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Quantum properties of d-dimensional and d=4 reduced theories are studied with
emphasis on the use of a regularization accounting for power divergences. It is shown that
the vanishing of the N =4, d=4 super Yang-Mills (SYM3) one-loop f-function and of
conformal anomalies in N =8, d=4 supergravity (SG}) are consequences of the absence of
certain power divergences in corresponding d=10 (SYM},) and d=11 (SG},) theories.

1. INTRODUCTION

It is by now well known that classical actions of several interesting
supersymmetric theories (e.g. SYM$ ! and SG3 ?) can be obtained by the
simple dimensional reduction of the actions of higher-dimensional
theories (SYM!}, and SG},). We address the question of possible
connection of gquantum properties of d-dimensional and dimensionally
reduced theories. In particular, we are going to present some new results
concerning the one-loop infinities in higher-dimensional SYM and SG
and trace their relation to the corresponding ones in d=4 reduced
theories. Also we shall illustrate the efficiency of the d-dimensional
approach with the example of one-loop effective action in SYM$. Only
final expressions will be given; the expanded version of this work? will be
published elsewhere.

There are two possible points of view on the relation between d>4
and d=4 theories:

(a) Our world actually is described by a complete 4> 4 theory, while
its apparent 4-dimensionality is only a low energy phenomenon and
can be attributed to a particular structure of d-dimensional vacuum
(M*x N%*, N is a compact space of a “scale” r~m; ).

(b) Dimensional reduction is only a technical tool, useful in analysis of
4-dimensional theories (e.g., in construction of different versions of
supergravities).
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The first point of view, though quite satisfactory from the classical
point of view, is inconsistent at the quantum level. The point is that we
cannot correctly define the effective =4 theory of light particles, after
integrating over the heavy ones and using the methodology of “effective
theories,” in view of formal nonrenormalizability of the inmitial d-
dimensional theory. One may only hope that the theory will be finite on
the mass shell or pass to the theory of strings in d-dimensions, which can
be described by a d-dimensional field theory in the «’—0 limit. In what
follows we shall ignore all massive states, using mainly the second point
of view.

2. CORRESPONDENCE OF DIVERGENCES IN d-DIMENSIONAL
AND REDUCED THEORIES

In order to establish the correct correspondence of quantum properties
of higher-dimensional and dimensionally reduced theories, one is to use
a regularization accounting for power divergences. A natural one in the
one-loop approximation is based on the proper-time cutoff (see e.g.
Reference 4); higher-loop generalizations are discussed in Reference 3.
The one-loop effective action reads (we use Euclidean notations
throughout)

I'=4logdet AY),

M= —— D"\ [g D+ X, m

7

where M, N=1,...d, @y, =0,+ Ay. Using the well-known expan-
sion®~7 (omitting boundary terms)
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we get its infinite part in the form (Fm:—%j;’"?tr !

=L ./ 9d%)
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Note that only logarithmic divergences are a priori absent if d is odd
(b2x+1=0). At present there exists’ an explicit algorithm for computing
b, only for K<3. Being universal (valid for any d), it provides the
possibility to establish the leading one-loop I¢, ..., I¢~° divergences in
any d-dimensional theory. Assuming the simple reduction (8,(¢. g, X)
=0) and splitting the background fields

Gyuvt+ @i;B,B) @B,
Iun= ) s (4)
@IjB{f to_afj

AM={A;.|)AI}! .u,\’=l,...,4,

we can quantize the resulting 4-dimensional theory

=0, Jidx

P,=0,+A,—BLA;, X=A"12X—-9lA4A, (5)
A=det (‘Dij, g,.\.:lq-”zgme

Py=4A""2¢;,  g=detg,,,

and compare the expression for divergences in d and four dimensions.
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According to (3) the general rule of correspondence is

(B, log P} ~{Li~4*7, 1474}, ©)
1.e.

(bzx):a o~ (bzx)d-

In view of the explicit breaking of d-dimensional space-time symmetries
by the reduction, counterterms (i.e., b,5) of the reduced theory cannot
be written in terms of only d-dimensional covariant objects, and, in
general, b,x(AS") # b, (A).

At the same time it is easy to prove the following “lemma”: If

g 0
AM= {Am 0}’ duMN= |:g6 3ij:|, (7)

then b,x(AY)=b,x(ASY). Thus, in order to compute divergences of
the reduced theory for the special background (7), one may first establish
the corresponding ones in d dimensions and then take into account the
restriction (7). It should be stressed that this statement is valid only for
the simple reduction (with S!x --- x §! as internal space); different
reductions, for instance, the “coset space’ one (see e.g. Reference 8),
lead to quite different quantum theories with counterterms having no
natural connection with d-dimensional ones.

