)02

+2de*—e "—1)0:+2d (e_‘5 —e "+ D—_S) o, +d (e"’ —e ¢+ %)

2D
1 D &
+@(d_5+1) {—d+a.,)}. 4.79)
Thus the Green function (4.76) is determined by the pair of differential equations:
Gl(ﬁ& , a{y aﬂ)ﬂﬁ? '?) 2 0’ Gz{éy H, a{a an)ﬂé'l ’I) =0. (4'80)

4.5. Two-dimensional conformal models

Let ¢ be a neutral scalar field of dimension d. Let us pass to the complex components T = T .
and P, = P, ., see Egs. (2.165) and (2.168). As already explained in Section 2.6, when D = 2, all the
Green functions of the energy—-momentum tensor satisfy Eq. (2.149) identically, and consequently

are completely determined by the Ward identities, see Eq. (2.171). Write down the operator
product expansion T¢ as

Tee)pxs) = [0] + 3, [P, @8

The Green functions of the fields P, are uniquely determined by Eq. (3.37) for D = 2. Taking the
integrals in the r.h.s., see Refs. [41,6,15] for more details, we get (for s > 2):

CPRIOA(E1) - Ol ~ 3 (5 = s+ DA +5 = D) OF COLIs(51) . Pl

_“:{:’ I'(s +2)I'(d + s)
L Thk+DIs—k+2Td+s—k+1)

X {’i (x — %)~ %2 |:ax_ + % (k—2) . ir xr:\ @)+ 1}

X {P(x)P1(x1) - QX)) - (4.82)

Here we have used the complex variables (2.162), x = x* and 9, =0, for the component
Py = Py, (p(x) — (p(x+, x7), Py = Ps(x+, x_):

T xi2 [ x5 \°
(Psi(X}(P(X]Ti(X)> =ds (d'! C) xit3xét3 xfzxfz (‘P(xl)(p(xz)> > (483)
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where {@(x;)@(x2)) = (x32) 7% gX(d, C) is the coupling constant:
C dd— 1)d — 2) d+s—1 1
T, © —
9:(@, C) {12+(d+s)(d+3+1)s(s-l] d+s—2 s+1

rd+1) 1
Td+s+1) [1 3 (s+1)dd + s — 2)}} . (4.84)

+(=1F*"1 (s —1)

C is the central charge.
The same way as it was done in Section 3, one can introduce a complete family of secondary
fields

P P, P s (4.85)
which begets a basis of the dynamical sector. This sector comprises the states of the type
T(x4)... T(xx)e(x)0> wherek=0,1,2, .... (4.86)
Any exactly solvable conformal model is defined by the equation, see Eq. (3.85)
§—1
Qs+(x) =0 where Qss(x) = Px(x)+ Y, Y %, ., P %), (4.87)
k=1 s5,...5

where 2 <s; <5, < - <8, 81 + S+ - +85<5s—2.
The simplest models are defined by the equations

0:(x) =Py(x)=0 or Qi(x)= Ps(x)=0. (4.88)
Setting the Green function (4.83) to zero for s = 2 or s = 3, and using Eq. (4.84), we find
_d(5 —4d) _ 2—14d+8
For the first model one has [41,34], see Eq. (4.82)
3 2 1 1 d | B
[2(d + 1) aX] - x_]_g ax: - x—l?l a).‘] 2 (x%g + E)] <‘§9(x1)(p(x2)X(x3]> e 0 2 (4'90)

3 : s d1 41 1 3
[m Ox, — ’;2 w3373 (x_f;, + x_ﬁﬂ (p(x)p(x)xlxs)x(xa)y =0.  (4.91)

Substituting the first equation into the conformally invariant expression for the function {@ey),
we get [41,34]

d=44-%. (4.92)
The more complex model is defined by the equation

Qa(x) = Pa(x) + BP4(x) =0, (4.93)
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~ where the field P, arises in the operator product expansion T(x,)P,(x,). One can prove that the

equation {Q,¢T) = 0 has two solutions

(d—2)33 —44d)
5(d + 3) ’

C=1—-4d, C= (4.94)
see Refs. [6,15] for details.

The results (4.89){4.94) coincide with known the results derived in Refs. [16,19] on the basis of
infinite dimensional conformal symmetry. To compare, one must factorize all the Green functions
(i.e., to make transition to the fields which solely depend either on x* or on x ), and also introduce
the new quantum numbers d; = (I + 5)/2, s = (I — 5)/2 in place of (I, s). For one-dimensional fields
o(x*), P(x™*) the latter means

6=df2, 6,=df2+s, (4.95)

see Refs. [6,15] for more details. One easily checks that the values of the central charge (4.89) and
(4.94) coincide with those following from the Kac formula [39,40]. Egs. (4.90) and (4.91) coincide
with the equations for the Ising and Potts models. Let us stress that in our consideration its
derivation is solely based on the six-parametric symmetry (1.2). The solution to the Ising model in
this formulation is studied in detail in Refs. [41,34], see also Ref. [15], while the solution of the
Wess—Zumino—Witten model is studied in Refs. [37,15].

One can demonstrate [5,15] that the whole list of results known in two-dimensional conformal
theories is reproduced in the framework of the approach developed herein. It is readily seen that the
infinite-dimensional symmetry is implicitly present in this formulation. Indeed, the Ward identities
are completely determined by the symmetry (1.2). On the other hand, knowledge of Ward identities
for D =2 amounts to a definition of the commutators [T +(x;), T +(x,)] which the Virasoro
algebra (or its central extension, to be exact) follows from. Thus the two approaches do coincide in
principle, differing only by technical details. One can expect that the family of models defined in
Section 3 is also related to a certain D-dimensional analogue of the Virasoro algebra, see Refs.
[42,43] for example.

When D = 2, the dynamical sector coincides with the representation space of the Virasoro
algebra, and the states Q(x)|0> coincide with the null vectors. Indeed, consider a family of
secondary fields [16]

g k) = Ly (LX) ... L (X)o(x) (4.96)

where L, are the generators of the Virasoro algebra. The two families (4.85) and (4.96) are easily
seen to be isomorphic. Both of them arise as the result of operator product expansions (4.86). For
example, consider the expansion

Tedeta) = 3 (1) 2 0e) = 3 (%13)"2** L) 497)
k=0 k=0

Passing to one-dimensional fields P,, compare the above with the expansion (4.81). The latter is
realized by the combinations of secondary fields (4.96) covariant under the transformations of the
group SL(2, R):

Po=[L_g+oyL_ L g3+ opL_y)*Logiz+ - +os—1(L_1)] @,
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which satisfy the conditions

L P =0P, LiPi= (g B s) P, L,P.,=0. (4.98)
If one makes use of the commutation relations of the Virasoro algebra and the identity
Li(x)e(x) = 0, the coefficients «,, ... ,x are determined from the last condition. For example, one

has

3 3
Py(x) = [L—z(x) T225 + 1) (L—1(x))2} @(x) = ¢! 2(x) - m 030(x),
. 2 % 1
P3(x) = ¢~ I(x) ) 00" Ax) + maifp(x) , (4.99)

et cetera. Here 6 = d/2.

Each of the fields Q(x) may also be expressed either through the ficlds (4.85), or the fields (4.96).
The Green functions containing any of the fields (4.85) satisfy the anomalous Ward identities (3.20)
for D = 2. Using the relations of the type (4.99), the anomalous terms may also be expressed
through the anomalous terms in the case of the fields (4.96). By definition, each field Q, is
constructed as a combination of secondary fields (4.85) which represents a primary field, see
Eq. (3.61). It may be expressed through the secondary fields (4.96) as well. The condition
of cancellation of anomalous terms for the case of Green functions of the field Q, leads to
identical results independently on the choice of the type of secondary fields which the field Q,
is expressed through. The cancellation of anomalous terms in the Ward identities for the
Green functions (TQ;...) is guaranteed by Eq.(3.62) which determine the dependence of
dimension of the field ¢ on the central charge (and the coefficients of the superposition (3.85)
as well). The latter is demonstrated in Section 4.3 on an example of the Green functions <j,Q} ... ).
It is evident from the above that the Kac formula in our approach results as the consequence of
the second group of Eq. (3.62) for D = 2. The latter is demonstrated to a greater extent in
Refs. [6,15].

5. Conformal invariance in gauge theories
5.1. Inclusion of the gauge interactions

This section has two goals. First we are going to discuss how the gauge interactions could be
taken into account. Our second aim is to present a new viewpoint on the irreducibility conditions
(2.77) and (2.149) for the current and energy-momentum tensor, which define the models discussed
above. Formally, these conditions are the ones allowing to derive a unique solution to the
conformal Ward identities in D > 3. According to Section 2, a general solution of the Ward
identities may be uniquely represented as a sum of the two conformally invariant terms, see
Eqgs. (2.52) and (2.102). The second term is transversal and is caused by gauge interactions, while the
first one contains the information on equal-time commutators of the j, and T, components with
the matter fields, see Ref. [15] for more details. The fields j, and T,,, being determined by the
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Ward identities, transform by direct sums of irreducible representations’

0;®0f, 0r®0fF. | (5.1)
The conformal partners A,, h,, are, correspondingly, transformed by the direct sums
05 ® 04 0O ¢®0;. | (5.2)

(Recall that the initial representations Q;, Q7 and Q 4, Qx defined by the transformation laws (2.3),
(2.4) and (2.9), (2.10), are undecomposable).

The importance of these results is due to the following reason. The renormalized Schwin-
ger-Dyson equations contain the integrals over internal lines of gauge fields. Let
A (x12) = (A x1)A\(x2)) be the propagator of the gauge field. Consider the integrals

de dy G(x...)(4f) "' (x =Gy ...) = '[dx Ay T % oo JALLX — P cn) s

where G,(x ...) = (A (x)... > are the Green functions, and I',(x ...) are the corresponding vertices.
Analogous integrals appear in the approach developed herein (which is based on the solution [1,2]
of Schwinger-Dyson equations). As shown in Sections 5.4 and 5.5, the calculation of these integrals
in the case of conformal field theory is reduced to a calculation of contractions of Euclidean fields

jdx dy A,(x)45(x — Y)A), de dy j(x)45(x — Vi),

where A7, is the propagator of the current. The claim that the ficlds 4,, j, transform by the direct
sums of representations (5.1) and (5.2) manifests in a quite specific structure of the contractions.
Below we shall show that due to Egs. (5.1) and (5.2) each of these contractions could be represented
in the following form:

de AT, () + j dx A<

where A'°"¢, 4, and J,, j are the conformal fields transforming b irreducible representations
W gL : : i e
long (5 and Q, QY, respectively. Note that this expression does not include the formally invanant
“cross-term”

Idx Z#(x)}:,(x) .

