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We discuss the relation of quantum properties of d-dimensional and dimensionally reduced
theories with a special emphasis on the use of a regularization accounting for power divergences.
The main examples are N =1, d = 10 super Yang-Mills (SYM];) and N = 1, d = 11 supergravity
(SG1,) and their reductions. In particular, we understand the vanishing of the one-loop f-function
in SYM$ (zero conformal anomalies in SGf) as a consequence of the absence of L° (L) power
divergences in SYM};, (SG},). The heat kernel expansion coefficients by, k=0, ..., 3 are found to
be zero for SG!, (as well as for SYM};, and SG},) and thus the one-loop finiteness of maximal
SGs in d < 7 is explicitly demonstrated. We also present the expressions for the one-loop constant
gauge field effective lagrangian and scalar effective potential in the SYM3 theory and analyse the
problem of N = 4 supersymmetry breaking.

1. Introduction

Recently it was understood that a number of interesting four-dimensional theories
may be obtained by a reduction of higher dimensional ones, most notably, from
N =1, d= 10 super Yang-Mills (SYM},) [1] and N =1, d = 11 supergravity (SG!)
[2] (see e.g. [3-8]). Two points of view are possible on the relation of d-dim and
4-dim theories: (A) our world is described by a complete d-dim theory, while its
apparent four dimensionality is only a low-energy phenomenon and can be attrib-
uted to a particular structure of d-dim vacuum space (e.g., M* X N4=4 N being a
compact manifold of a “scale” R, for example, a group G [9] or a coset G/K space
[10,11]); (B) dimensional reduction is a technical tool in analysis of 4-dim theories
(useful, e.g., in constructing various supergravities [3, 12]). Believing in (A), one can

 classically consider the observed light particles in M as massless modes of “Fourier”
expansion in internal coordinates. However, at the quantum level it is necessary to
include the infinity of massive modes (M, ~ 1/R). The reason is that the equality of
d-dim (I';) and 4-dim (I,) quantum effective actions (the latter defined to be that of
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d-dim theory rewritten on terms of 4-dim fields) holds only when all modes are
taken into account®. Being interested only in low-energy processes we may try to
define some effective light particles theory, integrating over massive modes. The
resulting (non-local) effective lagrangian £, does not coincide with the classical
zero mode lagrangian £©, following by reduction from d-dim classical action.
Naturally, it is tempting to connect both expressions in some approximation. This
program may seem analogous to constructing “effective field theories™ (see e.g. [13]):
if the external momenta p, < min{M, ), then £, is given by the infinite sum of
local terms, with those of dim > 4 being suppressed by 1 /M factors. However, there
is one essential difference: d-dim theories are generally non-renormalizable while the
analysis in [13] assumes renormalizability of the complete theory (evident for a finite
number of heavy states). That is why it seems impossible to describe consistently the
low-energy sector of quantized d-dim theory with the help of some quantized 4-dim
one. Thus one can a priori criticize the attempts [14, 7, 8] [if viewed from the point of
(A)] to construct a unified theory starting with power counting non-renormalizable
d-dim gauge theories. However, two improvements are possible: (A”) it may happen
that d-dim theory is finite on shell (either in each order of loop expansion or after its
summation, cf. [15]); (A”) one may pass to a more sophisticated picture where d-dim
theory is only an intermediate stage, being a low-energy («’ — 0) limit of some finite
or renormalizable theory of (super) strings in d dimensions (see e.g. [16] and
references therein). Disregarding (A”) in this paper, let us point out that the
existence of finite d > 4-dim theories is doubtful at present. Namely, according to
superstring (supergraph) power counting rules [17, 16] ([18]) we expect UV finiteness
of maximally extended SYM and SG d-dim theories (following by reduction from
SYM!, and SG},) for the following number of loops:

4

6 14

i.e. SYM|, is already infinite in the first loop [while SG, is infinite for I > 1 (I > 2)].
We will confirm this conclusion by demonstrating the presence of one-loop on-shell
quadratic divergence in SYM],. Once again we see that the approaches [7,8],
starting with SYM], are to be considered as unsatisfactory at the quantum level. The

* It is worth stressing that I';= I} is valid for infinite as well as for finite parts; to avoid possible
contradictions (cf. [6]) one is to observe that (I}), = (divergences for every mode)-+ additional
divergences which are due to infinite sums of finite parts of partial 4-dim effective actions for separate
modes.
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following remark may be useful concerning the reasoning in ref. [8]. Here the
probable finiteness of SYM} (i.e. the simplest reduction of SYM|,) was implicitly
treated as an indication of some good quantum properties of SYM |, itself. The latter
theory was then used as a starting point for a different (coset) reduction. Finally, it
was conjectured that the resulting “realistic” d = 4 theory may thus be distinguished
from the point of divergences. It should, however, be stressed that different reduc-
tions a priori have different quantum behaviour® and it is the simplest supersymme-
try preserving one which is singled out by its UV properties. Different reductions do
have the same UV limit but only when a// (massive) modes are taken into account™*,
But then we again confront the problem of infinities of complete d-dim theory.
Therefore, let us now turn to the second point of view (B). Here we are to quantize
a 4-dim theory marked by the fact that its classical action can be obtained by a
reduction of some d-dim one. Then a natural question is about information,
concerning the quantum theory, which can be gained from this circumstance. To
provide an answer we are to relate the effective action I'{” of our 4-dim theory to
that (I;) of the initial d-dim one. In view of the above discussion, the latter is
defined only for a fixed UV cut-off L. Then it is clear that shrinking the radii of
compact dimensions to zero we get limz_,o(I;) geea . = I4” (after proper rescalings
of couplings and wave functions to absorb all R¢~* factors). Generally, this implies
that the study of infinities of I, may tell us something about those of I'{"”. However,
care is needed in interpreting the above equality. A subtle point is that one should
use different cut-offs for four (L,) and d — 4 (L,_,) dimensions, relating the limits
L, 4~ and R—0 eg by L, ;~1/R (because L, ,—> oo after R—0 is
senseless). Now it is evident that in order to relate the infinities of I'; and I'{"” it is
necessary to use a power-divergence preserving regularization*** (i.e. one cannot
choose the standard dimensional or {-function regularizations in  dimensions). In
this connection let us comment on the proposal [22] to understand the finiteness of
SYM? by relating the absence of certain (“FOF ™) logarithmic counter-terms for
SYM}, to that of “F?” ones for SYM{. From our point of view this relation cannot
be justified. In fact, the simplest counter-example is provided by YM in an odd
number of dimensions. This theory is free from one-loop logarithmic divergences but
the reduced theory has a non-zero one-loop B-function. It turns that it is the
“L4-%.type” d-dim counter-term which is related to the logarithmic one of 4-dim
theory. Another important clarification is that it is not sufficient to study only d-dim

* For example, the coset reduction generally changes the number of degrees of freedom and in this
respect is analogous to truncation, which is known to modify quantum results (e.g. 8, oo, =0 in
SYM3 but B 1,00 * 0 in SYM3).

** One should also bear in mind that the initial gauge group of d-dim theory (e.g. Ey in [7,8]) will be
restored in the high-energy limit of the final d =4 theory only after summing contributions of all
modes.

*** The use of such a regularization naturally solves possible paradoxes discussed in [6]. Note also that
regularizations accounting for power divergences were recently discussed, e.g., in [19-21].
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invariant counter-terms because reduction breaks d-dim symmetry (e.g. O(d) — O(4)
X O(d — 4)) and thus the infinities of the reduced theory cannot be expressed solely
in terms of 4-dim invariants. The moral is that one must be cautious in applying
d-dimensional considerations in the reduced theory. But having properly understood
the connection of 4-dim and 4-dim results for some particular reduction one can use
d-dim theory to facilitate the analysis. This appears to be especially efficient in
supersymmetric theories where different background sectors are tied together by
supersymmetry and hence one can do calculations in a suitable one, common for
reduced and d-dim theories.

The aim of this paper (based mainly on the point of view (B)) is: (i) to study some
properties of higher dimensional theories; (i1) to connect them with those of reduced
theories; (iii) to study some new features of SYM$, illustrating the advantages of the
d = 10-dimensional approach. In sect. 2 we prove the “lemma” establishing the
connection of one-loop results in d-dim and (simply) reduced theories. Then we
discuss the correspondence of (one and higher loop) infinities with special emphasis
on the use of a gauge-invariant, power-divergence preserving regularization. Sect. 3
is devoted to the one-loop analysis of SYM} using SYM], as a guide. First, in
subsect. 3.1 we show the absence of L'° 2% k<3, one-loop infinities (i.e. the
vanishing of b,, ~ F counter-terms) in SYM|, and relate the 5, =0 property of
SYM|, to that of the zero one-loop B-function in SYM3. We also observe that
by(YM,)=0 and remark on the connection with string theory. It turns out,
however, that bg(SYM],)= 0 (subsects. 3.2, 3.3) and so there are at least L?
(on-shell) infinities in ten dimensions (implying logarithmic ones in the d=28
reduction of SYM|,). Thus we explicitly demonstrate the absence of one-loop
finiteness of SYM|,. The above conclusions are in accordance with power-counting
results (1.1) and also with those of one-loop four-particle amplitude calculations in
maximal SYM, theories [17] (see also [18]), which showed its UV finiteness for
d < 8*. Next, in subsect. 3.2, we calculate the SYM$ one-loop homogeneous abelian
gauge field effective action, which is distinguished by its UV finiteness (as compared
to corresponding expressions for QED [23] and YM theory [24], cf. also [25,26]).
However, supersymmetry does not cure the well-known IR instability of a constant
background (see e.g. [27]), which is due to the negative mode of the gauge field
operator. In subsect. 3.3 we analyse the one-loop effective potential for scalars. The
problem appears to be closely connected with that of the effective action for a
constant non-abelian gauge potential background (4;=0, i=5,..., 10) in SYM|,.
In particular, this provides an understanding of the IR instability (cf. [28]) of the
final (off-shell) answer. Here we also show the absence of perturbative SYM?
supersymmetry breaking and discuss a possibility to construct a realistic model
starting with SYM with softly broken supersymmetry (this theory still has zero

* The vanishing of one-loop SYM3 k-particle (k < 3) amplitude (or the corresponding Green function
in a suitable gauge) can be related to b,, = 0, while its non-zero value for k = 4 indicates bg = 0.
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B-function and thus should be contrasted to those of refs. [7, 8] which do not provide
soft supersymmetry breaking).