3. DIVERGENCES IN d>4 SUPER YANG-MILLS THEORY
Let us now illustrate Lemma (7) on SYM], and its reductions.
Quantizing the d=10 theory

Z10= (F:JN)Z ¥ fl}(f“@lﬁ“ 8)

1
4gt10)

(herea=1,...,dim G, & =7,,Py., ¥ are v x v Dirac matrices, v=242],
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Y is a Majorana—Weyl spinor) in the standard background gauge 2,,4,,
=¢(x) in the gauge field sector, we get

d;t A; [\/detA, o], ©)
Jdetd,

Ay= -9?, Aiun= —gmrgz—zFum
Auz: _gl—i?MNFMN-

Introducing the notations

|
bo=Bo. b4=ﬂ1EtTF2 , (10)
MN
1 2 1
be= _ﬁZ@H(QMFMN) _ﬁSﬁtr(FMNFNKFKM) (11)

and employing the algorithm of Reference 7, we find

Po By B2 ﬂla

Ayt | 1 1
(12)
Ay d d—24 d—40 d
Ay —v -2y =4 -V
Finally, we obtain
b°=b2=b4=b6=0 (13)

as a property of SYM], theory. Applying Lemma (7), we establish the
validity of (13) for all d < 10 reductions of this theory. For example, now
we understand the known one-loop finiteness of SYM$ (b, =0) as a
consequence of the absence of FZy x I one-loop infinities in SYM 1, (in
general, it is the absence of F% infinitities in d= 10 theory in any loop
order that is responsible for the finiteness of SYM$; cf. Reference 9).
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Note that in view of the irreducible supersymmetry it is sufficient to
prove finiteness in the gauge field sector. Also, we conclude that off-shell
one-loop finiteness takes place for power-counting nonrenormalizable 4
<7 maximal SYM theories e.g. SYMZ (this result agrees with predic-
tions of various super-power-counting rules'?). When viewed from four
dimensions, SYM? it contains SYM$ as well as the infinite tower of its
“massive analogs.” We see that the account of all massive states does not
spoil the one-loop finiteness of SYMj3.

4. EFFECTIVE LAGRANGIAN AND EFFECTIVE POTENTIAL IN
N=4 SUPER YANG-MILLS

Now we turn to the finite part of the effective action in (9). First let us
present the result for effective Lagrangian for the d=4 constant abelian
gauge field background (G=SU,):

A= —iF, x ", (=1, 4,=0. (14)

The corresponding expressions for SYM1, and SYM$ theories are (cf.

(M)

h = ds
). . " fied
=2 2(4::)5"L it
h @ ds
L .. 5
- 2(4::)2"_].0 R )

where ®@ is given by (for related previous d=4 results see, e.g. Reference
11)

SF, sF,
sinhsF, sinhsF,

(cosh sF; —cosh sF,)?, (16)

where

Fl =01t/ Ji-J3,

urt -

J1=iFm,F

uv?
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Observing that ®|,.o =Y 2, 55b,, We get bg=8(J7 —J3)#0 (and also
bax+>=0, byg#0, K=4). This explicitly demonstrates that SYM!1, is
not finite in one loop; e.g., £} is quadratically divergent in contrast
with the manifest UV finiteness of £, However, ¢’ (and #{J)is IR
(s—o0) divergent if F # + F*. This instability originates from the gauge
field contribution, cf. Reference 12 (supersymmetry does not rule out
possible negative modes). This probably indicates the analogy in IR
behavior of YM, and SYM theories (in spite of the zero f-function in
the latter).

Next we are going to consider the scalar effective potential, corre-
sponding to the following choice of background in (9): 4,=0, 4,
=const. The SYM], effective action calculation is then analogous to
that in YM, theory for a constant nonabelian gauge potential back-
ground. In order to extract the SYM$ result, we are to drop all terms
with d;-derivatives in the corresponding one for SYM!,. This yields

V=V+V, 2(F Y,
Fy=rata;
=P
h
= ——tr (Mg log M +2M*log M* — iM%, log Mi)5), a7

M:bzfaerfbedAfA?! M JZ_M %?: ijs
Mg"j=5uM2"-2Fu.

This (UV finite) expression is scale invariant, and, hence, the potential,
calculated on its extrema is always equal to zero (no supersymmetry
breaking). This connection of UV finiteness and the absence of super-
symmetry breaking can in fact be generalized to all loops: if the -
function is zero, then T%=0, and thus ¥V =%{T%)=0. Moreover, it is
easy to prove that the classical minima F;;=0 are the only solutions of
the effective equations. Note that, in general, the off-shell expression for
¥, is not real because of negative modes of M} (the scalar operator
appears as a part of the d= 10 gauge field one, and thus the origin of this
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IR instability can be traced to the “anomalous magnetic moment” term
in A, in (9); cf. also Reference 13). Thus we see that one cannot solve the
problem of masses and vacua degeneracies within perturbation theory
for pure SYM$ theory.