This means that the transversal part of the current j, does not contribute to the gauge interaction.
Similarly, the longitudinal part of the field 4, decouples from the gauge sector. In other words, the

S Let us remind that the conformal partial wave expansion of the current Green functions contains two terms, each
being identified unambiguously. The first term is an expansion into invariant three-point functions C},,, .. se¢
Eq. (2.68), which correspond to the direct irreducible representation ;. The second term is decomposed into invariant
transversal functions C%; ¥ ., see Eq. (2.65), which correspond to the irreducible representation QY. An analogous
situation arises in the case of the energy-momentum tensor. More comprehensive comments may be found in Ref. [15],
see also Section 6.
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“transversal current” j -'[' = (0 — apﬁ,./lil)f, and the “longitudinal field” E}f“" = (a,,a‘,/D),?I, do not
contribute to physmal phenomena.6 From the mathematical point of view it implies the ortho-
gonality of subspaces generated by the conformal currents j, and jif (or the fields 4!°°¢ ). The
orthogonality conditions (2.56) and (2.58) derived in Section 2 are the reflections of this feature. All
the above admits a straightforward generalization to the case of the fields h,(x) and T,(x), see
Section 5.5.

Due to importance of these results, in the latter sections we reproduce them explicitly from the
requirement of conformal invariance for the generating functional of the gauge theory. Basing on
this requirement we shall show that the fields 4, and h,,, transform by direct sums of representa-
tions (5.2), while the invariant contractions [ A,j, and | h,,T,, have the structure described above.
It provides one with a new standpoint concerning the irreducibility conditions (2.77) and (2.149),
which select out the models of direct (non-gauge) interaction of the matter fields.

A more general family of models may be obtained by the introduction of gauge interactions into
the models discussed above. To achieve this, it is necessary to give up the irreducibility conditions
for the current and the energy-momentum tensor which have been accepted in Section 2. After that
the dynamical sector acquires the states of the kind

JuiCx)e(x2)|0),  Tiilx1)e(x2)I0),

where jif and T7;, are the transversal conformal fields (2.5) corresponding to representations of the
type Qo Let us pass to reducible fields transforming by the representations of the type (2.51):

u=du i T To+TY. (5.3)

The transversal components jif and TY;, are generated by gauge interactions. The electromagnetic
interaction leads to the appearance of transversal parts {jif---)> in all the Green functions,
Eqgs. (2.43) and (2.62) in particular. Analogously, the gravitational interaction begets a non-zero
transversal part Gj,,, in Eq. (2.136) and non-vanishing kernels (2.146) in the case of higher Green
functions (T ,,¢ ... ¢). We stress that these transversal parts are to be “found” from the electro-
magnetic and gravitational interactions, meaning that one should evaluate the asymptotic operator
product expansions j;(x)@(x,) and T}(x;)@(x,). The latter is sufficient for the setting up all the
states of the dynamical sector.

In the same manner as in Section 3, the dynamical sector is defined as the set of states of the type

Ju%1) - JuXeN0), Ty (X1) .- Ty (X)p(x)0> . k,r=0,1,...,

where the current and the energy-momentum tensor are defined as in Eq. (5.3). After that one
considers a family of the models (3.65). The primary fields Q, still represent combinations of the
secondary fields (3.44). However the latter are calculated taking into account electromagnetic and
gravitational interactions. In particular, the simplest model (3.66) is generalized as

Pi(x) + Rl(x) =
provided that non-vamshmg field R} exists in the expansion (2.54).

¢ Recall that _the conformal fields Jju and A, are representatives of the equivalence classes, see Eqgs. (2.38) and (2.40).
The fields j, — _,r,, and A, — A1"# are different representatives of the same classes and thus are physically equivalent to the
fields A, and j,.
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5.2. Conformal transformations of the gauge fields

As should be clear from Section 2, the formal transition of usual conformal transformation laws
to the case of gauge theories poses a number of obstacles. The problem consists in the following.
When considering the gauge field A, as a conformal vector with the transformation law (2.9), the
requirement of conformal invariants leads to the purely longitudinal expression (2.28) of the
propagator {A4,4,). Note that this expression arises as long as the dimension of the field A4, is
canonical (I, = 1). The canonical dimension in D = 4 conformal QED results from linearity (in the
field A,) of the Maxwell equations. In (non-linear) non-Abelian theories one could expect that
anomalous corrections to the dimension should appear. As shown in Ref, [44] (see also Ref. [15]),
the latter is not the case in D = 4. This is the tensor field F,,

F(x) = 0,A,(x) — 0,Au(x) + [4,(x), A\(x)] (5.4)

that acquires anomalous dimension, while the dimension of the field 4,(x) remains canonical. Thus
the difficulty mentioned above persists in non-Abelian theories.

The group-theoretical source of this difficulty is rooted in undecomposability of the representa-
tion Q4 given by the transformation law (2.9). The invariant longitudinal propagator (2.28) is
related to the irreducible representation Q's"® which acts in the space of gauge degrees of freedom.
In non-Abelian case the latter are described by the field

Ax) = g(x)0ug ™~ '(x). (5.9)

Below we show that in the Lagrangean approach, the invariance with respect to transformation
(2.9) is possible only on the space of fields (5.5), i.e. under the condition F,, = 0.

When F,, # 0, the transformation law (2.9) needs to be modified. Let us remind that non-trivial
(i.e., having a transversal part) field 4,(x) is a certain representative of the equivalence class which
the irreducible representation § 4 is defined on. The transformation (2.9) relates different equiva-
lence classes. The fields entering the same class are connected by gauge transformations. Hence one
easily concludes that the more consistent transformation law for the field A, must be a combina-
tion of the transformation (2.9) and a gauge transformation of definite sort. The combined
transformation law is discussed in the next three subsections.

In what follows we utilize the infinitesimal form of special conformal transformations

SP(x) = £ K3P(x)

where ¢; are the parameters while K, are the generators of conformal transformations. For
the scalar and vector fields of dimension ! one has (see, example Refs. [2,22,15] and references
therein):

K3®'(x) = (x20,; — 2x,x,0, — 2x;1 )P'(x) ,
K3®(x) = (x?0; — 2x,x.0, — 2x,;1 )Bh(x) + 2x,P;(x) — 28;,%.A(x) .
The invariance condition for the propagator of the field 4, of dimension / = 1 has the form

(K7 + K37) {Au(x1)Ax2)) =0, (5.6)
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where
K A,(x) = (x203 — 2X;%:0; — 2x)A,(X) + 2x,A4;(x) — 20;,%.ALX) . (5.7)

The solution of Eq. (5.6) is the longitudinal function (2.28).
One easily checks that Eq. (5.4) and the action

So =%J.dx Sp F2,

arc invariant under the transformations
0A,(x) = g, K;A(X) . (5.8)

Consider the gauge term. There exists a unique choice of Lorentz- and scale invariant gauge term,
namely

Seauge ~ J.dx Sp (6,4,)* . (5.9)
It is not difficult to see that in general this term breaks the invariance under Eq. (5.7)
0S8 gauge ~ £2 de A%0,A4; #0. (5.10)

However, on the pure gauge space (5.5) its invariance revives. Considering g(x) as a scalar field of
zero dimension

8g(x) = ;K ,9(x) = £;(x*0; — 2x,x.8)9(x) ,

we have

5Sgauge o J-dx Sp [a.u(af.tgg_ 1)6199_ 1]

= —g& J.dx Sp[Og 19,9 + 8,9 '0,0,9]1 =0.
The result (5.10) is clearly understandable from the viewpoint of the above discussion: as far as the
proper choice of a representative in the equivalence class of the field A, had not been made, the
latter should contain an uncontrollable longitudinal part breaking down the gauge choice in the
form (5.9).

5.3. Invariance of the generating functional of a gauge field in a non-Abelian case

Let us consider the generating functional of a non-Abelian theory

Z(J) = J.dA dcdC cxp{j [ iF}:‘F,‘;v + 50,45 — COVC + A,‘ilﬁ]} , (5.11)
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where C, C are ghost fields, V, is a covariant derivative
V,=0,+[A,...], 0V=203,V,.

Invariance of the functional the under linear the conformal transformations (5.8) is violated by the
gauge and ghost terms.

So, the term _[dx (F4,)? is invariant under the direct product of conformal and gauge groups,
while the term

dA, dc dC exp{'[dx [ﬁ 0,A4%? — Co Vc:|} (5.12)

breaks either of the symmetries.

The idea of the approach proposed is as follows [44-46]. We shall show that a complete change of
the term (5.12) under special conformal transformations (5.7) and (5.8) can be compensated by a certain
gauge transformation whose parameter depends in a special way on the field A,. This will thus prove
the existence of combined transformations under which the term (5.12) remains invariant. They consist
of special conformal and compensating gauge transformations. Then we shall show that these
combined transformations form a non-linear representation of the conformal group.

Let us consider the variation of the first term in Eq. (5.12) under special conformal transforma-
tions:

'[ dx (8,49 — J dx (3,45 + 4,49 . (5.13)

We shall find the variation of the ghost term. The ghost fields C and C are transformed as
conformal scalars with scale dimensions d. and de, and from scale invariance it follows that
dc + de = 2. It will be shown that the property of compensation of conformal and gauge trans-
formations occurs under the condition

de=0, dc=2. (5.14)
Special conformal transformations corresponding to these values are

SC(x) = £;K,C(x), 6C(x) = &,K,;,C(x), (5.15)
where

K;C(x) = (x*3; — 2x,x.0.)C(x),

K,C(x) = (x?0; — 2x,;x.0, — 4x,;)C(x) .