The main topic of sect. 4 is the study of one-loop divergences in higher dimen-
sional supergravities. We start (in subsect. 4.1) with pure d-dim gravity and prove
that it is one-loop on-shell infinite for any d>4 by computing the b,, (~ R*)
coefficients of L4~2* divergences for k <3. Then we comment on infinities in
reduced Kaluza-Klein theories. Subsect. 4.2 deals with the gravitational sector b,
calculation for antisymmetric tensor gauge fields which are known to be present in
supergravities. Fairly general results are presented, clarifying the subject of “quan-
tum (in)equivalence” and extending the previous work [29]. Further, in subsect. 4.3
we solve the non-trivial problem of the background field method quantization of the
gravitino in 4 > 4 dimensions. We explicitly construct the “standard” gauge where
the gravitino operator takes its simplest form and thus, e.g., it is straightforward to
compute its b,, coefficients. Finally, all is prepared for the discussion of supergravi-
ties (subsect. 4.4). We start with the maximal one, SG},, which appears to be free
from L',..., L’ one-loop divergences, i.e. has b,, =0, k < 3. Though the algorithm
for bg is not presently available (cf. [30]) it seems very probable that by(SG},) =0,
implying the absence of one-loop finiteness of this theory (and thus invalidating the
conjecture about the on-shell finiteness of SG}, made in [5, 6]). These results for b,,
are in agreement with superstring counting rules (1.1) and also with one-loop
four-particle amplitude calculations for maximal SGs [17] ([18]), which indicate the
presence of UV infinities for 4 > 8*. At the same time, we find one-loop finiteness of
maximal supergravities in d <7 dimensions. To appreciate the non-triviality of this
result (based on cancellations and not merely on the non-existence of possible
on-shell invariants) one is to recall the absence of finiteness of pure gravity in d > 4.
For example, the SG¢ theory, corresponding from the 4-dim point of view to SG§
plus the infinity of its “massive copies”, appears to be one-loop finite and thus may
serve as a basis for (at least at one loop) consistent complete Kaluza-Klein theory.
Returning to four dimensions, we recognize the b, =0 property of SG|, as the
vanishing of conformal anomalies (or topological infinities) in the version of SGj,
obtained by dimensional reduction (cf. [31-33]). Finally, we prove that b,, =0,
k < 3 is valid also for SG}, but raise doubt about the suggestion [22] (see also [16])
that d = 4 reduction of this non-maximal supergravity (with d =4 reducible super-
symmetry) may be (at least) one-loop finite.

Some speculations and concluding remarks are gathered in sect. 5. Appendix A
gives our notations and some useful identities while appendix B contains y-matrix
relations in d dimensions.

* Note that by gives a logarithmic counter-term in d = 8.
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2. Correspondence of divergences in d-dimensional and dimensionally

reduced theories
Let us start with the one-loop approximation which can generally be represented
as
Z=fd¢e‘“/2)¢42", I'=1logdet4,, (2.1)
1
A, = ——D,gMN\ gD, + X, (2:2)

Vg

where ,, = d,,+ A,, and M, N = 1,...,d (for notation see appendix A). Using the
well-known expansion [9, 34, 30]

d
(tre~2), o= ¥ 502G, (23)
p=0

[‘?,?=BP+CP, Bp=bep,/§ddx, By..1=0,

G, = fa Mcp\/? dé-'x, (2.4)

we get the infinite part of the effective action

o ds 2 d E(p—d']fl "
rm=_%f — tre M= § Prey @,. (2.5)
€ p=0
More explicitly,
I s lLd@ _+_...+—1—-—Ld_*°(tl7,+"‘+l@l 'é'i (26)
%= =gt % d—p~ 7 el '

where L=¢"'/2 - o0 is the “propet time” cut-off. This formula is valid for odd as
well as for even dimension 4. If d=2k + 1 we conclude that there are no volume
logarithmic infinities. However, this does not imply (even if IM =0, ie. @,,,,=0)
the one-loop finiteness of any theory in M***! because of possible “power-type”
divergences. Accounting for these (L”) terms (in any appropriate regularization)
appears necessary for establishing the relation of counter-terms in d-dimensional and
reduced theories.
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In this paper we shall neglect surface infinities, assuming dM“=0. As for the
volume terms in (2.4), only the following four coefficients are presently explicitly
known [30]:

b,=(4m)"’b,,  By=trt,

P

b,=tr(1-1R—X), (2.7)
by = U'[‘ (T!s‘nRimPQ — Ry + R+ %SDZR)
+ & F2y+3X2—RX - 19X, (2.8)
by =tr{1- [ i REIRIGREN
+ o REDRIGRES, — 2RISRES RSN )]
== I_;[J(GDM'F.M()2 - TIS»IFMNFNKFKM+ TIERMNKPFMNFKP
+ 5 XD2X -3 X% = 5 XF2y — 15 XRignxp) (2.9)

where in (2.9) we assumed R,y =0, omitted total derivative terms and used the
relations of appendix A (for complete expression see [30]). Thus (2.7)-(2.9) give the
algorithm to compute one-loop L4, L2, L4~* and L% divergences in any
d-dimensional theory.

Now let us consider a dimensionally reduced theory, assuming the simplest
reduction when Mé=M" X S' X --- X S' and only “zero modes” in “internal”
coordinates are retained, i.e.

3,6=0, i=1,...,d—n, (2.10)

is assumed in the classical action and in the path integral. This condition implies the
breaking of the d-dimensional general covariance group to the product of an
n-dimensional one and [U(1)]{ca X SL(d —n, R)yopa (and also O(d)— O(n)X
[U(1)]“""), see e.g. [3]. That is why we may use the standard Kaluza-Klein
parametrization of g,y in terms of the n-dimensional metric g,,, vectors and scalars

gVe | -B"Ve

—Bf"\/gl (cp‘f+g""B;Bj),/§

- )= (2.11)
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(here we used the rescaled metric: g,, =N/""’g,,, A = det§,,

gpv+¢uB}:Bj E'SI'_,,rB;I )
Emn = ) ®i; = N/ ijfj»

‘ﬁu Brfl q_-’;'j

g = det g,,). The classical action in (2.1) now takes the form
1(fd? "x) [ d"x/g ¢4 9, with the analog of 4, (2.2) being

]

& 1 5
A=~ Eﬁbﬂg“"ﬁgbv + X, (2.12)

D,=08,+4, A,=A4,-BA,

X=A"Vr2x_¢iid.4

s (2.13)
(we put 4,,=(A,, 4;) and assume that d,X=0, 9,8,y =0). As a result, the
divergences of the (first reduced and then quantized) theory are given by (2.5)-(2.9)
with d = n, gyy = 8,,, etc.

It is easy to understand that the correspondence to d-dimensional divergences is
established by comparing @,’s for equal p*. Thus L*(log L?) infinities in n dimen-
sions are counterparts for LY "*¥(L4 ") in d dimensions. Comparing b,(4,) and
bp(ﬁ ») for (2.2) and (2.12) we conclude that in general they do not coincide. It is
important to observe that in view of the explicit breaking of d-dimensional symmetry
by the reduction (2.10), the counter-terms (i.e. the b,) in reduced theory cannot be
written only in terms of d-dim covariant objects. Hence the analysis of only d-covariant
counter-terms in d-dimensional theory is not sufficient for obtaining information
about counter-terms of reduced theory (cf. [22]). Nevertheless, it is possible to prove
the equality of l; in d and n dimensions under some special choice of background
fields. Namely, the following “lemma™ is true: if

& | 0
AM={Apv0}s gMN=[ ]s (2.14)

01384,
then f;p(dz)= Ep(ﬁz). Thus, in order to compute the counter-terms of the reduced
theory in the case of (2.14), one may first calculate the corresponding ones in d
dimensions and then substitute (2.14). This non-trivial observation is based on
universality (no explicit dependence on d, [cf. (2.7)—(2.9)]) of the EP coefficients [30].
It provides essential simplifications in calculations when quantum fields have d-
dimensional indices: we need not do reduction for quantum fields (and therefore

* The (d — n) volume can always be trivially factorized if divergences are local.
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may use natural d-dimensional gauges, etc.). It should be understood that this lemma
is valid only for the simplest reduction (2.10), which does not involve indices of fields
(and thus “conserves” the number of degrees of freedom). Different reductions (for
example, the coset space one [10,11,14]) may lead to quite different quantum
theories with counter-terms having no natural connection with d-dimensional ones.

Now let us make several remarks on a possible higher loop generalization of the
above discussion. The most adequate framework is again the background field
method and coordinate space heat kernel technique (for recent progress see 35, 36]).
With one-loop experience in mind, we need a (gauge-invariant) regularization
preserving power-type divergences. A natural candidate is a generalization of the
“proper-time” one in (2.5): given a diagram with k internal lines we may represent
all k propagators as G(x,, x,)= [*ds(x e **2|x,), thus finally obtaining a
gauge-invariant expression like (cf. [36]) [*... [ ds,...ds, J(s),. .., 5,/8, A), Where
g, A are background fields and L=¢~'/? > oo. This procedure can be straightfor-
wardly implemented for the calculation of counter-terms (at least at the two-loop
level) by generalizing various earlier background field method results [35-37] on the
d-dimensional case. Another appropriate regularization is a modification of the
standard dimensional one. The main idea is to consider d as a parameter taking any
integer value d=0,1,2,...,d and to sum all corresponding infinities in ordinary
dimensional regularization, as if applied in 0, 1,..., 4 dimensions. For example, &, in
(2.6) can be considered as a (logarithmic) counter-term in dimensional regularization
for d— p, because ((1/(d— p)IL?"?)z.,— 3log L? (cf. [20,21]). Thus to N-loop
order we shall have*

Fw=§h’é ):[( agd l

=0 k=1p-0| (d-p)*

The analogous expression with an explicit (dimension-1) cut-off L reads

N d-1 k
=Y i Z ( b I Ld—ﬂ-@;‘-’w1og(L2/p2)@§"“) . (2.15)
1

[=0 k=1\p=0

where the @s depend on background fields and no renormalization was carried out
(except neglecting non-local parts in @s). As a result, simply on dimensional
grounds, any possible relation of infinities in d- and n-dimensional theories must

* This should be compared with the ordinary d = 4 dimensional regularization result

af!
(d-4) f7.a

r~ZHE[

=0
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have the form

{La‘—n+k Y «,(log Lz)’} - {L*(log L?)*},, k=0,...,N-d. (2.16) _

r<s d

However, it seems difficult to establish any relation between @’s without informa-
tion about interaction terms in the action and structure of indices of quantized
fields ¢.