One way to improve the situation may be to couple SYM} to N=4
(conformal or Poincaré) supergravity. This coupling can probably be
simulated by adding some scalar and spinor mass terms and thus softly
breaking supersymmetry at the tree level:

1
A2’=?;¢0;‘}A?Aj+ H )20V a5 (18)

Then the gauge coupling f-function will still be zero, and no field-
dependent quadratic divergences will be induced (cf. Reference 14) (one
can even cancel the logarithmic mass renormalizations relating u, and
H1/2)- Now it is possible to avoid negative modes of M§ and, thus, to
obtain a well-defined effective potential that is not forbidden to have
nontrivial minima. Therefore we can study the question of dynamical
gauge symmetry breaking, and the possibility of solving the gauge
hierarchy problem and hence constructing a realistic unified model,
starting with SYM$. This program seems superior to those of Reference
8, where a coset reduction of SYM}, was used to generate some d=4
theory with broken supersymmetry but with, very probably, bad UV
behavior. A preliminary analysis made in Reference 3 indicates that one
cannot generate an exponential (~ exp ¢/g?) hierarchy without dropping
the relation between u, and pu,,,, necessary for the manifest UV
finiteness of effective potential.

5. ONE-LOOP DIVERGENCES IN d<11 SUPERGRAVITIES

Let us now study the one-loop infinities in higher-dimensional super-
gravities, calculating the b,,, K <3, coefficients in (3) for the gravit-
ational background. We shall use the following notations:

b0=N, b2=pR, b4=a1R%‘Npq+a2R2MN+u3Rz +G4Q?ZR, (19)
bg=a,1,+0,E, I, =R}JRESRY,

I,=REGREXRSY',  E=I1,-2I,, (20)
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where in (20) we assume R, =0 (we shall compute b5 only on the mass
shell) and omit all total derivative terms (note also that E is the integrand
of the Euler number in d=6). Supergravities are known to contain
gravitons and antisymmetric gauge tensors along with gravitinos and
spinors. That is why we first need to establish the contributions of all
these fields in (19), (20) in d dimensions.

(a) Contribution of gravity

Within the background field method, one-loop quantization of gravity
in d dimensions is done straightforwardly in the standard gauge

D y(hygn— ’}gunk) ={n(x),

_ detA,

= ﬁ’ Ajun=—9un?* — Ry,
h
(AFY = — (0(30%) — 3™ gpo)(2* — R)

+gunR 2+ g Ry (21)

Using the algorithms of Reference 7 we get the following results for ("
=b,(A)—2b,(A,):

N=4%1d(d-3), p=15(—5d*+9d—4B),
a; =7a6N —75(d—18), o, =380(—d* +543d—3600), (22)
oy =145(43d% —303d + 696), oty =g5(—4d* +7d—40),

d+30
_—'WA}'EN, 0'2=3—2%N—W. (23)

They generalize the previously known ones for d=4 (b,'>4, b,'517)
and d=6 (o, in bs ®'7). We conclude that all gravities in d >4 have at
least L4~* and L4~ ® (log L? for d =6) divergences on the mass shell.
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(b) Contribution of antisymmetric tensors

The correct recipe for the quantization antisymmetric tensor gauge field
Ay, ...m, on the d-dimensional gravitational background is (cf. e.g.
References 19 and 20)

Zm f[ [detA,_ ]~ Dx&+Di2,
K=0

b= 3. byA,-CEs, @4

where A, are Hodge-de Rham operators:

(AN M= — O, N D + Z R{0M, .0M%)

_} >fi R[h-rﬁlf 5?’(‘1 . 6!;1;]’

and C"=r(r—1)--(r—n+1)/n! are binomial coefficients. Again em-
ploying the formulas of Reference 7 we obtain

N=Cj-,, p=26Cj- Cd 4 (25)
o, =185Ci-2—13Ci-4+3CiZ%,

135 Ca_,+3CIZi—2C 78,
%y =75Ci-,—2CiZ3+3CiZ3,
%y =36Ci-2—8Ca-a> (26)
01 =15136Ci-25

0, =3205Ci-2—thoCici +4Ci5—3CiZ8. (@D
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It is possible also to prove the following general results

by Aud)=by(Da_nfd), bAJd—2)=b"d), p<d,
=0, p<d,

=(=1)"(n+1—d/2)H (d),

B — b2 0(d) 4
p>d, d=even  (28)

#0, d=odd,

where, according to Reference 7,

Hy@= 3. (=1)%b,(Ald)
={0 if p<d,
g, if p=d}
and H,(d)=0 for d=odd (the Euler number is y=(4n)"%* [¢,). Equ-
ation 28 is the precise statement of “‘quantum nonequivalence” observed
for d=4 in Reference 20.