It can be readily verified that the quantity V,C(x) is transformed as A4,(x), while 8VC(x) is
transformed as 0,4,(x). As a result we have

b J‘dx C(x)dVC(x) = ¢; '[dx {4CV,C + (x*0; — 2x,x.0, — 8x,;)COVC} .
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The second term in braces can be omitted since it is a total derivative. Combining this result with
Eq. (5.13), we find

dA,dC dCexp {J.dx |:— (0,4%* — Cd VC}}

—dA, dC dC exp {de |: (0,45 + 4e,A45)?* — COV + 4¢,V, )C:|} (5.16)
In the right-hand side there exist additional terms
; siauAf,,A'}_ B 4816 V,C

expressing symmetry breaking. We can easily make sure that to compensate these terms it is
necessary to make the following BRST transformation:

SA(x) = — V,C(x)e, 6C(x) = — %E“"‘C"(x)C‘(x)a, 6C(x) = —a LAl(x)e, (5.17)

where ¢ is a parameter of BRST transformation. To compensate the additional terms, the
parameter ¢ should be chosen in the form

e =4e, J.dy C(y)A5(y) -

Specific for these transformations is a non-linear dependence of the parameter on the fields. Such
BRST transformations were studied in Refs. [47-50]. It is of importance that these transformations
affect the measure of integration in the functional integral (5.11). This should necessarily be taken
into account in a verification of invariance of the term (5.12) under combined transformations. So,
we substitute in Eq. (5.12) the fields transformed according to Egs. (5.7), (5.8), (5.15), (5.16) and
(5.17) and examine the first-order terms in ¢;. For the constant parameter ¢ the term (5.12) is
invariant under BRST transformations, and therefore it is necessary to trace only their contribu-
tion from the measure variation. It can be easily verified that this contribution compensates the
variation (5.16). We have thus provided that the generating functional is invariant under the
following combined transformations [44,45]

0A,(x) = &,K;A,(x), 6C(x) = £;K;C(x), 6C(x) = &,K,C(x), (5.18)
K;A,(x) = K;A,(x) - 4V,C(x) J‘dy C*(»)AYy) , (5.19)
RC(x) = K;C(x) — 26™C(x)C¥(x) jd.V T4, (3.20)
R0 = KiCH) — 20,50 [ay 40)C0). s21)

In the next section we check that the new operators K are actually generators of special conformal
transformations.
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These results can be represented in an alternative form where the ghost ficlds are integrated. To
this end, we integrate Eq. (5.11) over the ghost fields to obtain’

1 1 1
Z(lj=0 = = J.dAn det |3 V| exp{'[dx |: —32 Fi.FS, + % (aHA;',)Z:,} . (5.22)

Combined transformations of a gauge field, which consist of conformal transformations and
compensating gauge transformations have the form [45,46]: :

0A(x) = &,K,;A4,(x), (5.23)
where

1
K;A,(x) = K;A,(x) — 4V, ﬁ?/{l(x) ; (5.24)

We note that the generator K, is obtained from Eg. (5.19) by a formal substitution

CICH) = 550c — ).

Invariance of the generating functional (5.22) under the transformations (5.23) is readily proved by
a direct verification. Consider the factor

det |0V | exp {J.dx 2_lac (BﬂA;ﬁ)z} .

Let us make a change 4, - A4, + 6,K;A,. It may be shown that
det |0V| —>det [0V + £,0,K;A,| ~det [0V + 4e, 4, .

The factor independent of 4, is omitted. As a result, we find

1 1
det [0V|exp [ﬂ de (6HA§)2:| —det [0V + 4¢,4;| exp |:-2-E '[dx(ﬁuAﬁ + 43,‘,4,‘1){' .
We shall now make a compensating gauge transformation. If we choose it in the form of the second
term in Eq. (5.24)

SA, = —4e, V, ! (5.25)

v

then we again come to the initial expression for the generating functional Z(J). For this purpose
it is convenient to represent det [0V + 4¢;A4;| as the value of the functional 4(A4) determined

7 For the sake of simplicity, we carry out all further calculations as if the operator @ ¥V had no zeros. In the presence of
zeroes these expansions become much more complicated. But we do not consider this case here.
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by the relation

A(A) J.dw 0(0,A45(x) + 4, A5(x) —g(x)) =1,

where Aj(x) = A, — V,w, on the surface 0,4,(x) + 4¢,4,(x) = g(x), and then use the standard
technique.

Let us present a new law of conformal transformations of the tensor field F,,. Supplementing the
previous transformation law with the gauge transformation (5.25), we find

5pr(x) = BAKAva(x) = ElKlerv[x) s 461 [aiVAA(x], F,uv(x)} 3

where
KAF_av(x) = (xzal - 2xﬁ.xtax - ?-dF)F_uv(x) + zxp[zﬁ.ps Fuv(x)] *

Here dr is an anomalous dimension of the field F,,. As distinguished from d,, there occur no

restrictions on its value.
Let us consider the invariance conditions of the Green functions under the combined trans-

formations
0 = 0{A,A,) = 6{F,A,> = 6(F,,F,.) = {CC)
= 0CAAvA,) = 0(F A A =

and so forth. Formally they can be obtained in a usual way in an analysis of the generating
functional with allowance for its invariance. Substitution of the field variations (5.18)+5.21), (5.23)
and (5.24) gives the relations that link different Green functions. As distinguished from the usual
conformal Ward identities, these relations are non-linear in the field due to a non-linear character
of the transformations.

Consider the first of these identities:

0CALA,) = (0A(Xx1)A(x2)) + (A(x1)0A\(x2))

= sﬂ.[<Kﬂ.Ap(xl)Av(x2)> + {Aux)K;A,(x2)) — (6 — 2d4)

1 1
X (( Vu 57141(171)/4»(—"2)) + (A, (x )V, ﬁ?'A 1(x2)>)i| =0. (5.26)
Here we have used an extension of the transformation (5.23), (5.24) to the case of anomalous
dimension d, of a gauge field. The condition d, = 1is a consequence® of the group law [15]. As will
be shown right now, formal invariance of the Green functions holds for any d, values.

# This can be proved directly from the equations, see Refs. [44.15].
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We shall analyse Eq. (5.26) in the transverse gauge and show [46] that its solution is a transverse
power-law function

0,0, 1
D::v(xiz) ~ (5}1\! — Hﬁ)w . (5.2?)

Let us examine the two last terms in Eq. (5.26). We take the notation

1
D,ax12) = <Vna v xl)Av(x2)>

In the transverse gauge we have
a,uD_ulv{x) = Diw(x): avD_uJ.v(x) = 0

The most general scale-invariant solution of these equations is

oy
Dme(xlz)'f'ﬁ 0, _uv{xlz)a

where f is an unknown constant. When substituted in Eq. (5.26), the terms ~ f are cancelled, and
we come to the linear integro-differential equation

D,u).v(xl 2) =

x

1 ax,
—=DylX13) +—— ,u).(xlz)] =0

(KA x1)A(X2)) + {AUx)K A (x2)) — (6 — 2d4}|: 0

Its solution is the function (5.27).
We shall analyse the Green function

Dﬁ\ft(xIZ) e (va(xl)At(x2)> .
We shall show that the general conformally invariant expression for this function is
DEA(12) = Cl0,Bs — 6.8) =7 (528)
(xg)™

where dy is an anomalous dimension of the field F,,. Note that due to a non-linear character of
conformal transformations of the fields F,,, 4, this function is non-zero for dr # 2. The corre-
sponding Ward identity for it is of the form

1 1
(K3 + KF)Dyitdx12) — 4<ng(x1) V%T? Az(x2)> + 4<[B VA.l(xl) Fm(x1):| ,(x2)> =0,

where the action of the operator K3 is defined above. In the Abelian case this equation becomes
linear

o7
(K3 + K3)DEd (xy2) — 4 g
X2

One can readily make sure that the expression (5.28) satisfies this equation only under the
condition

d}:’=2.

D_uv .1(x12) 0.
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In a non-Abelian case for dy # 2 we have from Eq. (5.28)

or:
(K} + KP)Dfidx12) = — 2(dr — 4) =Dk i(x12) + (dp — 2)(dp — 4) % =Dy (x1,)

O,, 0,
el 2(dF - Z)C(‘Smé"‘l - éﬂiév:){xfl)_dﬁz .

Substitution of this expression into the Ward identity yields some restrictions on the form of
non-linear terms, for more details see Ref. [44]. Thus, anomalous dimensions dr # 2 do not
contradict the Ward identity. One can similarly examine the Green function {F,F,.> and show
that the most general expression for it, compatible with the Ward identity, is

DFFpr(xIZ) = (F, pt) =fi [Gup(X12)g0x12) — Qm(—‘ﬁz)gvp(xu)](x%z)_dp
+f2(df" = 2)[514,95“ e 6;1:5\';1)(-’5%2)_“; ]

where f, , are arbitrary constants.

5.4. Conformal QED in D = 4

Let us analyse the group-theoretical structure of the transformations (5.23) and (5.24) in Abelian
case, where they take the form:

0A,(x) = ;K ;A,(x) — 4e; %Al(x) . (5.29)
Consider the transformations of the form

0A,(x) =&, K;A,(x) =¢ ,1|:K 2AX) — 4aﬂéA5_’(x)i| : (5.30)
where A%(x) = (d;, — 0,0/00)A.(x). They differ from Eq. (5.29) by the gauge transformation

6 Au(x] — sia,u Dz t( )

which leaves the gauge term (5.9) invariant. Thus for the modified conformal transformations one
may choose either Eq. (5.29) or Eq. (5.30). For the discussion in this section it is convenient to
utilize Eq. (5.30).