In the above analysis we assumed the same cut-off L for all dimensions in
d-dimensional theory, which was then supposed to be related to the cut-off in
reduced theory. It is possible to trace the emergence of reduced theory infinities by
employing different cut-offs for n and d—n momenta (|p,| <L,, p=1,...,n,
|pil <Ly—p» i=1,...,d—n). Then the structure of divergences is given by (2.15)
under the substitution L? = Lf_,C, ,(L,)*(L,-,)? % log L* > log L X log L _,
+ +--, etc. Imposing the reduction condition (2.10) on the d-dim path integral we
get I1,6¢“="( p,) factors in all loop integrations. As a consequence, the infinities of
reduced theory as viewed from d dimensions, will take the form

T ~A(Ly ) "% [(L,)"+ -+~ +log L2] + h*(L, )"

x{[(L,)"+ -+ +1og L2]* + (L,)"+ -+ +1log(L,)"} + -+~ .

Finally, we are to absorb all L,_, factors by the wave function and (or) coupling
constant redefinitions. This remark provides explicit illustration of correspondence
(2.16) in the case of regularization, breaking initial d-dim symmetry. It seems,
however, that no constructive algorithm, relating d-dim and n-dim counter-terms,
exists (beyond one- or at least two-loop level) if we start with a quantum theory
having unbroken d-dimensional symmetry.

3. Super Yang-Mills: results for d = 4 as they follow from d = 10

3.1. ONE-LOOP INFINITIES

As is well-known [1], the lagrangian of N=4, d=4 super Yang-Mills theory
[containing 1 vector, 6 (pseudo)scalars, and 4 Majorana spinors, all in the adjoint
representation of some gauge group G] can be obtained by simple reduction (2.10)
from that of SYM|, in ten dimensions (we omit possible (?) auxiliary fields):

1

48(210)

£ro= (F§N)2+f‘;a®¢"¢ (3.1)
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where
Fion = Qp Ay — By A3y + A5, 45,
M,N=1,...,10, a,b=1,...,dimG,

&) = v,,D,,, Yas are 32 X 32 Dirac matrices (see appendix B) and y is a Majorana-Weyl
spinor. After the reduction 4,, = (A, 4;) the first term in (3.1) takes the form

1 | 1
BEB“"E(F“) 28;(@,;/1)2"‘@(5?)2,

F = fALS. (32)

It is straightforward to quantize (3.1) in the one-loop approximation assuming that
only A,, has a non-trivial background:

[m] (33)

det AO

4= ~92, Ayyn= _gMNGDZ_ZFMNs

A 2= ‘(GD)Z: _GDZ_%‘YMNFMN' (3-4)

We have chosen the background gauge ,,459 = £(x), used matrix notations (A.2)
and taken into account the Majorana-Weyl constraint* on y. It is now easy to
calculate the LY~ 2%, k <3 infinities in d dimensions using (2.6)—(2.9). Introducing
the notations

50=ﬁ0, Ei,:B[fEtrFﬂ?}N’
_ 2
bs = — By oot Dy Fagn ) — Batatr( Fygw Fyxc Fienr) (35)

and using (A.3), (A.4), (B.9), we get b, =0 and (» = 214/7)

Bo B B Bs
4, 1 1 1 1
4, d d—24 d—40 d
a,, —v -2 —4y -y (3.6)

* Note that for a Majorana spinor | dye?™ =[yYdet D2]'/2; note also that our gauge contains
quantum scalars after the reduction: @, 4S9+ [A{?, 4{9]=¢(x).
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Let us now establish total results for a d-dimensional system of one gauge vector, N
scalars and N, ,, spinors (all in the adjoint representation):

= o = 1 - _ _
b,= 551)4' Nﬂbp(Aﬂ) —;Nusz(ﬁl/z)’ 5},” - bp(ﬁJ = 2bp(A0)9 (3.7

where y=1,2,4 for Dirac, Majorana and Majorana-Weyl spinors, respectively.
Imposing the condition

by=b,=b,=b;=0, (3.8)
we get three equations:

Bo=B3=(d-2)+N,— (”/Y)Nl/z:O,

By =(d—26)+N,+ Z(V/T)Nl/z =0,
By=(d—1)+No+4(r/Y)Ny =0, (3.9)

with a unique solution d + Ny = 10, (»/Y) N, ,, = 8, corresponding to SYM!, (N, =0,
d=10, N, ,=1, y=4) and all its reductions. Thus the condition of finiteness in
d =4 uniquely fixes SYM3. Eq. (3.8) implies the absence of leading L',...,L*
one-loop divergences in ten dimensions. Applying the lemma (2.14), we now
understand the known one-loop finiteness* of SYM$ as a consequence of some
property (b, =0) of SYM},. Moreover, we get b,(SYM3)=0, which is connected
with the vanishing of one-loop correction in the 3-point function in SYM3 (in a
proper supersymmetric background gauge [38]).

Eq. (3.8) also holds for another possible reduction, SYMZ, implying its off-shell
one-loop finiteness in six dimensions [cf. (2.6)]. This (power-counting non-renormal-
izable) theory provides an example of off-shell cancellations due to supersymmetry.
When treated from the four-dimensional point of view, it contains SYM$ as well as
the infinite number of its “massive analogs”. Interestingly enough, we see that the
inclusion of all massive states does not disturb the one-loop finiteness of SYM$**.

One more observation following from (3.6), (3.9) is the absence of L* divergences
in pure Yang-Mills theory in d =26 (b, =0), establishing, through the lemma, the
vanishing of the one-loop gauge coupling S-function in the corresponding d =4
reduced theory (which contains YM, + 22 scalars in the adjoint representation).
This “zero” is of non-supersymmetric nature and can be understood by exploiting

* Here we get finiteness in the gauge field sector, which, however, is sufficient to conclude about
finiteness for a general background in view of irreducible supersymmetry.
** As a by-product of (3.6) and (3.9) we get b, = 0 on shell (D, Fy,y = 0) in any supersymmetric theory
(notice that B, in (3.6) is equal to the number of degrees of freedom B,]. This does not, however,
mean its on-shell finiteness in d = 6 because of possible quadratic divergences (if by = 0).
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the connection with the open sector of the Bose string model (see e.g. [16] and
references therein). Namely, YM ¢ coincides with the a’ — 0 limit of this model in
d =26 [39,16]. By this statement we express a possibility of describing tree string
amplitudes by the gauge field “effective” lagrangian (a; = const)

&= tr{ a,Fw+ & ay(Dy Fogn)’ + a3 FEyy FaxcFicnr) + O(e?)} . (3.10)

Quantizing this theory and utilizing the fact that all non-trivial divergences of
one-loop open string amplitudes can be absorbed solely by &’ renormalization, we
conclude that a, (and also a,, a;) must be finite to one-loop order. However, it
seems impossible to generalize this reasoning to higher loops because of apparent
difficulties in the quantum Bose string model (cf. [16])*. Turning to the supersym-
metric open string theory, which is probably a renormalizable one [16] and has
SYM], as its « — 0 limit [1,17], we recognize by(SYMj,)=0 as its one-loop
consequence and may also conjecture the absence of Fiy type infinities in SYM, to
any loop order. 1t is this latter property (and not that of some class of logarithmic
counter-terms in d = 10, cf. [22]) that implies the vanishing of F;j infinities (and thus
zero B-function) in the reduced SYM] theory [cf. (2.16) and discussion in sect. 2].

The examples of YM,, and SYM], are useful to illustrate the following general
observation concerning the interplay of dimensional reduction and supersymmetry.
While supersymmetry “glues” together all sectors of the theory, different fields
initially related by d-dim symmetry are completely independent after reduction. It is
only in supersymmetric dimensionally reduced theory that all fields are mutually
connected. This can be expressed by the following diagram (we assume that
supersymmetry is irreducible)

(3.11)

where arrows stand for supersymmetry, relating Bose and Fermi fields and hence
Bose (and Fermi) fields among themselves. As a consequence, no initial relations
(e.g. between couplings) following from the d-dim lagrangian, survive quantization if
it is not for supersymmetry. For example, one can readily check that there is a
one-loop renormalization of the scalar potential in the reduced analog of YM,¢**.

* This is in agreement with a non-zero value of two-loop gauge field S-function in the (YM, + 22
adjoint scalars) theory (see e.g. [40]).
** 0(26), which connected A, and 4,, is broken by reduction. Quantum corrections respect only O(22)
symmetry and thus induce (4?)? invariant in addition to the ( F3)* potential in (3.2).
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We conclude this section with several remarks. The results (3.8) for SYM} are in
agreement with the existence of N =4 sum rules [41,42]: b,, ~ Z,(— 1)**d(A)N =0,
k < 4. The absence of a k = 4 sum rule gives a hint for by = 0 to be confirmed in the
next section, Next, let us note that the formal use of d-dimensional notations was
already appreciated in the 3-loop calculation of the B-function in SYMY in [43].
Their one-loop result 8, ~ (d — 10) clearly coincides with ours [cf. (3.9)]. Finally, we
once more want to stress that d = 10 results (3.8) imply the corresponding ones for
d =4 only for the simplest supersymmetry preserving reduction (2.10). Quantum
properties of differently reduced theories (cf. [7,8]) are to be studied independently
in four dimensions and are expected to be worse than to those of SYM3.