(c) Gravitino contribution

Within the background field method the quantization of the gravitino
Lagrangian

L= V" D, Tmnk =Y iMYNTK) (29)

does not appear to be a trivial generalization of the d=4 procedure (see
e.g. Reference 21 and 22), contrary to the gravitational case (21).
Namely, it is impossible to obtain a diagonal squared gravitino operator
only by choosing the gauge y,,W, ={(x) and averaging over { with the
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help of 9= YWDy L32+ Lgauge= U@ w»

det DV (3)
= (det 9)*’ Diin = uxn + YY)Dk - (30)

One is also to “rotate” D®—D=ADAT with the help of the algebraic
operator Ayy=4gun+ayuyn- The choice a= —1/(d—2), ¢=—Xd-2)
corresponds to the “standard gauge,” where the gravitino operator
takes its simplest form:

DMN=9MN@,
R
Azjoun=—Din= —gun2* +EQ’MN—%"/;'QR{&- (31)

It is this operator that is suitable for off-shell calculation of divergences,
and we find, for b5/ = —(1/y)[b,(A;,)—3b,(A,)5)] (7=1,2,4 for
Dirac, Majorana, and Majorana—Weyl cases, respectively) that

N=—1(d-3), v=23, p=—%N,

vd—19

al:ﬁN*—;T, m2=—T§§N,
%3 =385 N, Uy= _ElﬁNs (32)
v d+5
o,=15150N,  O:=335N +;‘m6 (33)
(while for b? = —1/y b,(A,,;) we have
v v
N=— oy =1icN+—,
? 1 180 _}’ 96
—',-mN+v -
Oy= e
AR y 1440

with all other coefficients the same as in (33)). For d=4 these values are
the same as in References 21 (x,) and 22 (b,, b,).
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(d) Results for supergravities

Now it is possible to compute the leading I/~ ?%, K<3, one-loop
gravitational infinities: e.g., for N=1, d=11 supergravity?, containing
gun, Majorana ¥, and Apygx. On-shell (Ryy=0) we get b, =0, K
<3—i.e., Eq. (13). In view of Lemma (7) we conclude that (13) holds
also for all reductions of SG},—i.e., for all maximal supergravities; e.g.,
for SG§. Thus we recognize the absence of anomalies (b, =0) in the
“reduction” version of SG§ 2* to be a consequence of the absence of L
infinities in SG1,. A new result is b5(SG3) =0, which is valid again only
for the “reduction” version, because in d=4, b3’ #0, bP — b #0; cf.
(28).

Another consequence is the one-loop finiteness of maximal SGs in
d<7 (i.e. SGE, SG¢, SG%). They provide first examples of (d>4)-
dimensional one-loop finite gravitational theories (recall that the pure
gravity is infinite for 4> 4, and thus their finiteness is due to cancellations
and not merely to nonexistence of nonzero on-shell invariants as in the
case of d=4 SGs). Therefore these theories (corresponding, from the 4-
dimensional point of view, to SG§ plus the infinity of its “massive
copies’’) may serve as a basis for a consistent (at least at one loop)
Kaluza—Klein program.

As for the on-shell finiteness of SG!, conjectured in Reference 24, it
seems very doubtful in view of the probable bg(SG},)#0 property,
which is supported by the analogy with the SYM1, case and also by the
nonzero result for 4-particle amplitude in SG§ '°.

One can prove that (13) is valid also for the SG}, theory
containing 2% g,v, Aun, A, and Majorana—Weyl fields ,, and ¢ (and
also for SYM}, in external metric). However, this does not imply
finiteness of corresponding d<7 reductions (cf. Reference 9 for d=4).
Really, it is irreducible supergravity that is finite if it is finite in the
gravitational sector, but the irreducibility is lost if we apply dimensional
reduction to a nonmaximal supergravity (see e.g. References 25 and 26
for discussion of reductions of SG},, SG3, SG?). It is interesting to note
that (13) holds also for the version of SGi, with Ay, instead of
Ay, In fact, according to (28) all b,, p<10, are equal in both
versions, and thus duality transformacions in higher dimensions do not
affect the infinities of reduced theories. As a final remark let us note that
if the M* x §7 version of SG1, is actually connected via a reduction with
the gauged SG§ 2® (as was conjectured in Reference 24) then it may turn
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out to be possible to understand the b, =0 property of SG1, as the origin
not only of the vanishing of anomalies in the “simply reduced” version
of SG2 but also of the vanishing of the B-function in its gauged
versionZ®,
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