Introduce the projection operators

3,0

P"A,(x) = (5#‘, “D”)A,,(x), Plone4 (x) = 0,0

EiVAv(x) ; (5.31)

The generator K, entering the transformations (5.30) may be represented in the form

R;A,(x) = P*K;P"A,(x) + K;P""%4,(x) . (5.32)
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To prove this, let us make use of the relations

0,K 1A4,(x) = (x*0; — 2x;x.0, — 4x,)0,4,(x) + 4A4;(x)
1 1
E[(xzai — 2x;%.0, — 4x,3)8,A4,(x)] = (x?*d, — 2x1xrat}aa,, AX) — Au(x),

PlongKaPlong = K}'Plung .
and put the r.hs. of Eq. (5.30) into the form

. 1
K;A,(x) = K;A.(x) — 45 0,AY(x) = PK P A,(x) + K;P""A,(x). (5.33)

So the modified special conformal transformations in QED have the form [27-29]:

A, (x) = e;[P*K,; P A,(x) + K;P""%A4,(x)] . (5.34)
The modified global conformal transformations have the similar structure:

U,A,(x) = PU,PTA,(x) + Uy P"A,(x), (5.35)

where U, are the operators in the Hilbert space which generate a vector representation of the
conformal group (for d = 1). In particular, the modified transformations of conformal inversion
have the form [27-297:

R ) axax aRxai{x
A_u(x) - A;d(x) = (épv =3 D ) x2 \-p(x) ( — E]T)AI(Rx)

aRxaRx
zgup(x)—At(Rx) (5.36)

One easily checks that the operators U, satisfy the group law

0,10, =0, U, 1U, = Uy, .
To demonstrate this one employs the relations

P*U,P""¢4,(x) =0, P""sU P"t4,(x) = U,P'"4,(x). (5.37)

The transformation law (5.35) defines a reducible representation of the conformal group:
04®Q"™. (5.38)

Indeed, the representation Q'{™ is realized on the space of longitudinal fields 4)’"¢ and corresponds
to second terms in each of Egs. (5.34), (5.35) and (5.36). The first terms correspond to the
representation J ,. Recall that the latter acts on the space of equivalence classes {4,}, each class
comprising all the fields with a given transversal part A = P"4,

{A}: A, = A(x) + 0,00() ,
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where A} is fixed, and @q(x) is any scalar field. The transformations U, map different equivalence
classes into one another. To fix a definite realization of the transformations U,, it is necessary to
select a certain representative in each equivalence class. In the Eqgs. (5.34), (5.35) and (5.36), the role
of such a representative is played by the transversal part of the field 4,

Ayx) = A%(x) + A°"%(x) where AY = P¥A,(x). (5.39)

As the result, the irreducible representation J, is herein realized (unlike the realization in
Section 2) on the space of transversal functions. Any transformation in this realization may be
represented as a sequence of the three transformations:

1. Gauge transformation inside within equivalence class: 4, - A7 = P"4, = P"A,;

2. Conformal transformation to a new equivalence class: {j{} — {j’} (or A} — ;f;,];

3. Gauge transformation within a new equivalence class: 4, - P"4), = P"4;,

Finally, the r.hs. of the transformation (5.35) (and, similarly, Egs. (5.34) and (5.36)) may be
represented in terms of the fields A,, A"¢ dealt with in Section 2:

r t “lon: r it 1
4# Plr 4# ! 4#I £ Pl {rg Plr 1“ [;rg 1;1111; ;
COHSidcr the Conditions Of in\i'ariance Wlth respcct to the new transformalions. An infinitesimal

form of these conditions is derived from Eq. (5.30). One gets for the propagator of the field A4,:

oy oy
(KT + K3) CAUXx1)ANx2)) — 45— CAT(x)Ax2)) — 45— CAUx 1) A5 (x2)> = 0. (5.40)

The general solution of these equations reads (up to a normalization) [27-29]:

1 0,0,\ 1
Aﬁv(xIZ} = <Au{x1)Av(x2)> ot E‘[ﬁi [(5;” = r] )E + %a,uav Il'l ng:| » (541)
1

where « is the gauge parameter,

0p' D<A (x1)A)(x2)) = 20,0(x12) - (5.42)
The result (5.41) may also be derived from the condition of R-invariance

AU 1)ANX2)) = CAx1)AYx2)) 5

where A}, is given by the expression (5.36).

The photon and the current propagators appear on internal lines in the Schwinger-Dyson
equations (exact ones or those in the skeleton approximation®),as well as in the equations of the
formalism presented in this paper. So let us examine the invariant contractions

J.dx dy jux)aax — y)ivy), jdx dy A (x)A(x — y)AL), jdx Jux)A,(x) (5.43)

9 The skeleton approximation of conformal theories is described in the reviews [2,26,15], see also references therein.
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where 47, is the propagator of the current, see below. Unlike the discourse of Sections 24, the
calculations of these contractions should now involve the electromagnetic interaction. Let us
remind that there exists a pair of types of conformal currents: j%(x) and J,(x), transforming by
irreducible representations QY and 0; ;, see Section 2. The field j }# (and also the field Ay) is nothing
but a certainly fixed representative of the equivalence class {j,}. The physics resulting does not
depend on the choice of representative. Above we have already passed from the field A, to the field
A} The results of calculations should coincide no matter which of these fields had bcen used. In the
case of the current the situation is analogous. To examine the contractions (5.43) it proves more
useful to utilize the representatives AY and jio"¢ = P'"¢} instead of the fields 4, and j,,. Recall that
the field j, is the representative of the equivalence class {j,} which includes all the fields Ju with
a fixed longitudinal part. Formally, the transition

} _’}.Lung _ Plongjl'u (544)

leads to the change of the current’s transformation law, see below. On account of Eq. (5.44) the
total current should be represented as

JulX) = Ji(x) + Jie%(x) = jii(x) + P'°%,(x) . (5.45)

This differs from Eq. (2.52): the transversal part of the field }; is now omitted. According to
Section 2, this part does not contribute into electromagnetic interaction. The current (5.45)
corresponds to a new realization of the reducible representation

The transformation law of the current in the new realization reads [27-29]:
3jx) = e[ K P (x) + PP K, P°"%j,(x)], (5.47)

or in the case of global transformations
= [U P+ Ploosyl Pons] | (x). (5.48)

The first and the second terms describe the transformations of transversal and longitudinal parts of
the current, respectively. Note that the second term manifests itself (alike the case of A, field, see
above) as a combination of the three transformations: a transformation within equivalence class
towards a longitudinal representative, conformal transformation to a new equivalence class, and
a transformation towards a longitudinal representative within a new class. The Green function
{jujvy» which is invariant under these transformations, may be shown [27-29] to have the
following form:

A,f;v(xu) = {Jux1)ilx2)> = fL0,,0 — 0,0,)0(x12) + C0,0,0(x12), (5.49)

where f; is some constant and C; is the central charge introduced above.

Let us remind that the representations (5.38) and (5.46) are equivalent in virtue of Eq. (2.26),
while the propagators 47, and 4, are the kernels of intertwining operators. Fix the free parameters
entering Eqgs. (5.41) and (5.49) by the constraint

J.dx3 A;:p(X1 3)A V(x32) x1 2) (550]
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Then the equivalence conditions for the representations in the realizations (5.39) and (5.45) are
written as

Ay(x) = Idy Ap(x — Vi), Jjulx) = de A5,(x = YALY) - (5.51)

The second condition leads [28,29] to the Maxwell equations.'®
Let us come back to the contractions (5.43). From Egs. (5.50) and (5.51) one gets

J‘dx dy j(x)Ailx — Wiy = J.dx dy A,(x)4}(x — y)ASy) = Idx Ju(¥)A,(x) . (5.52)

The invariant propagators 44, and 44, coincide with the kernels of invariant scalar products on the
direct sums of subspaces (see Section 2)

MY@®M; and M, @MY, (5.53)
respectively. Each contraction in Eq. (5.52) may be represented as a sum of the two conformally
invariant terms correspondent to two terms in the sums (5.53), both being independent on the
choice of realization of the spaces M; and M 4 (i.e., on the fixing of representatives in equivalence

classes). For example, consider the second contraction. Decompose it into a sum of transversal and
longitudinal contributions

fdx dy A;()4%"(x — YAV + J.dx dy AZ"(xX)A5,"Hx — Y)AT"() - (5.54)

The transversal part 4J,' coincides with invariant propagator D, = (jii j> introduced in Sec-
tion 2, see Eq. (2.33). Considering the first term, it is useful to pass to conformal fields Z belonging
to the same equivalence class as A}

J‘dx dy Aji(x)45,"(x — PAV() = j dx dy A,(x)Dji(x — AL .

The second term includes conformal fields A}’ e M{"8. Hence one can add a singular longitudinal
part to the kernel 4/,'°"¢ and make transition to a singular invariant propagator D}, (see Eq. (2.32)
and, for more details, Section 2.7):

™

dx dy A4 (x — ) ALS(y) = J dx dy ALmH0D](x — ) AL™(y)

Finally the expression (5.54) may be rewritten as

~

dx dy A,(x)45,(x — ) A,(y)

fdx dy Z0D5(x — NA0) + jdx dy AL™(x)D],(x — PALHy) . (5.55)

1%Introduce the tensor of the field F,, which transforms by irreducible representation Qf of the conformal group.
According to Refs. [21,26], we have Qf ~ (4, Qr ~ QY. Calculating the intertwining operators for these equivalence
conditions one can show that F,(x) = a,ﬁ,(x] - a,}{,,[x}, 0,F,.(x) = jii(x). The second condition in Eq. (5.51) is equiva-
lent to Maxwell equations in z-gauge.
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It is essential that both terms in this expression are conformally invariant in usual sense (i.e., as was
understood in Sections 1 and 2). Let us also stress that the “cross-term”

is absent. This term is formally invariant, but is divergent. The third contraction may be repre-
sented analogously:

fdx A (x) = fdx A0 + fdxj::‘“* X) A} (x)

= de j:{(x)ﬁ,‘(x] + jdx Ju(x)Ak"¥(x) . (5.57)

Here the rh.s. is also expressed through the conformal fields 4,,j, introduced in Section 2.
Moreover, the cross-term

deﬂ{x)ﬂu(x) (5.58)

is also absent. The absence of terms (5.56) and (5.58) is equivalent to the orthogonality condition,
Egs. (2.56) and (2.58). This condition means that the transversal part of the current j:, is expelled
from the interaction with the field 4. The final result is that through a direct analysis of
electromagnetic interaction we have managed to get the former orthogonality condition,
Egs. (2.56) and (2.58).