3.2. CONSTANT GAUGE FIELD EFFECTIVE LAGRANGIAN

Here we are going to consider the effective action, corresponding to (3.3),
supposing the following background for d = 10 potential (u, »=1,...,4):

Al = _%F(:pr"a’ (nﬂ)2= 1$ A=0$ (3'12)

i i

and taking, for simplicity, the 'gauge group to be SU(2). The one-loop effective
action for a homogeneous background is given by (see e.g. [23,44], cf. (2.5))

wds & h V. ® ds
N= 1L — -APs . _ I d
P lhj; ) Ek tre 2 (4'”)”2]; REry o(s), (3.13)

where V, is the d-dimensional volume and @ depends on background fields. It is easy
to understand (cf. the lemma and (2.14)) that for (3.12) ®s are the same in
d-dimensional and reduced theories. Thus the only difference in I's is in the
s-integration measure

h
2(4n)’

Therefore we may use d = 10 theory to calculate* .
Let us introduce the following notations (our signature is euclidean):

= —
10

o ds h ©ds
—d(s), LV=- —o(s). (3.14
[ 50 =S [ aee). 6

‘Il = é};;.w‘ﬁ:w’ ‘;?. = %vaﬁ;‘v’ ‘F::- = %'Epw;\pFAp’ (3'15)

Note that J, = }(E*+ H?)> J, = (EH ) and thus the eigenvalues (+ F,, + F,) of |

* We note in passing that @ is gauge independent [(3.12) satisfies the classical field equations].
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are real (the transition to pseudo-euclidean notations is given by £ — iE). The total
expression for @ follows from (3.3)

=29, _%‘D(A:/z)a P, =2(4,)-22(4,). (3.17)

After some standard calculations (cf. [23-24]) we have (sh = sinh, ch = cosh)

_ _sK sE, _
%‘@(‘50)“’shsﬂ'shsg’ c(SU(2)) =2, (3.18)
®(4,,,)=vchsF,-chsF- @, »=22, (3.19)
@, = (d—2) @y + 4(sh’sF, + sh’sF, ) B, (3.20)

Here we used

sF
sh sF

1/2 :
'p[) = lr[det ] , ¢(Alf2) = {r e“ﬂ)?uﬁ'ﬁ;y'#djﬂ)

®, = [tre?Fuv — 2],
with Fy,y = (F,,,0), and took (Yps) sr=1,2,3,.4 = (¥,)4 ® V5. The final result reads

&(s) = 4(ch sF, — chsF,)’®,, (3:21)

and thus, e.g., in four dimensions,

h 4c wods SF sF.
m=_" ds _sF, A ) .
% 2 (4-,-;)2-[) T AT A L (3.22)

This expression is remarkable for its ultraviolet (UV) finiteness, evident from small-s
expansion of (3.21):

B(s)|,n0=de[s*(J2 =) — s (2 - 72 ) (372 + 12 ) + 0o(s')]. (323)

This expansion also gives information about total b, coefficients, calculated on the
background (3.12). In view of the obvious formula [cf. (2.3), (2.5), (3.13)]

["'p(s))s—-(): i -Tkgzks (3-24)
k=0
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and noticing that @(s) is even in s, we get

5,=0, p<6. b=ic[(E,E)~(EE)].

b,=0, bBy,,=0, bu=0, k>4. (3.25)

The by = 0 result implies the quadratic divergence of the d = 10 effective lagrangian
(3.14) [see also (2.6)]. This explicitly demonstrates that SYM|, is not finite in one
loop. Note that the absence of logarithmic divergence of £4f) (5,, = 0) is probably an
artifact of our choice of background (3.12) {recall that (1.1) predicts one-loop
logarithmic infinities in d = 10].

Let us now discuss several properties of our effective lagrangian (3.22). As is
evident from (3.15), (3.16), it vanishes if* F,,= + F},. This fact is a particular case
of the absence of one-loop radiative corrections on the (non-abelian) self-dual gauge
field background in any supersymmetric gauge theory (which is due to supersymme-
try relations between non-zero eigenvalues of scalar, spinor and vector operators, cf.
[45,25])**. Next, let us comment on the s — oo infrared (IR) behaviour of (3.22).
Expanding it in powers of F we get a series of divergent terms LP. p~ **F2%+2,
where p is the IR cut-off (note, that the first F* term is related to the four-particle
amplitude also found to be IR divergent [17, 18]). We conclude that supersymmetry,
though providing UV finiteness, does not improve the singular IR behaviour,
characteristic to all massless theories, except for the fact that it cancels logarithmic
IR divergences. Given a particular constant background problem, one could, of
course, consider the above power-type IR divergences as artificial ones, absent after
summation of the series. This is really true for the partial scalar (3.18) and spinor
(3.19) contributions in the effective action. However, the integral over s for the gauge
field contribution is divergent for s — oo if F= + F*. This is a manifestation of the
gauge field IR instability of the background (3.12) (cf. [24, 27]), which should not, of
course, be confused with “ordinary” IR divergences. This instability originates from
the “anomalous magnetic moment” term (—2F,,y) in 4, in (3.4) [or the second term
in (3.20)] and may be attributed to the negative mode of A,. Thus we are to
introduce some IR cut-off or to rotate the contour of integration (s — is) for the
divergent part of the integrand in (3.22). The second recipe leads to an imaginary
part in the effective lagrangian, implying the decay of the “ vacuum” (3.12) by gauge
particle pair creation (cf. [27]). As a result, supersymmetry does not also solve the
problem of IR instability of constant abelian gauge field configurations. This could
be expected from the observation that it is the foral (regularized) number of one-loop
fluctuation modes B, = N _+ N_+ N, which is equated to zero by supersymmetry,

*1t is also invariant under duality transformation F— + F* which is connected with helicity
conservation in the corresponding amplitudes (cf. [25]).
** Zero modes also cancel in N =4 SYM theory [45].



268 E.S. Fradkin, A.A. Tseytlin / Supersymmetric theories

and thus it is still possible to have a non-zero number of negative modes. The above
conclusions may be considered as arguments in favour of the analogy in IR
behaviour of YM, and SYM3, e.g., implying the confinement (in spite of zero
B-function) in the second theory.

To illustrate the discussion let us now calculate (3.22) explicitly, assuming, e.g.,
that E = 0, H= 0. Then the total one-loop corrected lagrangian is

g=—tpr-Mpa. 1 p2 (3.26)
282 4t 283&'

where

° dx 1
a=I1+2I,—-21,,, I1.0.1/2=_£] ?{th;m;cthx},
where I, is to be defined by x — ix. In view of the UV finiteness of (3.22) there are
no usual E?log E terms in (3.26) and thus there is no regularization ambiguity in the

constant a. Calculation of the integrals yields (cf. [46])

g%=_g%+%[24§’(-—1)—8§(—1)1n2+iw]. (327)
eff o

Note that if we had employed the IR cut-off by inserting an e~ #*s factor in (3.22),
then the imaginary part of (3.27) would appear through lim,, _, E*log[(p* — E)/(p*
+ E)). It should, of course, be understood that the simple structure of (3.26) is due
to the condition H =0, while in general (3.22) will non-trivially depend on the
dimensionless combination E/H.

3.3. EFFECTIVE POTENTIAL FOR SCALARS

Our aim in this subsection is to consider the effective action for a constant scalar
background

A;=const, A,=0, (3.28)
illustrating the efficiency of the d = 10 approach and pointing out some general facts
about (super)symmetry breaking in SYMj theory. According to (3.2) the classical
scalar potential and its absolute minima are given by

1

Vo= 2gi oS-

F;=[4;,4;]=0 (3.29)

(we assume the gauge group G to be compact and six internal dimensions to be
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space-like so that all scalars are physical and ¥, > 0)*. Note that in our case F,; =0
does not imply “triviality” of A4, because after reduction A4,’s transform homoge-
neously under the gauge transformations. All vacua (3.29) do not break supersym-
metry (¥, =0)** but may spontaneously break the gauge symmetry, giving masses
to some fields, grouped in N =4 multiplets. For example, if we take 4, =n;4,
n? =1, then for G = SU(5) and a suitable matrix 4 we get the standard SU(3) X
SU(2) X U(1) symmetry breaking as (with the help of one adjoint Higgs multiplet) in
the Georgi-Glashow model [48]. The mass matrix, corresponding to F,; =0, is the
same for scalars, vectors and spinors:

MZab=famkfbckA:_'ﬂA;!t_ (330)

One can show that the minimal number of massless N = 4 multiplets which survive
the tree level gauge symmetry breaking is equal to the rank r of G (r=n for
SU(n + 1), SO(2n), E,, etc.). Therefore, the potential (3.29) admits a “realistic”
gauge symmetry breaking but still there are the problems of spin degeneracy
(unbroken supersymmetry), of energy degeneracy (¥, = 0) and also of scale degener-
acy of vacua (F,;=0 does not fix the scale of 4,). As is known for N =1
supersymmetric theories, the first problem cannot be dynamically solved within the
loop expansion [49,50], the second one may probably be solved by inclusion of
supergravity couplings (see e.g. [51]), while the third difficulty may be cured by the
effect of dimensional transmutation (cf. [52]). It appears that none of these problems
can be resolved (at least within perturbation theory) in UV finite and thus scale
invariant pure SYM} theory, and thus they are confronted also at the level of
quantum effective potential. One may hope that coupling SYM} to (conformal
N = 4) supergravity can improve the situation. This coupling may probably be
mimicked by introducing scalar (and spinor) mass terms and thus softly breaking
supersymmetry at the tree level. We shall discuss the effect of soft breaking on the
example of one-loop effective potential below.

Turning to the evaluation of the quantum effective potential let us first note that
from SYM!, point of view, the choice of gauge background (3.28) implies the
breaking of d=10 Lorentz symmetry O(10)—> O(4) XK, K< O(6) and in this
respect plays a role analogous to (and is well suited for) dimensional reduction. The
SYM/, effective action calculation for (3.28) is formally analogous to that in YM,
theory for a constant non-abelian gauge potential background [28]. However, some

* The classical equations, corresponding to ¥, [4;,[4;, 4;]]=0, coincide with the Yang-Mills equa-
tions in (d — 4)-dimensional gauge theory in the case of constant gauge potentials. They can have
“non-trivial” (F; = 0) real solutions only if G is non-compact and (or) the (d — 4)-space signature is
pseudo-euclidean (cf. [47]). _

** In view of the form of supersymmetry transformations 8§y = —(1 /&2 Fy, ~ Yane it is obvious that
F;=0 is a necessary condition for supersymmetry breaking (for the appearance of a Goldstone
fermion).
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care is needed to extract the SYM$ result we are interested in. Namely, for (3.28) in
d =10 we have D% =0, + 24,0, + A?, while one is to drop all J, terms to make
contact with the reduced theory. As a consequence, the relation of exact d =10 and
d = 4 effective actions will be more complicated then in (3.14). With this clarification
in mind, we can start with the d = 10 expression (3.3) but omit all d, terms in the
operators (3.4), which therefore take the form '

‘ﬁ{)= _D+M2, (MZ)“E" _faef:fbedAcAd

ab
Aip=-O+M,y, (M) 5=8,,M*—1(y,) F22. (331)

iy o

A,MN={A,M=6MAU;A1,.F=O A -3, EJ+M0U}

IU
ab
(Mg)fj =8, M -2F3®, (3.32)

where vy, = §;,,v,,- The one-loop effeétive lagrangian is given by (3.14) where now

¢'(s)=t.r(e‘”5’+2e_“z’—;'{e‘”3fzf) (3.33)

(the trace goes over a, b; i, j; «, B). The formal integration yields

v, =R = 64’;2 tr( M¢log M2 + 2M*log M — 1M} )log M?,,) . (3.34)

Here we made use of

[7 Semmtemyrs - M2 — iMH (1)~ 4MUlog(MP/L2),  1=05T...
Ls
and the fact of cancellation of all infinities proved in subsect. 3.1 [see (3.38)] which

here appears to be a consequence of the following N =4 “mass sum rules” (cf.
[42, 53]), obvious from (3.31), (3.32) [see also (3.33), (3.24))*

k
Bu=(k1!) o M2k +2M* — ML) =0, k<4 (3.39)

Let us now discuss several properties of the effective potential (3.34). (a) It is scale
invariant, i.e. can be written in terms of logarithms of dimensionless variables**. For

* Note that, as in (3.25), bg = 0, again implying the presence of a quadratic divergence in L“‘(SYM",)
for the background (3.28).
** Let us also mention in passing that the effective potential (3 34) is gauge independent (independent of
the parameter of the covariant gauge); this can be understood, e.g., as a consequence of the absence of
the gauge coupling and wave function renormalization.
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example, if 4, = mA, for dimensionless 4,, then the total potential has the form

V=m“{—-1—F2.+

; o W+---}
432 ij 641?2( o 108 My )

[the proof is based on (3.35)]. Hence the potential calculated on the extrema defined
by dV/3m =0, dV/9A, =0, is always equal to zero (and thus there is no supersym-
metry breaking). This simple argument can be generalized to all loops, assuming that
the zero B-function property [38] (and thus scale invariance) of SYMJ persists to
more than three loops. This connection of the absence of supersymmetry breaking
and scale invariance can be seen also from the following reasoning: if =0 then
T} =0 but (T*"), = Vg*” and thus V=0, which implies the absence of supersym-
metry breaking (cf. [50]). Turning this argument around we may say that a
non-perturbative dynamical breaking of SYM} supersymmetry (if possible at all)
must be accompanied by a breaking of scale invariance of this theory. (b) One can
easily check that the classical minima (3.19) are also the solutions of effective
equations, i.e. V(F,; ;=0)= 0* (this is the analog of the N = 1 supersymmetry result,
saying that if the classical potential is zero at some point then the effective potential
is also zero at that point [49]). (¢) Combining the observations made in (a)
and (b) we conclude that all effective minima of V' =V, + V| are exhausted by the
classical ones (3.29). Really, suppose that V(A) is a regular function of A¢, which is
known to have two properties: (i) if (3V/3A4) ;=0, then V(A)=0, and (ii) there
exists A, such that ¥(4,)=0. Then a simple theorem of analysis states that A
coincides with A,. This argument is valid, of course, to any order in loop expansion.
Thus all possible patterns of gauge symmetry breaking are only the classical ones
(with F; = 0) discussed above. (d) Our next remark is about the IR instability of the
background (3.28), i.e. the negative modes of M¢ (for F=0), giving the imaginary
part ~ tf{wMg X 6(—M¢Z)] to (3.34). These negative modes can be proved to be
present always when F;; = 0, but the simplest way to predict their appearance is to
recall the analogous instability (negative modes of the gauge field 4, operator) of the
constant non-abelian gauge potential background in YM, [27,28]. Indeed, the scalar
operator in (3.32) appears as a part of the 4 = 10 gauge field one and thus the origin
of instability is the same: the “anomalous magnetic moment” term “—2F,,,," (see
also subsect. 3.2). This instability in our case is, however, a pure off-shell effect,
because we already know that F;; = 0 for all solutions of effective equations.

Let us now suppose that we added scalar and spinor mass terms in the classical
lagrangian (3.2)

1 1a.4a
AL= 2g2 ”%)r‘jA?Af + .“1/2«3'?1‘;’,3 (3-36)
* This follows from (3.31). (3.32) and the zero total number of degrees of freedom in the theory, or

from the invariance of (3.34) under F;; » — F;;. The latter property implies that only b, coefficients
(k > 3) are non-zero for background (3.28) [cf. (3.25)].
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[here g2 is needed in view of scalar kinetic term normalization in (3.2)]. They
produce soft supersymmetry breaking, i.e. do not spoil finiteness of the theory in the
sense that gauge coupling B-function is still zero and no field-dependent quadratic
divergences are induced (cf. [54]). Moreover, it is possible to cancel logarithmic
“mass” renormalizations by properly adjusting g, and p, ,. A remarkable fact is
that we can now solve the previous problems of masses and vacua degeneracies and
thus (in principle) construct a realistic unified model starting with SYM{*. The
important consequence of the presence of bare scalar mass terms is a possibility of
avoiding negative modes of the scalar one-loop operator and hence of obtaining a
well-defined (real) effective potential which is now not forbidden to have non-trivial
effective minima. Then we are in position to study the question of dynamical gauge
symmetry breaking and to search for a solution of gauge hierarchy problem,
generating some well-separated effective scales, e.g. A7 ~ pdexp(+c/g*) or 4, /4, ~
exp(+c/g?) (for a recent proposal of its solution in the framework of unified
models based on N = 1 softly broken supersymmetry [55], see ref. [56]).

It is not the aim of this paper to present such an analysis. That is why we shall
consider only illustrative examples, calculating (3.34) explicitly for two simple scalar
backgrounds. First of all, let us note that in order to get a finite (up to A-indepen-
dent divergent constant) expression for the effective potential, one is to relate p, and
By [Cf. (3.35)): ZinGii = 4ok /20a- This condition is assumed in the foﬂomng We
start with the simplest (F}; = 0) O(6) prcscmng background: A = n, A7, n?=1, and
take G = SUQ), 1, = 8, %, 2 25 = 70,5 Dingonalizing (3.30) M2 = (0, 47, 42)
A2 =A4,4, we get the following expression for the one-loop effective potential
(3.34):

V= “{-—l—x-f-

3(1 + x)*log(1 + x) + x2log x
2g?"  64n?

—4(x+ 1) log(x + %)]} + const, (3.37)

where x = A% /p®. The A + 0 extrema of V satisfy

x_(x+_1)+31g x+1_ _4r?

xlo )
. (x+4) x+i hg*

and thus are absent if x > 0. Taking formally x < — 1 (i.e. p*> <0) it is possible to
find a unique solution if g2 is some suitable /arge number (which is generally

* This proposal seems superior to those of refs. [7,8], where a coset reduction of SYM{, was used to
generate some d=4 theory with broken supersymmetry but with (very probably) bad quantum
properties.
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considered not to be a good choice). We observe stability of 4, = 0 classical solution,
which can be related to the fact of UV finiteness of (3.37) [i.e. to the finite x — o0
limit of the quantum term in (3.37)]. Our next example (now with F,*0) is
provided by the following background (G, p, p, ,, are as above):

A°=A[87— (¢+V)n“n], a=12, =12, n}=1, A, {=const,
(3.38)
all other components being zero. Then F7” = e, A% £, M}, = A[£%5,,— (£°—
1)nn,]. The eigenvalues of mass matrices in (3.31), (3.32) (where we put y; = (Pauli
matrices) ® 1,¢) are given by
M2 ={A%% 4%,0), ME={ax(A%*+p?),4x (4> +p?);
X2 X (A2NS +p2),2 X (A4%A5 +p*),6 X p?);
M, = (32 x (A2A],+ 312),32 X (4277, + 32) .32 % (302)), (3.39)
where
A%:%(§+4:tJG5—1F+16§), Aa=14+8, Aj,=0.
It is now easy to establish the effective potential, using (3.34), (3.35),

h
322

V=p‘{%22(x+y+xy)+ [2(y+1)zlog(y+l)

+2(x + 1)%log(x + 1) + (xAg + 1)2log(xAf + 1)+ (xAg + 1)*log(xAg + 1)

+y*log y + x*log x — 4(x +y + 1) log(x + y + %)]} + const, (3.40)

where x = 42 /p?, y = x£2. One may easily check that the O(%) part of (3.40) [as well
as of (3.37)] can be rewritten in terms of logs of ratios of polynomials having equal
degrees and thus is bounded when x, y — co. The g — 0 limit of (3.40) serves as a
good illustration of the statements made above concerning the pure SYMj case. If
p? < A%\, we get the already discussed negative modes. That is why we are to relate
x and £ properly in order to preserve the reality of (3.40). The analysis of extrema of
(3.40) shows that no solutions exist for an arbitrary value of g* (except the classical
one x =y = 0). At the same time it is possible to find the approximate minima if g?
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is sufficiently large, while £> 1, x < 4 and y < 1. Thus we get dynamical SU(2)
symmetry breaking and three different mass scales p?, p’x, p>y. However, this is not
an “exponential” [~ exp(c/g?)] hierarchy, which, in fact, seems to be impossible if
we demand the UV finiteness of the potential. It remains to be seen whether it can
be generated, if we omit the relation between p, and p, , and consider a realistic
example of G = SU(5) or E,.

4. Supergravities in d < 11: one-loop divergences and anomalies

The subject of this section is analysis of infinities [i.e. calculation of b, coefficients
in (2.6), (2.4)] in higher dimensional supergravity theories on a d-dimensional
gravitational background. These theories are known to contain antisymmetric tensor
gauge fields and gravitinos along with the graviton itself. One-loop results, therefore,
will be given by a sum of separate contributions of all these fields. Finally, using the
lemma of sect. 2 we will be able to obtain some information concerning the
corresponding reduced theories. We shall use the following notations:

by=N, b,=pR, (4.1)
by = &, Rynpo + @, R3y + a3 R? + a,D°R, (4.2)
by =o\1, + 0, E, (4.3)

where in (4.3) we used the definitions (A.5), (A.7), assumed that R, =0 (we will
compute b, only on mass shell) and omitted all total derivative terms [as was already
done in (2.9)]. It should be understood that R*R* = R},ypo — 4R,y + R* [E in
(A.7)] is the integrand of the Euler number (A.8) and thus may be neglected for
topologically trivial backgrounds only if d = 4 [d = 6]. Let us also recall that only one
(two) of the first three invariants in (4.3) are independent (while /, and E vanish on
shell) when d = 2 (d = 3). One more remark is that I, =0 if d=4 and R,,,, = 0 [57]
and hence E(d=4)=1I,.