Let us remind that Euclidean fields are understood as if they were placed inside the averaging
symbols. All the above relations for the fields A, j,, including Egs. (5.54), (5.55), (5.56), (5.57) and
(5.58), should be treated as the relations between the Green functions. In Section 2 we have
discussed two types of conformally invariant Green functions

Gi(x,...) = {ji®)...0"), Gi(x,...) = jx)e...0">
together with the two types of conformally invariant Green functions of the potential
GA(x,...) =<4 (X)@...0" ), G¥"¥(x,...) = {AHx)p...0" ),

where the currents j},’,}'; and the fields 4 » Al°°® have the usual transformation laws (2.3) and (2.9).
Relations (5.55) and (5.57) viewed in terms of these Green functions mean that the integrals over the
internal photon line have the form:

jdx dy @ ... " A,L)Dir(x — AP ...0")
+ de dy {@ ... 0T A" (x))Di(x — YA (P ...0T)

= J.dx (@ ... 0 JHX)) A0 ... 0% + _[dx (@ ... Jx)) A ()@ ...01 ). (5.59)
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The divergent cross-terms

de dy <o ... A (x))Dix — YWAWP ...0">

fdx (... 0 T3 Ax)e ...0")

are absent. Recall that in order to evaluate the second terms in both sides of the equality (5.59) one
should introduce a regularization, see Section 2.7.

As an example, let us consider the case of spinor QED. The three-point functions invariant under
Egs. (2.3) and (2.9) have the form (see Refs. [22,15] and references therein):

X13 X32 1 X12 1

~ Y —3E = A(x1x3)
(1) "(x33)* (1) 3% (cd) ™12 xiax3s " ’

S L .
o) X (x1x3). =)

Gi(x1x3|x3) = ('l’(xl)ky(lef::(xa)>

G{e(xixZIxB) = (!#(x:)!ﬁ(leli(xa))

The analogous Green functions for the fields 4,, A°"® read:

A 1 X13
Gil(xixalxs) = (Plx)Plx2) Aulxs) ~ D i—z?# fl:. '
G"¥(x1X2x3) = Y(XP(x2) A1) ~ O} |:ln vc;3 (‘"zj)'}{%ﬁﬁ} (5.61)

These functions satisfy the following invariance conditions:

(K3 + K¥ + KP) Yx)¥(x2)A,x3)) = (KT + K3 + KF) Yle)x2) A7 (x3)) = 0.
(5.62)

The infinitesimal transformations of the spinor field, i.e., the form of K;y(x) may be found in
reviews [22,2,15], see also references therein. Introduce the invariant under Egs. (5.47) and (5.33)
Green functions of currents and potentials. The Green functions G(x1x2|x3) and G}""¥(x;x;|x3)
remain unchanged, while the functions G; and G4, as may be shown [27-29], are replaced by the
following expressions:

a===a:,== X 1
lnng(x1x2x3) = <w(x1)‘p(x2})long(x3 D [(xfz);z_ 172 x%3x§3A:J(X1xz):| ] (563)
FA, tr _ x r 5 (R 1 %13, %32 5.64
G (xl.x.".xB) s ('\ll(xl)l)b(xZ)Aﬁ(xB]) = uvy Dxa (x )d 12 2 .r’x z, . ( . )

Unlike Eq. (5.62), the function (5.64) satisfies the following condition of infinitesimal invariance:

(K3 + K3+ KD) Qe e = 950 (310 — n ) Usalicaayxa> = 0.

(5.65)
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As before, the integral over internal photon line may be written through the functions (5.63) and
(5.64), and then expressed through the functions (5.60) and (5.61):

f dx dy CYOe)P(x2) 4,00 Aln(x — YKALW(x W (xa)
- [wBaonncanp + [parmpcamby

= J.'(l!ﬂ,ﬂ') CAND> + J PP Ju> KA . (5.66)

These results, as well as the conformal QED in skeleton approximation based on them, were
obtained by authors in Refs. [27-29], see also Ref. [15]. The conformal bootstrap in spinor QED
was discussed in Ref. [27,15]. Let us remark that the different version of conformal QED was
examined independently by several authors in Refs. [51-54].

In conclusion we note that Eq. (5.65) only describe the linear part of exact non-linear invariance
conditions discussed in the previous subsection. Indeed, the modified transformations of the spinor
field include a gauge transformation:

) 1
oY(x) + e, K3 (x) — iede, (ﬁ A?(X)) Y(x),
where e is the electric charge. As the result, one has

(K3 + K5 + K7) QUOsaCe (60> — 405 m-Che) Pl Asx)

= ie<(éA1(x1)) w(xl)J{xZ)A#(x3)> i ie<l//(x1) (—é‘Az(xz)) !F(xz)A,,(xg]> =0. (5.67)

Eq. (5.65) may be viewed as an approximation of these equations when e« 1. It is evident that
Eq. (5.67) are linearized when passing to gauge invariant combination

P(x1x2) = Y(x1)exp [ie j dx, An(x)J o(x2) .

The analysis of linearized equations and the evaluation of averages

(P(x1x3)), (P(x 1«"2)14;;(3‘3))

was conducted in Refs. [55,56], see also Ref. [15]. The formulation of conformally invariant gauge
theories in terms of such string averages looks more natural and deserves further investigations.

5.5. Linear conformal gravity in D = 4

The metric field h,, is twinned to a pair of irreducible representations: 0, and QJ°"%. Section 2
dealt with the two types of fields /,,(x) and hlor#(x) which transformed by these representations. As
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in the case of QED, the representation (, acts in the space of equivalence classes. The modified
conformal transformations of the field &,, may be derived through an addition of gauge trans-
formations inside the equivalence class {h,,}. Applying the arguments presented in the previous
subsection literally, one introduces the field

hu(x) = Poh(x) + HE(x) (5.68)
possessing the following transformation law [31]:

Sh,(x) = ;[ PYK P + K, P"*"¢]h,(x), (5.69)
where

PRy (x) = Pyl 0@ Wpel(x), P'"%hy(x) = Pi5a(0%)h,0(x)

while the projection operators Py, ,, and P8, are defined in Egs. (2.122), (2.123), (2.124), (2.125)
and (2.126). As in the previous section, this transformation law corresponds to a direct sum of
irreducible representations

0 DOK" . (5.70)
By analogy, introduce the irreducible energy-momentum tensor

T (%) + Tii(x) + PeT, (x), (5.71)
which transforms by the direct sum of representations

05@®0r . (5.72)
Its transformation law reads [31]

0T i (x) = ;[ K, P + PP°"K,P*"¢]T . (x) . (5.73)

One easily deduces that the propagators, which are invariant under Eqs. (5.69) and (5.73), have the
form

Ay pe(X12) = hu(X1)hpo(X2)) ~ Py o(0%) In x5 + Di54(x12) (5.74)
where the expression for DI, is given by Eq. (2.110):

Agv.pcr(xi 2) = LT u(x1)T polx2)) = DIG.L;(XM) + DE\L};%“(XL 2). (5.75)
where DJ; ', is given by Eq. (2.121) for D = 4, and the longitudinal part equals to [31]

D_c];\;,llp?rug(xlﬂ — agH\-pd(xl 2) &5 a\'Hﬂpa’{xl 2) - % 3avalHlpu(x12) ) (5'76)

H,,,(x) ~ [220,0,0, — 9(6,,0,00 + 6,,0,0) — 0,,0,L1]6(x,5) . (5.77)

This function may be directly evaluated from the invariance conditions. Though in practice it
proves more convenient to make use of the equivalence property for the representations (5.70) and
(5.72), see Ref. [31] for details.
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It is useful to normalize the propagators by the condition

J.dx.S A,uv tj(xl 3)‘4?1 pa’ x23) %(5.“.05\*! - 5#05\',0 éépvépdjé(xIZ) . (5?8]

The equivalence conditions are expressed by the relations

Ty(x) = jdy AspoX — VoY), hulx) = de Ay pa(x — VT paly) (5.79)

The first of these conditions coincides with the equations of linear conformal gravity in a conform-
ally invariant gauge (its explicit form is presented in Ref. [31]). Note that there exists another
equivalence condition, which has not been mentioned before. Introduce the Weyl tensor (in linear
approximation)

C;.wpa - Ryvpu = JZL (6,[.lpRvﬂ' 55 5vaRup = 5uaRvp - 5\-',9R,ua} +% (éppam - éuuavp)R ) (580)

where R,y,0 = 3(3,0,h,, + 8,0,h,5 — 8,8,hys — 0,04h,,) is the linear part of the Riemann curva-
ture. The Weyl tensor transforms by irreducible representation of the conformal group. Let us
denote it as Qc. According to Refs. [21,26], there exist the following equivalence relations:

QC ~ ;lr’ QC ~ QI% .
Calculating the intertwining operators for these representations one can check that the first

condition results in the constraint relating the fields C,,,,.h,, and coinciding with Eq. (5.80), while
the second leads to the equation

apaurcywa‘ Lot T_uv »

which coincides with Eq. (2.131a). Thus the equations of conformal gravity in linear approximation
follow from the equivalence of corresponding representations of the conformal group.
Consider the invariant contractions

fdx dy hu() A4y polX — Ypoly) = J.dx T (x)hy(x) - (5.81)
The first one may be brought into the form

_[dx dy hi(X)A55a(x — Y)hba(y) + j dx dy hlos(x) AT lons(x — p)hlers(y)

= jdx dy R (X)DL, po(x — Wh,(y) + de dy B8 (X)Dysy pa(X — YVHGTE(D) (5.82)
where D}, ,, and D[, ,, are conformally invariant (in usual sense) propagators (2.121) and (2.115),

Em(x) and h;2"%(x) are conformal fields transforming by the standard law (2.10). It is important that
the (singular) “cross-term”

jdXdy F (x)D;.:v pa( — }’]Epa(y) (5'83)
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is absent. Analogously, the second contraction is also written as the sum of terms which are
invariant under the usual transformation laws (2.4) and (2.10):

J‘dx T (X)h,(x) = de T (), (x) + j’fw{x)hl"“‘{x) (5.84)
Here the cross-term
J.dx ’Tm(x)h',”(x) (5.85)

is also absent. It is not hard to understand that the absence of terms (5.83) and (5.85) in invariant
contractions is equivalent to the orthogonality condition (2.105). Here it means that the transversal
part of the field & v does not interact with the transversal part of the tensor T ,, which was related to
a direct (non-gravitational) interaction of the matter fields in Section 2.