4.1. GRAVITY IN 4 DIMENSIONS
The background field method one-loop quahtization of gravity in d dimension can
be done straightforwardly in the gauge D,,(hyn — 38rnh) = En(X),

det A
VAL 5 A,.= 8D — Ry, (4.4)

Jdetd, ’

Ay=—P- D2+ X, PNV =8/85—18""gpo,

X7o' =2Rpmnyo — 20(p'R) + 8unRpg + 8roRun+ Prg - R.  (4.5)
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We see that egs. (4.4), (4.5) are universal in the chosen gauge, i.e. are the same as,
e.g., in the d = 4 case. Now we are to use egs. (2.7)~(2.9) (with (Fyy ) &8 = 28K R pins
etc.) providing the following results for 5"’ = b,(4,)—2b,(4,) [cf. (4.1)-(4.3)]:

N=1d(d-3), p=1(-5d*+9d—48), (4.6)
a= o M= _(a-18),  ay=da(—d?+543d-3600), (4.7)
@y = (432 — 303d+ 696),  ay= &(—4d>+Td— 40), (4.8)
1 d(d-3) 1 d(d-3)  (d+30)

=120 2 “" a0 2 180 ° (4.9)

which are in agreement with the previously known ones for d=4 (b, [15,19]; b,
[58,59]) and for d = 6 (o, in b [60,59])*. Evidently, only N, a,, o, and o, are gauge
independent (they contribute on shell). Recalling the meaning of b, [cf. (2.6)] we
immediately conclude that: (i) d=2, 3 and 4 gravities are one-loop finite on shell
(the latter up to topological divergence); (ii) all gravities in 4 > 4 dimensions have at
least L4~* and L? ®(log L? for d = 6) divergences on shell. Our results (4.6)—(4.9)
give complete expressions for infinities in d <7 theories (according to (2.6) the
weakest linear infinity in d = 2k + 1 case is governed by b,, ). Put in this perspective
the one-loop finiteness of d = 4 gravity appears to be an accident. Thus one should
strongly believe in the “uniqueness” of d = 4 number for higher loops [contradicting
complete universality of the one-loop expressions (4.4), (4.5)] in order to start with
two-loop calculations.

An interesting question connected with quantization of d-dimensional gravity is
about divergences in reduced Kaluza-Klein (KK) theories, following by reduction
from the classical lagrangian (~ R) in d dimensions (see e.g. [9, 3]). A4 priori one may
hope that these theories have better quantum behaviour as compared to some
general system of gravity, scalars and vectors (known to be one-loop infinite even on
shell [58,61]) because the classical mass shell of reduced theory coincides with that
of the d-dimensional one (R, = 0). This conjecture is not, however, supported by
the above statement on the absence of finiteness in higher dimensions**. Strictly
speaking, this result cannot be immediately applied to the reduced theory (it says
only that the rotal KK theory, i.e. with all massive states, is infinite). Moreover, as
follows from the discussion in sect. 2, divergences of reduced theory generally cannot

* It should be pointed out that o,(d = 6) was not computed in refs. [60,59] because their authors
assumed that the integral of E is zero [cf. (A.9)]. However, it is erroneous to omit E in the local
expression for d = 6 gravitational conformal anomaly T} = be(x) (compare with the d = 4 expression
T#=by=R*R* + -~ ).

** The presence of R3sypo on shell infinities is a hint for e.g. F*(B) divergences in reduced theory [for
notations see (2.11)].
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be written only in terms of d-dimensional objects. That is why one must do an
explicit calculation (in four dimensions) to settle the question. It seems worth
presenting the outcome of this calculation of divergences in the simplest reduced KK
theory, following from d = 5 gravity

£= _PR+ éFz(B)ez“"% 19.99.9 |V, (4.10)

where a=1/3, k?=167G. Let us consider the following background: g,,=3,,,

B, =0, p=0. Then the quantum scalar field contribution in the one-loop infinities
(which should be added to that of the Einstein-Maxwell system [61]) is given by

Ab,=1a*(9,F,)" - 1a°T,R,, + 4a°T2

2 2
+ia*(FE,) +5a*(E2), T,=E,\F\—1g,F2. (411

Thus the theory is still infinite on shell. It has even worse divergence structures [the
last two terms in (4.11)] because of breaking of duality invariance by the vector-scalar
coupling in (4.10). The lessons we can draw from this example are the following: (i)
the fact that some theory is obtained by dimensional reduction does not by itself
imply an improvement of situation with infinities; (ii) the inclusion of scalar-vector
couplings does not by itself imply better quantum behaviour. As a consequence,
one-loop on shell finiteness of SGJ¥ (N < 8) is due to (i) one-loop on-shell finiteness
of d=4 gravity and (ii) irreducible supersymmetry, connecting all sectors of the
S-matrix with the finite gravitational one (i.e. to the fact that R? invariants are built
up to superinvariants) and should not be specially attributed to the possibility of
obtaining these theories from SG|, by a reduction (and truncation)*. This conclu-
sion is in agreement with the observation made in subsect. 3.1, that it is supersym-
metry which provides finiteness of SYM§ as compared to (YM, + 22 scalars) theory,
both theories being reductions of SYM], and YM,, correspondingly. To reiterate,
even if the (g,, — B,) sector of (4.26) was finite we would have troubles in the scalar
one, because of breakdown of the initial d-dimensional symmetry by the reduction.
The following conjecture suggests itself in this connection: if it is possible to
construct a theory with some symmetry connecting gravity with a finite number N of
Bose fields (such theories with N = oo are, of course, known, being complete KK
theories as seen from lower dimensions, cf. [11]), then it may have an improved
one-loop on-shell quantum behaviour characteristic to supergravities.

42. ANTISYMMETRIC TENSOR GAUGE FIELDS
The correct recipe for quantization of the antisymmetric tensor gauge field
Ay a, (n<d) with the lagrangian £~ (D y Ay, u,1)* on a d-dimemsional gravi-

* In particular, it is supersymmetry that provides duality invariance of scalar-vector interactions in
SGs.
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tational background is given by (cf. [62,29])
Zn — ﬁ [detA _k]—(1/2)(—1)"(k+l), (4.12)
k=0 §
where the Hodge-DeRham operators 4 , are defined as follows:

p
NN, o N
(A,o)u.,.,up = —6["'”1___8;};]@2 + 2 R?{M,Sﬂ,..,‘s;ﬁ

P
| Y 1R;‘;;;‘ff .. 000 (4.13)
J>i=
(83 are omitted in sums). For example, 4, = — D2 Avpen = —Ban D+ Ry, €te.

To compute the infinite part of (4.12) one must first establish 4,(4,) and then to
find the total result, which according to (4.11), is

n

b= 3 b,(4,..)C%,, (4.14)

k=0

where we introduced binomial coefficients C] obeying (n,k=1,2,..., r,s=
0,+1,...)

R Lk nfr_"ﬂ) Cn=0, Co=1, (4.15)

Cr=ckn,  Crk=0, = g crekck, (4.16)

cki=(-1)*% Ccr=(-D"k+1), cCf, Z i 28
(4.17)

Employing again (2.7)~(2.9), (4.1)~(4.3), we get

N=Cr,, p=3iCr,—-Cr4, (4.18)
o =wCl 2~ 5G4 +1CGIT, (4.19)
ay=— i, + 3G - 2C77, (4.20)
ay=%Cl,—$CiTd +1C) ¢, ay=%Cl,— 3G,

o, =wwCl 2 & =s5Cis—wCia +2CI ¢ -3Cp3. (4.21)
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If d=4 and n <3 our results for b, are in agreement with those of ref. [29]. To
restore the analogous expressions for b,(4,) (n < 1p) one should simply substitute
d—d+2in (4.18)-(4.21).

In view of duality invariance of A, we have detA, =det4,_, and b,(4,|d)=
b,(A,_,|d). However, in general Z(" = Z“~2""_ Let us make a precise statement
of this “quantum inequivalence™*

B (d)=by""*""(d), p<d,

B (d) —gw-z-~>(d){ =(-1)"(n+1-d/2)H,(d), p>d, d=even,
P P
=0, d=odd,

(4.22)
where
d =0, p<d
H(d)= ¥ (-1)'B,(4,1d){ =6,,  p=d (4.23)
k=0 =0, p>d,

for d=even and H,(d)=0 for d= odd. b, in (4.22) is the integrand of the Euler
number (A.8). The proof of (4.22) is evident from (4.14), while (4.23) is justified in
[30]. To provide understanding of these relations it is useful to consider them as
consequences of the general formulas ( p =2m)

b(4,1d=2)=5"(d), p<d,
b (841d) = X84 plapr  BN(d)=2al) L. (4.24)

p/2
= ¥ Y, i NCERHCEEY),
=0

p/2
{") = E T.i"; K —2k> p=d, (4.25)

where I, , are “R?/?™ curvature invariants and Y, , . are universal numbers (cf.
(4.18)-(4.21)). Now it is c]ear lhal n < d—2 —n equivalence in (4.22) is based on
the property C;=¥ ,, = C¢-# 2 * which holds only for d — 2 — 2k > 0. Therefore,

* Comparing different terms in &,s for d = 2,3 one is to remember that not all invariants (e.g. in b, ) arc
independent and thus these relations hold only for complete b, coefficients.
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the d = p anomaly in (4.22), (4.23) is due to the last (C7"§/}) term in (4.25). Let us
give some explicit examples of this anomaly: if d =4 we get the results of ref. [29]
(see also[32,5)): b — 0 = —26,, bP — b" = &,; for d = 6 we have: b — 0 = —3&,,
b — b = &, b — b{» = — & [these relations can be also obtained using (4.21)
(A7), (A.9)]. Next, to illustrate (4.22), (4.23) for p > d we put d=4, p=6; then
b — 0= 0, b — b® = 0, as follows, e.g., from (4.21)*.

Let us mention the following useful check of 4 and » dependence in (4.25). One
first observes that 4,, ), can be described as a system of fields in m < d dimen-
sions; {A s (d—m)A, o G A), p=1,...,m, and thus can employ the

[ Breeobn-y?
formula

(d)= L ChpBr 0 (m). (4.26)

Then the consistency of (4.25) and (4.26) follows simply from the “sum rule” in
(4.16). It is interesting also to note that using (4.26) one can compute b{"(d) given
b”‘){d) for all k <n and b{™(m) for some m <d. Our final remark is that this

“reduction” procedure works also in the calculation of the gravitational contribution
(subsect. 4.1). Indeed, gy —{g,,;(d—m)B,;3(d—m)d—m+1)g) (cf. (2.11))
and so

B (d) =B (m) + (d— m)BO (m) + 4(d — m)(d—m+ 1)5O(m). (427)

Thus, all we need to know are gravitational, vector and scalar contributions, e.g., for
m = 4. However, one can notice from (4.6)-(4.9) and (4.18)-(4.21) that (4.27) is
valid only on the gravitational mass shell R y,, = 0. The reason is that the d-dimen-
sional background gravitational gauge contains quantum vectors and scalars, being
written in terms of m-dimensional fields and therefore the expressions in different
sides of (4.27) are computed in different gauges. This is in contrast with (4.26) which
holds for any external metric.

4.3. QUANTIZATION OF THE GRAVITINO IN 4-DIMENSIONS

The gravitino lagrangian on a d-dimensional metric background is defined by
£= JMYMNKGDN Vs (4.28)
where

Dy¥n =gy — FKNM‘PK+ %YAB"’ABM(G)‘;’N

* This does not, however, imply inequivalence of non-anomalous finite parts of effective actions,
because they are governed by b,’s only under introduction of a mass, but the latter spoils even
classical equivalence.
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and the y-matrix algebra is given in appendix B. The action is invariant under
8y, =D, e up to the terms vanishing at R,y = 0. That is why if we fix a background
gauge and calculate the effective action it will be gauge independent only on shell,
i.e. R,y =0 (for instance, a,, @, a4 in (4.2) will be gauge dependent, cf. [63]). The
main idea in choosing the gauge is to obtain a simple propagator, i.e. to bring a
gravitino operator to the general form (2.2). This turns to be somewhat non-trivial
for d = 4. Indeed, let us follow the well-known d = 4 recipe [64], taking the gauge
Yar ¥ = §(x) and averaging over { with the help of the &) = y,,9,, operator

£+ Bg.b.z ';_’MDJ(\-EE’.')\"!['N' Dﬁw . E.(é}w@m (4.29)

S = Yaxn + E¥u Y= — 3 (WYY + MYk W) s 1= —2(£+1),
(4.30)

where £ (or %) is a gauge parameter. The corresponding partition function is
(assuming y,, to be Majorana)

Z =ydet D® /y/(det D)’ . (4.31)

The usual d = 4 gauge choice is 7 = 0 (§ = — 3) [64,63], because it provides diagonal-
ity of the “D?” term in the “squared” D‘® operator. This is based essentially on the
identity (B.6) showing the absence of “non-diagonal” terms for d = 4. One can easily
convince himself that non-diagonal terms, however, are unavoidable for any £ and
d=4.

The solution of this problem comes from the observation that if we substitute D®
by the operator D,y = A yx D&)A, v, where A= AT is an algebraic operator, then
we do not change the non-trivial dependence of Z on the metric (logdet A ~ 8(0)).
Namely, let us take

Ay = 8un T @Y YN XMN=ANM(]_’M= _'YM)- (4.32)

The idea is to choose constants a and £ in order to simplify D. Direct computation
shows that (cf. appendix B)

Dy = [SMKYN = 3 (bymrnrx + 4CY(M3K)N)] Dy

where b=n(1+ad)*—(Qa+a’d)d—4)+2a*(d—2)—1, c=1+a(d—2). The
condition b = ¢ = 0 has only one solution

a=———=, n=3d-4), ief=-4(d-2). (4.33)
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Hence we conclude that for all d > 2 there exists the “standard gauge” (4.33), where
the gravitino operator has its simplest form*

DMN=gMN®9
Ay pun=— (D) pn= =8unD* + 1Rguw — vx RiG%- (4.34)

As a result, we can use this operator, for example, in off-shell calculations of
divergences. It is important to note that this observation simplifies even the d =4
calculations, e.g. of the gravitino contribution in anomalies (compare with the
approaches of refs. [64,65]) and in off-shell divergences (cf. [63]).

All that is left is to use (4.34) with (2.2), (2.7)-(2.9) in order to calculate the
gravitino contribution in b,s:

= 1r=-
BP/D = — ;[bp(am) —3b,(4,1)], (4.35)

where Ai/Z =—Pr=—)24 iR and y = 1,2,4 for Dirac, Majorana and Majorana-
Weyl cases as in (3.7). The final expressions for 5*/? are [cf. (4.1)-(4.3)]

N= —5(d—3), p=—LN, p=214/2 (4.36)
a,=ﬁN+£%, a, = — N, a; = 5N, a«,= — %N,
(4.37)
0, = N, az=ﬁN+$(‘:4-;§), (4.38)
while for 5{'/? = —(1/y)b,(4, ) we get
Nmml, audnill. pegdeNeIs.  436)
¥ Y 96 vy 1440

with all other coefficients having the same structure as above. If d =4 these values
are the same as in [64,65] («,) and in [63] (a,, a;, a,; p). Finally, let us note that the
following “reduction” relation holds: b/?(d)= b/ (m)+(d — m)b/?(m) [cf.
(4.26), (4.27)] if we omit the » /vy factors.

* Thus the usual d = 4 gauge =0 appears to be distinguished by its connection with the “standard”
one.
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4.4. APPLICATIONS

Now it is possible to compute the leading L7, p <6 one-loop gravitational
infinities (i.e. b,, p < 6) for different systems of fields. Remarkable cancellations are
know to occur in d = 4 supergravities and thus it is natural to start with the maximal
possible one in d > 4, i.e. SG!, [66,2] (maximal SGs in d <11 can be obtained by a
reduction, all others by a reduction and truncation, of this theory). It contains one
gravitation g,y, one Majorana gravitino ¢,, and one antisymmetric gauge tensor
Ay Making use of (4.6)-(4.9), (4.18)-(4.21) and (4.36)-(4.38) we find for
B, =+ BP+ B/ if d=11: N=44+ 84— 128=0, p= — %, a; = mo(149 +
219 —368)=0, 0, =7, a3 =%, a4 = — 8 g,=00,= (3 +93-96)= 0, and so,
on shell (R vy =0),

by = b, = b, = b, =0. (4.40)
Thus there are no L',..., L one-loop divergences in eleven dimensional supergrav-
ity*. Using the lemma (2.14) we conclude that (4.40) as the property of d=11
theory implies the same for all lower dimensional theories which can be obtained by
reduction, i.e. for all maximal supergravities. For example, (4.40) is valid for SGS.
Then the result b, = 0 is recognized as the vanishing of anomalies in the version of
SG$ directly following from dimensional reduction (i.e. containing 63 A4, 7 4,,,, 1
Ay 31 —33]. Thus we understand the absence of anomalies (or topological counter-
terms) in SGJ as a consequence of the absence of L infinities in SG},**. The new
non-trivial result is b5(SGZ) = 0 [which holds again only for the “reduction” version
of SG2 because b{’(4) =0, 5@ (4) — bV (4) = 0 cf. subsect. 4.2]***.

Next we pass to maximal supergravities in d = 5,6,7. According to (2.6) and (4.40)
we conclude that SG [68], SG¢ and SG7 [69] are one-loop finite in the corresponding
number of dimensions and hence provide the first examples of d> 4 dimensional
one-loop finite gravitational theories (recall that pure gravity is not finite if 4> 4 and
so the finiteness of these theories is due to cancellations and not merely to the
non-existence of non-zero on-shell invariants as in the case of d = 4 SGs). Therefore,
it is this class of theories which may be considered as a natural candidate for the
Kaluza-Klein program. As for on-shell finiteness of SG}, conjectured in [5, 6], it
seems rather unprobable in view of the property bg(SG},) = 0 (which is supported by
the analogy with SYM], case and also by the non-zero result for the 4-particle
amplitude in SGJ [17, 18)).

* We recall that p, a,, @, a4 arc gauge dependent; there exists a SUpergauge where they are zero and so
(4.40) is valid off shell.
*% Lot us note that the a,(SGJ) = 0 off-shell result of ref. [63] does not contradict a,(SG},) = 0 because
the d = 4 and d = 11 gauges are different.

#*#*% T, illustrate the meaning of b, in the d =4 case Suppose We give a large mass M to all ficlds in the
theory. Then expanding the effective action in powers of 1/M we get (1/M 2)bg as a first non-trivial
term (for applications of this fact see, €.g., [19,67]). Also, the vanishing of bs is connected with the
vanishing of the 3-particle amplitude, ie. with the absence of R® terms in the expansion of the
effective action.
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One important clarification is needed concerning the above finiteness conclusion.
It is irreducible supergravity which is finite if it is finite in the gravitational sector,
Given the vanishing of gravitational infinities we are to check that the theory,
obtained by reduction from irreducible supergravity, is again an irreducible one. It
appears that this property is valid only for maximal supergravities (i.e. one can use
reduction but not truncation). In other cases irreducibility is lost because reduction
breaks the O(d) (Lorentz) symmetry, essential for irreducibility in 4 dimensions. If
we take irreducible but non-maximal SG in d > 4 and reduce it to d =4 we obtain a
d =4 SG plus some matter multiplets (for instance, SG! = SG7 + YM} multiplet
[70]), a theory known to be one-loop infinite [71]. However, if we are interested not
only in d=4 reduced theory we may question about quantum properties of
non-maximal supergravities as they are in 4 dimensions. Then a distinguished
candidate is N = 1, d = 10 supergravity [72-74], connected with the open sector of
superstring theory [1, 16]. It contains one graviton, one Majorana-Weyl gravitino,
one antisymmetric tensor 4,,y, one scalar and one Majorana-Weyl spinor. The
contributions of all these fields in b, can be computed using the formulas of sect. 4
(taking d = 10 and y = 4) with the final conclusion that (4.40) is valid also for SGio-
This result cannot be considered simply as a consequence of (4.40) for SG|,, because
to relate SG}, and SG}, we are not only to reduce but also to truncate the former™.
Eq. (4.40) is also true for all theories following from SG}, by the reduction, for
example, for d =4 SG; + 6SYMj — one [72] (b, = 0 corresponds to the vanishing of
anomalies in this theory, first noted in [33]). However, keeping in mind the previous
discussion, one should refrain from considering (4.40) as an indication of finiteness
of corresponding theories in d < 7, because being obtained from a non-maximal
d = 10 supergravity they have reducible supersymmetry and thus may be infinite in
spite of finiteness in gravitational sector (compare with the opposite belief for =4
case in [22]**. Thus (4.40) is to be considered mainly as a property of SG/|, itself,
implying the absence of L'’,..., L* divergences in this theory***. One can readily
check that (4.40) is also valid for SYM|, on the gravitational background and hence
is also true for the coupled SG}, + SYM|, theory, coinciding with the &’ — 0 limit of
type 1 superstring theory [16]. One¢ more remark utilizes the independence of b,
p <6, on the choice of representation of antisymmetric tensors in d > 6. Namely,
there exists the version of SG|, with 4,, _,, instead of 4,y [73]. Using the p <d
equivalence relation in (4.22) we conclude that all ,, p < 10, are the same in both
theories [i.e. we again have (4.40) and no anomalies in d = 4]. An analogous remark
is also true for the (probably non-existing [76]) version of SG}, with 4,, ,, . The