6. Concluding remarks

The approach developed here is based on a number of general principles of quantum field theory.
we have inspected axiomatic hypotheses which select out definite classes of conformal models, in
the same way as it is done in two-dimensional theory. The conformally invariant Ward identities
for the energy-momentum tensor and the current play a principal role in our approach. Effectively,
the latter contain the information on the quantization rules, and, to some extent, are equivalent to
the definition of Hamiltonian. The conformal symmetry leads to a highly specific structure of the
Hilbert space, essentially of its sector begotten by the current and the energy-momentum tensor.
This Section presents a detailed review and a more comprehensive commentary concerning the
properties of these fields, which are indispensable in conformal theory and altogether imperative in
our approach We investigate, in particular, the propagators and Green functions of the fields
Jjus Tuy and also of their irreducible components ;,,,, A T,,v, T,‘,ﬁ in different realizations of the O-type
rcprescntations; see Ref. [65] for more detailed con51derat10ns

6.1. Conformal models of non-gauge fields

Consider the Euclidean fields j(x) and T ,,(x). The Green functions { j, ... > and (T, ... ) are the
Euclidean analogues of T-ordered vacuum expectation values in Minkowski space. Here we treat
the Euclidean fields j,(x) and T,,(x) as the symbolic notation for the complete sets of Green
functions {j,... » and (T, ... ). Correspondingly, the derivatives of the Euclidean fields 0,j,(x)
and 0, T ,.(x) denote the derivatives of Green functions 9,{j, ... » and 8,{ T, ... ). Calculating these
derivatives, one encounters the two types of terms of different nature. Consider those terms on an
example of the conserved current in Minkowski space. One gets for the propagator of the current:

3,€0IT {ju(x)ju(0)}10> = 3(x°)<O0I[o(x)j(0)]10> + <OIT {B,ju(x)ju(0)}]0) .

The second term vanishes due to the conservation law

Mlnk.(x
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To ensure the covariance of the T-ordered average, one should add quasilocal terms to the first
term of the expression. The form of the total contribution of these terms and the commutator is
imposed by conformal invariance, and reads

0,0 T {j(x)i,(0)}|0) = C;0,00P~2125(x).

In Euclidean conformal theory, one associates the above pair of contributions with the irredu-
cible components of the Euclidean current j,(x), so that

0uulx) = Bujulx),  Buiilx) =
In particular, the total propagator of the current for even D >4 may be represented as (see
Section 5 and below):

{Juxaiv(x2)) = Tl ix2)) + Galeivxa))
.u( J'_u(xll,v(xz)> = aﬂ(}jz(xlyv(x2)> = CJ'aHD(D 2){25(3612) 3
0, Julx1)iv(x2)) = 0.

An analogous expansion for the higher Green functions was dealt with in Sections 2 and 4.

As will be shown below, the irreducible components j, and j have different physical meaning,
and hence the different group-theoretic structure.

According to Section 5, see also the discussion below, only the current jj(x), but not ;,,(x), induces
a non-trivial contribution to the electromagnetic interaction. The Green functions of the current
J, satisfy non-trivial Ward identities and contain the information on the (postulated) communica-
tion relations of the total current:

Dotx), jO)]xo =0, Lio(x),0(0)]xe= o, - --

As shown in Section 2, all the Green functions j, ... ) are uniquely determined by the condition
of conformal invariance and by the Ward identities.
Note that the fact that the fields P; arise in the operator expansion

Ju(x)(0) Z [P,

is a necessary consequence of the Ward identities (see Section 2), independent of the choice of
dynamical model. Therefore the existence of the fields Py, generated by the current Jy follows from
the two statements taken as postulates: the requirement of conformal symmetry and the definition
of the equal-time commutator [ jo(x), ¢(0)]. The dynamical requirement is the choice of null
vectors. The.latter depends on how the commutator [ jo(x), j(0)]xo=0 is defined. In Euclidean
version of the theory, this commutator is determined by the type of the operator product expansion
Fu7(0).

The expansion ;p x)70) = [C;] + [P;] + -+ was considered in Section 3, while in Section 4 we
have examined the models with C; # 0, Pfx) =

One should remark that the current j,(x) arises as a representatlve of an equivalence class.
{7} < M; = M;/MY¥. The conformal transformations of the current j, depend on the type of
representatives chosen in each class, see Sections 2 and 5. Thus the transversal parts of the Green
functions ¢ ... > may be redefined by performing a different choice of representatives. Particularly,
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in the non-local realization of conformal transformations (for D = 4), considered in Section 5, these
Green functions are longitudinal. This realization is useful for conformal QED. However, it is
essential that the local realization of conformal transformations of the current j, considered in
Section 2, is needed for the analysis of the operator product expansions j,¢ and j,j,. Below we
discuss both realizations to a greater extent, and describe the relations between them. In a local
realization, the Green functions (}';,...) have quite definite transversal parts, which do not
contribute to the electromagnetic interaction since an irreducible component j, of the total current
only appears in contractions of the type | dx Ju(x)Ale"¥(x), see below. As shown in Section 5, the
interaction with the irreducible field 4, is caused by the component ji of the total current, and has
the from | dx jif(x)A4,(x).

All what has been said is equally valid for the case of the energy-momentum tensor in conformal
theory. The two irreducible components 'T“,” and T, have the same meaning as explained in the
case of the current above. The component T, leads to a non-trivial contribution to the gravi-
tational interaction (with the fields h' +): The component Tm, appears only in the contractions
| T . (x)hlor#(x) and describes the postulated commutation relations of the total tensor T,,(x) with
the fields, and with itself. Though the conservation laws

TMmk(x)

are satisfied in Minkowski space, for the Euclidean propagator (and for the T-averages in
Minkowski space) we have

(T3 T pl0)> = L Tus) Tl 0)) + < T}i(x) T5ol0)
where 0,{ T}\(x)T;5(0)> = 0. In the case of Cr # 0, we get
O Tl Tl 0) = 0Tl Tl 0) # 0.

All the Green functions of the irreducible component Tm(x) are determined from the requirement
of conformal symmetry and from the Ward identities, as it is shown in Section 2.

Let us consider the structure of the Hilbert space in more detail.

We have shown in the previous sections that the Hilbert space of conformal field theory contains
two orthogonal sectors

A®H,, (6.1)
which are generated by irreducible fields
I B ol 5T, (6.2)

The subspace H is related to irreducible representations of the type §, while H, to representations
of the type Q,, see Eq. (2.15). The orthogonality of the subspaces H and H, means the vanishing of
the Green functions

Gy = @i jup™> = 0, KT Tpd =<@TiTpop™)> = 0. (6.3)

Due to the conditions of equivalence for the representations (2.27), (2.131), the subspace
H, includes electromagnetic and gravitational degrees of freedom (while the subspace H includes
gauge degrees of freedom only). The appearance of non-zero conformal fields jif and T, necessarily
leads to the appearance of electromagnetic and gravitational fields 4, and &,,. The Grcen functions
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of current and energy-momentum tensor, which are calculated from Ward identities, generally
include the total fields

Jux) = Ju) + i), Tulx) = Tpalx) + ). 64

Thus the general conformally invariant solution of the Ward identities contains contributions of
electromagnetic and gravitational interactions. To derive the models of non-gauge interactions
considered in Sections 3 and 4, one must impose special conditions on the Green functions of
current and energy-momentum tensor, see Egs. (2.77) and (2.149). These conditions restrict the
total space (6.1) to the subspace H, setting transversal fields to zero: jif = T%, =0 on H.

We arrive at the following picture. The conformal symmetry, which arises as a non-perturbative
effect, may take place in a special class of models (not necessarily Lagrangean). Starting with the
structure of Hilbert space described above, it is natural to assume that gauge interactions are
present initially (for D > 2) in conformal models based on Ward identities; both the components
(6.2) contributing to the total expressions for current and energy-momentum tensor. A “true”
conformal theory must contain the fields (6.4), and, consequently the fields, 4,,f,, due to
Egs. (2.27), (2.113), and (2.131) (see also Egs. (6.33) and (6.42)). If we choose to consider the
“approximate” models without gauge interactions, the solution is to be looked for in the restricted
class of Green functions {j, ... », {T,,... ) corresponding to irreducible representations J;, 7.
This class of Green functions is singled out by conditions (2.77) and (2.149). A theory with such set
of conditions is non-trivial if the operator product expansions j,(x)j(0) and T,4x)T ,,(0), where
J (%) = J(x), T (x) = T,.(x) are irreducible fields, include anomalous terms [C] and [P(x)], see
Eqgs. (3.46) and (3.47). The conformal Green functions

). 0™, (Tp®)p...0™

are uniquely determined from the Ward identities (Section 2). As shown in Sections 3 and 4, the
latter feature allows one to derive a D-dimensional analogue of the family of exactly solvable
two-dimensional models.

In this Section we examine the propagators and higher Green functions of the total fields (6.4).
Each of the Green functions will be represented as a sum of two terms, the first one corresponding
to the subspace H, and the second, to the subspace H,. These terms have different group-
theoretical structures and different partial wave expansions. Note that the results will be technically
different for the spaces of even and odd dimensions. Here we restrict ourselves to the case of even D.