* Curiously, a,(SG}y) = 10 — 4 = 6, while ay (SG} ) =11 —4="7.
** One more counter-cxample to the claim of possibility to obtain a finite theory by reducing
non-maximal supergravity is provided by SG£ — SG; + 4SYM3 [75], known to be infinite [71).
*** In view of the connection with string theory one may ask about some analogous properties for d = 26
gravity; however they are apparently absent, predicting problems in the closed Bose string loop
calculations.
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moral is that duality transformations in higher dimensions do not influence the
infinities of reduced theories.

Finally, we are going to illustrate the p > d case in the quantum (in) equivalence
relation (4.22) using the example of by for SGJ. As is known [74, 32], it is possible to
establish b, =0 for all N =3,...,8 by suitable duality transformations of scalars.
Then a natural question is whether the spectrum, which gives by = 0, also provides
bg = 0. The answer is “yes” for N =4,8 but “no” for N = 5,6 (suggesting that SG;°
with the anomaly free spectrum actually cannot be constructed). Numerically we get:
@) o(N)= —3(N—3), (N)= —1 for N >3 if all spin zero particles are repre-
sented by scalars; (i) &,(4,,) — & (4)= L ag(Ayn)—0=—10(4,) —0y,(A)=%.
0,(A,\)—0=—1, and thus it is not possible to arrange the spectrum so that
a, = 0, =0 except for N =4 and 8. The result by(N =3)= 0 but bg(N =3)= 0 can
probably be understood from the helicity sum rules: by, ~ X\(— 12d(MN =0,
k < N [41,5].

5. Concluding remarks

In this paper we have considered quantum properties of theories obtained by the
simplest dimensional reduction (with internal dimensions being §' x - -- X S"). The
question left open is about properties of differently reduced theories, given those of
higher dimensional theory. The general strategy to provide an answer is to study the
relation of d-dim and reduced quantum theories separately in each particular case of
reduction. This recipe is, of course, rather unconstructive. That is why we give
examples of possible more explicit answers starting with the idea that different
reductions correspond to different choices of vacuum in d dimensions (and assuming
the knowledge of d-dim results for arbitrary backgrounds)*. Let us confine our
discussion to d= 11 supergravity. Several d= 11 internal “vacuum” spaces were
already considered in the literature: (@) N7=8'x -+ X S' [3]; (b) N7 ="flat
group” space [12]**; (¢) N7 = (SU@3) X SU2) X U(D)/K, eg. CP2x S? x S'[4]: (d)
N7 =87 [77-80]. Different reductions (neglecting all massive modes) correspond to
different versions of “N =28, d= 4” SG. Only in the first case is it known that
reduction preserves supersymmetry. If this is also true for the fourth case (d) the
resulting theory may be connected with the SO(8) gauged version of SGJ [81]. To
give an idea how one can use 4 =11 results in analysis of this theory let us present
the following heuristic argument for the zero value of its B-function, starting with
the b, = 0 property of SG!,. To realize the vacuum M* % S7 as a classical solution
for SG}, we are to assume 2 non-zero A ,nx-background [77,78). Suppose we
calculated b,(SG},) with gy = 8yn> Apnp = 0. Then in view of supersymmetry we

* It should be understood that we are speaking about quantum versions of differently reduced theories
and not about d-dim theory quantized near different vacua.
** This case was not actually studied for d = 1.
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again must have b, =0 on shell. But this implies the absence of A-term (on-shell)
renormalization in corresponding d =4 theory and thus [82] zero B-function. Our
conjecture is that the b, = 0 property of SG1, is, in fact, the origin of not only the
vanishing of anomalies in the “reduced” version of SG but also of vanishing of the
B-function in the gauged version*.

It may be instructive to present another (even less rigorous) variant of the above
argument. Naively, one could hope for the following understanding of F,2, renor-
malization in non-abelian Kaluza-Klein theories. Using the standard ansatz (2.11)
(@, being non-trivial, corresponding to the coset internal space, cf. [10]), on shell we
have b, = a,R%, \px, R*... > (R...+ FF+A)?> > R?...+ RFF+ F*+ >+ AF%. It
is the last ~ F, term that contributes in the B-function and hence a, = 0 implies
B =0. However, a word of caution is needed here: &, ~ 8 does not actually hold in
Kaluza-Klein theory. Really, as we already observed in sect. 2 for the simple
reduction, if there are non-diagonal metric components in (2.11), divergences of the
reduced theory are not exhausted by d-dim curvature invariants (i.e. there may be
additional F;2, contributions). Though this question should be studied separately for
the S7 reduction, we may speculate that in a supersymmetric theory (with gravita-
tional and gauge sectors being interrelated) the above argument is after all a correct
one.

Our final comment is about supersymmetry breaking reductions. In general, coset
reduction (c) changes the number of degrees of freedom (in contrast with soft
supersymmetry breaking by the mass terms) and so one cannot hope for some good
quantum properties (for instance, the resulting d = 4 theories will have L*, L* and at
least topological log L? divergences). At the same time it was proved [83] that
“generalized dimensional reduction” (b) produces one-loop on-shell renormalizable
d = 4 theory. To understand if it is possible to provide some simple d = 11 explana-
tion of this fact one should specially study the impact of this reduction on the
quantum theory.

One of the authors (A.T.) is grateful to Dr. R.E. Kallosh for a useful discussion
concerning her work.

Note added in proof:

Meanwhile we became aware of several additional references: ref. [85] (&, for
matter fields); ref. [86] (b, for antisymmetric tensors); ref. [87] (soft breaking of
SYM3)

* Another hint for this relation is provided by the analogy in sum rules which are connected with these
two properties (cf. [5]). Note, however, that it is still unclear, if one can construct a version of SG§
having simultaneously zero anomalies and S-function (the version of ref. [81] employs only scalars).
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Appendix A

NOTATION AND USEFUL FORMULAS

Throughout this paper we employed the euclidean metric g,y and the following
curvature conventions:

RMNPQ=3PFMNQ' s RNQ:RMNMQ' RMN_gNKRMKPQ! (A.1)

where M, N,... =1,...,d. Two other groups of indices are p,v=1,...,n; i, j=
1,2,...,d — n, n < d. Using the matrix notations

AL =A2f",  focafoca= Cidab: (A2)
and defining the gauge strength invariants
% =H(GDMFNK)2' 9, = tr( Dy Fyg DpFux ) »
9y =t Dpg Fygw )2’ $, = tr( FynFyxFxn) » (A.3)
one can prove that
g, =1%, 9, =139, + 2%, — 3R ynirtr( Fppn Fcp ) + div. (A4)

Assuming the “mass shell” condition R, = 0, one can establish analogous relations
for the curvature invariants (cf. [57,59])

I, = RMYREGRYS,,  ©L,=REJRGIRSY,
L= R R Rsr ' I4=RMNPQ'R;'{SPR£g' (A-5)
I = RMNPQC'DZRMNP@

I,=45,, L=5L-%,, Is=-1,-4L,. (A.6)

Let us also introduce

E=1-2I, (A7)
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connected with the Euler number [84] (d =2m)

== 1 1 MM, DM, M, N..N;
P T .dx (417)#"’2 fRN.Nz...RN,_.Nd £
Xe dy = — Ea/gd%x. A8
7

Namely, if d=4 and d=6
&, =31R*R*, §&,=3E. (A.9)

Appendix B

IDENTITIES FOR y MATRICES IN 4 DIMENSIONS

Let v,, be » X » (v = 214/?!) Dirac matrices. If

1
YM.._.M&=T[M,...M§1=E('YM1...TM,‘+ ) (B.1)

(the same “weighted” convention is used throughout also for symmetrization), then

YmYn = 8mn t Yuws Y Yn Y = Emn Y — 8mxYn t 8k ¥m T Yunk:

(B.2)

YMYNYKYs = 8mn8ks — 8mk8ns + Bnk8ms + Yun8ks T 8mn ks
_ ~YmkEns — 8mxYns t Yus&vk t Ems Yk Ymnkss (B.3)
Y= 2—d)vn, YWYk V=4 8ux+ (d— ) vux, (B.4)
YYnYxYs¥i = (2 — d)(8nxYs — BnsYx + 8ksTn) + (6 — d) Yugs, (B.5)

Yy YV YsYpYn = d(8nx8sp — 8ns8xr + 8np8ks)
+(d— 4)(gnxYsp + 8srYnk — Yns8kp — Yxp8ns T BksYnp
+&npYxs) +(d— 8) Ynkse (B.6)
rt=p=2042" try,=0, t(yyrn)="8mn> (B.7)

tr(Ya Y Yk Ys) = v(8mn8ks — Bmx8&ns + Enk8ums) - (B.8)
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In particular, if v+ F = Ypn Farn- then

tr(y-F) = —20FyyFyys  t1(y-F)’ =8vFynFuxFinr- (B.9)
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