6.2. The propagators of the current and the energy—momentum tensor for even D > 4.

As shown in Section 5, the conformal transformation of the fields (6.4) have the following form:
R . " .
Julx) = Vi ju(x) = URPju(x) + PP "8ULP " (x), (6.5)
where P* = §,, — §,0,/0, P*"® = 9,0,/0,

4 - ki VET (%) = URP"T,, + P"sUxP"™T,(x), (6.6)
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where the projection operators P'* and P'°"® are given by the expressions (2.122) and (2.125). The
action of the operators U% and U7 is given by the r.h.s. of the transformations (2.3) and (2.4). The
conformally invariant propagators are determined by the conditions

(jﬂ(xl).iv(xz)> = (Vﬁju(xi)Vﬁ Ju(x2)>, <T,uv(x1]Tpd(x2)> = (V};TW(M)VETM(XZ)) .

For even D > 4 these equation have exceptional solutions which may not be obtained by the
limiting transition from anomalous dimensions. One can check that the solutions have the form:

A{:v(x12] T <j,u(x1)j\'(x2)> :L (5;”':' - anav)D(D_“!zé(xli) i Cjauavl:l(p_d}fzé(xll’.) ] (67)
A;{v.pa{xIZ) — <Tpv(x1)Tpa-(x2)> =fTH:fv,pa(ax)Dm_4”26(-“12}
+ CrH5,(09)0P~Y25(x, ) , . (6.8)

where f; and fr are some constants, Hy, ,, is given by expression (2.166), and H}os, has the form

2
H%"8 (0%) = 0,H,,,(0) + 0,H ,4(0%) — D 0,0 H 354(87) ,

1v,p

where

2D* —3D +2
2D(D — 1)

Propagators (6.7) and (6.8) satisfy the Ward identities (2.177) and (2.186).
In Section 2, the Ward identities were obtained using the kernels invariant under (2.3) and (2.4):

1
8,50, .

H,,0(0%) = m

D—1
0,0,0, — T{éﬂpa, + 0,,,0,)0] —

-~

1 C; 1
i e T i = J —
DFV(xlz) 6}'{x%2)ﬂ— 1 +r.gf-“"(xl 2] - 2(D _ 1 + 8)(D " 2 + E] {(65“"[:' ai‘av (x%Z)D_ 2+e

6.9)

£ 1
— J
D—-2+ 285”" xiz)” 2 “}

gl

C, 1 }
=MD TF 9D 2+ 9 O ~ Wz + CRBHETI ) + 00,
(6.10)

Te 1 2 &
Dy po(X12) = CT—‘;W up(X12)GvolX1 2) + Gue(X12)9yp(x12) — & 0y pa (6.11)

(xIZ) D gl
C{r 1 ] " ryir X (D—4)/2
= ?Harv.pcr(ax}(m + CTH,uv.po' 0 )D 6("‘1 2)
12

+ CrH8,(090P™%25(x,5) + Ofe) , (6.12)

where €' and C% are some constants. The longitudinal terms in Egs. (6.10) and (6.12) are derived
with the help of relations (2.34) for k = (D — 4)/2. Notice that their form coincides with longitudinal
terms of the propagators (6.7) and (6.8). The kernels (6.9) and (6.11) define in the limit ¢ — 0 the
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propagators of irreducible fields j, and T',,; they were used in calculations in Sections 3 and 4. The
transversal parts of these kernels, singular at ¢ = 0, do not contribute to conformally invariant
graphs, see Egs. (5.55), (5.59) and (5.82), and do not change the results. Technically, the latter
manifests in the fact that the representations of the type § are defined on equivalence classes (see
Sections 2 and 5), not on the fields. The kernels (6.9) and (6.11) for ¢ = 0 are related to longitudinal
terms in Egs. (6.10) and (6.12) by transformations inside the equivalence class, corresponding to the
transition to the other realization of representations Q; and Q. The more detailed discussion is
presented in the next subsection.

Another approach to a definition of propagators was recently considered in Refs. [59-61]. These
works introduce a special regularization of the non-integrable function (x3,) ~”* 2 in Egs. (6.10) and
(6.12) at & = 0, which breaks the conformal symmetry. Moreover, the longitudinal terms'' are
dropped in Egs. (6.10) and (6.12). After that, it is shown that such breakdown of the conformal
symmetry may be related to conformal anomalies (the physical motivation and the methods of
derivation of conformal anomalies are discussed in Refs. [62,63]). Note that the possibility of the
breakdown of the symmetry also remains in our approach. Though, our principal aim is the
analysis of models with exact conformal symmetry.

6.3. The propagators of irreducible components of the current and the energy-momentum tensor

Consider the irreducible currents ji and }; The pair of invariant propagators (for even D > 4)

T e2)y < Julealiv(x2))

may be related to the kernels of invariant scalar products on the spaces M, and M"¢, see
Eq. (2.23). These kernels

Df(x12) Diilx12) (6.13)

are invariant under the transformation (2.3) and were examined above for the case D > 4. The first
one is transversal and may be identified with the propagator of the current j;

DL(x12) = GR(x)iV(x2)) ~ (8,0 — 8,0,)00P ™ 428(x,2) . (6.14)

The second kernel is singular at ¢ =0, see Eq. (6.10), and gives a certain realization of the
propagator ¢ jJ,,), see below.

11 The right-hand sides of the Ward identities (2.177) and (2.186) are non-zero owing to contributions of equal-time
commutators of the current and energy-momentum tensor components between themselves, see Egs. (3.46) and (3.47).
Let us remind that the vacuum expectation values of T-ordered products of the fields (in Minkowski space) are defined
up to quasilocal terms, allowing one to make a transition to transversal propagators. However, such a redefinition breaks
the conformal symmetry, which fixes longitudinal parts uniquely. In a well-known example of two-dimensional theory,
the conformal propagator is given by the expression (6.11) for D=2, ¢—»0 and may be written as
<Tuv(x}Tpu{0)>!D= 2~ C'I'[(a.uav [ = i 5nvD)(apaa il % épam) - 'A' (6upaw # 5_«56\'.0 ik Jltvapﬂ']lj 2]1}'(5 ‘S(x) This pl’OpﬂgﬂlOl’
satisfies the Ward identity (2.186) for D = 2. Passing to the complex variables z = x; +ixy, T.. = Tyy + T2z in this
formula, we get the well-known results (T..(2)T..0)) ~ CH8,)*0.0:) '6PNz.2) ~ Cr/z*0T:-A2)T.(0))

~ CH{8.)26®(z,3), { T.4z.5)T,.0,0)> = 0. This propagator differs by quasi-local terms from the non-invariant transversal
expression (8,8, — 9,,3)0,0, — 8,,00) Inx?, which has a non-zero trace.
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As already mentioned in Sections 5 and 2, the Green functions of the current}; depend on the
choice of realization of the representation §; » Choosing different rcpresentatlves in the equivalence
class {j,}, one can obtain different realizations of the Green functions ¢J, ... ». In the Section 5.4 we
reflect upon the special realization (5.44) of the representation §;: there, the currentj';1 is longitudi-
nal, and its propagator reads

D1, *"%(x12) = {FHx 1 )f*"(x2)) = C0,0,0P~925(x15) . (6.15)

Conformal transformations are non—local in this realization, see Eq. (6.5), and differ from the
transformations of the current j;. The propagator of the total current j,, on account of Eq. (6.3),
equals to the sum of the terms (6 14) and (6.15).

In Sections 3 and 4 we studied another realization of the representation 0;. Its conformal
transformations are local, coincide with transformations of the current jj;, and have the form (2. 3)
The propagator {j,j,» in this case also demand regularization and coincides with the Kernel D!

Dl x12) = {Jux1)idx2))s = C0,0,0P726(x12) + A(6,,0 — 3,2, )rﬁ + O(e) . (6.16)

The physical significance has, however, the equivalence class {j,} = j,, " rather than the current
ju by itself. The framework of the conformal theory described in the preceding sections is
constructed in a manner which prevents the transformations inside an equivalence class from
having an influence on the results. In particular, the transfomlationj‘; — jloo¢ does not change the
values of invariant contractions (5.52). The latter may be written either in the form (5.54), or in the
form (5.55). The divergent at ¢ = 0 transversal component of the kernel D, in Eq. (5.55) does not
contribute, since the conformal Green functions {4'" ... > are longitudinal in the leading order in
¢ (the conformally invariant regularization is used for calculation of such integrals, see Section 6.4).

All that was said above is equally valid for the field 4,, which transforms by the representation
0,,®0'"e. The irreducible fields A, and A'°"* correspond to the kernels

D:;[xll) and Df;. OK(X1s) 5

which are invariant under the transformation (2.9). The kernel D, is singular at ¢ = 0
Dyxy2) ~ -(xn) X1 2)lewcr lva' 1%(x12) + Dy "(x12) + - (6.17)
and defines the scalar product on an invariant subspace M*
Py = del dxa i) DX 124 (x2)]e =0 - (6.13)

The invariant regularization of the fields ji/ — j,* is described below. Consider the longitudinal
kernel D#; "¢, It has the form (2.28) and defines the invariant scalar product on the space M of
equivalence classes {j,}, see Eq. (2.22),

(iJ}= de; doxa Ju(x1)Dils ¥ (x 1 2)jx2) - (6.19)
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All the Green functions of the field 4)°"® are longitudinal, while the Green function of the field
A, depend on the choice of realization of the representation J ,. To different equivalence classes
{Z of & M 4, different realizations correspond. In the Section 5.4 we have dealt with the realization
which corresponds to a transversal representative: 4,(x) — A'(x). Its propagator coincides with the
transversal component of the kernel (6.17):

D "(x12) = {Ai(x1) AV(x2)) ~ (3,0 —8,8)In x3, . (6.20)

The conformal transformations in this case are non-local and different from the transformations of
the field A},

Another realization of the representation Q 4, iIn which the transformations are local and have the
usual form (2.9), has been studied in Sections 2—4. In this case, the propagator (Xnﬁfv} coincides
with the kernel (6.16)

Dfx12) = <AL Aa)> ~ 20da) ™ gunlna), (621

singular at ¢ = 0. Unlike Eq. (6.20), it has a longitudinal part which is singular for ¢ = 0 and does
not contribute to conformally invariant contractions (6.18). Naturally, the invariant scalar product
on MY does not depend on the choice of realization

del dx, J'Lm(x1]Dﬁ;(x1zll?'8(x2)|e=o = de1 dx, f:f(x LJDﬁG "(xlz)ii-’(xz) . (6.22)

The regularization (6.21) is more preferable technically.
The energy-momentum tensor and the metric field may be considered analogously. Let us
couple the pair of irreducible fields T}, and T’,,v to the pair of invariant propagators

(Tifx)Tpox2)>  and  (Tyx) Tpulx2)) -

They are identified with the kernels of invariant scalar products on the spaces M, and M}, see
Eq. (2.91). Accordingly, for even D > 4 one has a pair of kernels

DEJ;;(-’C 12) and D I:'_oo(x 12) 5 (6.23)

invariant under the transformation (2.4). The propagator of the tensor T7;, coincides with the first
of them

Dgipa(x12) = (Tiix1) Tpo(X2)) ~ Hig, po(@)OP™H128(x, ) . (6.24)

The propagator of the field T',, depends on the realization of the representation 0, which acts on
equivalence classes {T‘,,,} < My, see Eq. (2.90). In a non-local realization of the previous section
this propagator is longitudinal

Diispe(x12) = < Trs(x ) Tirt(x2)> = CrH58,07)0 ™ *25(x, ) . (6.25)

The propagator of total energy-momentum tensor T',,(x) equals to sum of these two expressions.
In the local realization (2.4) the propagator of the field Tm, demands regularization

D:r:po'(xlz) e <Tuv(x1)rfpo(x2)>s (626]
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and is given by the expression (6.12). The transition from Eq. (6.25) to Eq. (6.26) is performed
through the transformation inside the equivalence class To"%, T, = {T,,}. Both kernels

DT Jong(x,,) and DJ,u(x12) (6.27)

uvpa

define the same scalar product on an invariant subspace M}°** = M, (see (2.8)):

(h'oe,plone) = '[dxl dx; hare(x1)Diis e (x1 2)Hps ¥(x2)

= del dxz B 4x1)Dyvpe(X12)hps = (X2)le=0 - (6.28)

The irreducible fields h'm and h® correspond to the kernels
Dypo(x12) and D (x,5) (6.29)

which are invariant under the transformation (2.10). The first one is singular at ¢ = 0 and is given
by the expression

1 2
Dg‘vpu‘[x 1 2) b E(x%2)£|:g_up(x 1 Z)Qva(x 1 2) + g,ua(x 1 Z)va(x 1 2) - 5‘5;(\!59«]

1
~— Pi"e (8%)In x5, + -+ (6.30)
In analogy with Eqs. (6.18) and (6.19), the kernels D%, ,, and D% [°" define invariant scalar products
on the spaces M and M, respectively (see Egs. (2.89) and (2.90)). The propagator of the field h,, in
the local realization coincides with Eq. (6.30), while in the realization of the previous section, with
the transversal part of this expression, finite for ¢ = 0; see Eq. (6.22) for comparison.

6.4. The equivalence conditions for higher green functions of the current and
the energy—momentum tensor

Consider the higher Green functions of the fields (6.4). These functions can be expressed through
the green functions of irreducible fields

A 0", (A ...0%> and (ko...0* ), (up . 0" (631)
Here we assume the invariance of the Green functions {(4,¢ ... @ "), ) s @) under the local

transformations (2.9) and (2.3). Such a realization of the representations 0, and §; was used in

Sections 2-4.
In this realization, the Green functions {4,¢...¢ "> and {j,¢ ... ") may be represented as
sums of pairs of terms

AP ...0"> + AT ... 0*) and (i@ ...0*> + u¥)p ... 0" (6.32)

Single components of these sums have different partial wave expansions. For example, the
functions ¢j¥ ... ) are decomposed into the set of transversal functions (2.65), while the functions
(}; ..., into the set (2.68). These sets are mutually orthogonal. Hence each term in the second sum
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(6.32) may be readily identified in terms of partial wave expansions. It was used in Section 2 for the
derivation of the conditions (2.77) which retain only the second term in the sum (6.32).

In non-local realization, Egs. (6.5) and (6.6), the total Green functions of the fields (6.4) may also
be expressed through the functions (6.31). Taking into account that the functions (A"¢¢...0")
are longitudinal and {j¢ ... @ ") are transversal, we obtain

0,\ , ~
(A .. 0" = (a,” - %) A9 9" + (AP 0™

0,0, =~
£ G 9%

Gl .0ty = Gix)e .07 ) +

Consider the equivalence conditions (2.26). The operator relations (2.27) may be rewritten in
terms of kernels Di, and D, which are singular at & = 0:

CAx)p...0" > = J.dy Di(x — ) GV )@ - @ M=o (6.33)

Gox)p ...0™) = J.dy Dix — y) LAY (M@ ... 0" Hle=o0, (6.34)

Let us represent the Green functions (6.31) inn terms of partial wave expansions. The expansion of
the function (A% ... @ " includes a set of longitudinal three-point functions which are derived
from Eq. (2.69) by the change d — D — d. Denote it as Blore

Hally - s
Bi;_':?f.g,(xlxzxs) = <¢’L....m(x1)§9(x2)AL°ng(x3)> i {(1 —d - s),l}Aﬂ(xIxzx;,)
2 o . x%:‘) (I—d-s)/2
~ op [lif:..,g,(xzxa)(xlz} e SNZ(E) ] (6.35)
The functions {4, ... ¢ ) are decomposed into the set of functions
Bll_u.;z. ,,.n,(xixzxs) = <‘p:¢. ..-p.(xl)go(xﬂzu(xB)) = {A, B} Ait(xlxzxa) > (6.36)
where the notation {4, B} was introduced in Eqg. (1.83),
Ay (x1x3%3) = (x35) O+ (xF3)0 4 N3(xF) ¢ a2, (6.37)

Under a suitable choice of coefficients 4, B in Eq. (6.36) these functions are related by the
equivalence relation with the functions (2.65)

Bl?.g.u,,..p,(x 1X2X3) = jdxa, Dﬁ;(xu)C'j‘\,"ﬁl,,_“_(x1x3x4]|5:g . (6.38)

Here we have used the conformally invariant regularization of the function (2.65). This is done
through the substitution [;=l5=D —1+¢, which is equivalent to introducing of the factor
(x2,)~%/%(x2;x33)7? into the expression (2.66). Analogously, the functions (6.35) are related by the
equivalence condition with the functions (2.68):

CI:;;,,;, ._.;.l,(xlx2x3) = deq. Dﬂ;(x34)Bi'.1§flffi.(x1xzx4)|s=u . ; (6.39)
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The regularized functions By'S"® , are derived by the substitution I, — % = 1 — &, which is
equivalent to introducing of the factor (x?,)¥2(x?3x33) %2 into Eq. (6.37).

Relations (6. 38} and (6. 39) are the analogues of the amputation conditions (1.35) for the case of
pairs of fields ALm ji and j,, A", respectively. Taking into account that partial wave expansions of
the functions (6.31) include just one term (of the two terms of Eq. (1.86)), as well as the relations
(6.38) and (6.39), one can conclude that the equivalence conditions (6.33) and (6.34) are reduced to
the equality of kernels for corresponding conformal partial wave expansions.

Finally, let us write down the relations inverse to the relations (6.38) and (6.39):

CI:::;;. u(x1x2x3) = Idx4 Dﬁ'v"(xazt)BIzv,m .,.;4.(x1x2x4) ; (6.40)
BLats L (x1X2%3) = J‘dx4 Dfi; *"¥(x34)Cly g, .. ufX1%2X4) - - (6.41)

They are related with the equivalence conditions for the Green functions (6.31) written in the form
(2.27).

All that has been said evidently admits a generalization to the case of the energy—-momentum
tensor and the metric field. In particular, the equivalence condition (2.108) may be written either in
the form given by Egs. (2.109) and (2.113), or, in analogy with Egs. (6.33) and (6.34), in the form

h(x) = fdy Difvoox = W (Mle=0 » (6.42)

T ) = fdy D oe(x — y)BeE(y)|, <0 .
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Appendix A.

L r(d)r(D — d]
I'(D/2 — d)I'(d — D/2)

1 —d 1 —d; ] —d3
jdx4(§xf4) (§X%4) (§x§4) At u{X4X2)

I(D/2 — 6,)[(D/2 — 6, + s)['(D/2 — &)
I3y + )I'(62)I'(35)

1 ~Dj2+8s (1 ~D/2+3; (1 ~Dj2+5,
X (*2"3‘%2) (Exfs) (‘2‘3‘%3) Aai ... u(Xax2) , (A.2)

where d; + 8, + 83 = D.

dx; (x3) " %(x33) P = o(x13) - (A.1)

= (2m)P/?




E.S. Fradkin, M.Ya. Palchik [ Physics Reports 300 (1998) 1-111 109

1, A%, "\ WL N
J.dx“ (Exﬂ) (Ex%.ﬂ.) (Engl-) qﬁ:..._u,(xllxlei)

(D)2 — 6,)I(D/2 — 6,)[(D/2 — 63)[(D — 65 + 5 — 1)

= (2m)*?
I'(0y + s)['(62 + s)['(63 + S)I'(D — 61 — )
1 -Df2+8, 1 —Dj2+d;+s 1 -Df2+d;+s
X (ixgs) (ixfs) (ixi"z) A}:: ,...u,(xzxs) s (A.3)

where 6; + 3, + 03 +s=D,

Qu, ... = Qu, - Gy, — traces, g (x1]x2x3) = g,(X14)A7(x2x3) .

l -8, 1 -4, 1 — &,
J.dx4 (§x§4) (§x§4) (Exﬂ) )-ﬁ‘[xaxdiﬁ:...u.(xaxd

I(D/2 — 8, + (D2 = 6)L(D/2 = &) (2
T, + IG5 + 5) 2

1 g 1 ~Di2+8, (1 ~Dj2+8:(] —Dj2+8,
+2x—%2 Z,l Qum(xlz)}»ﬁ},..,L,..p,(xsxz)—trams]}(ixfz) (Exfa) (535%3) s

(A4)

= (2m)P2

- 51) Axax A | ulX3x2)

where d; + 0, + 63 = D.
To derive the relations (A2)«(A3) we have used the result of Ref. [57].
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