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We calculate the one-loop, off-shell, effective action in O(4) gauged supergravity assuming an
(anti) de Sitter metric and constant scalar fields as a background. The problem of the large induced
A term (present already for free matter fields) is stressed and the possibility of dynamical
breakdown of local supersymmetry is pointed out. We illustrate our techniques and qualitative
conclusions on a number of examples, including ¢* theory and QED scalar potentials on a de Sitter
background and an effective action in Einstein theory with a cosmological constant. Possible
solutions of the A-term problem are also discussed.

1. Introduction

If supergravities are to be relevant for unification of interactions then very
probably it will be in their gauged form [1-4]. Leaving aside the higher-loop
renormalizability question, the first major problem of O(N) gauged supergravities
[1,2,4] is the occurrence of an enormous negative cosmological constant A, ~
—g2/k? in all known classical ground states of these theories. Thus the background
space is anti de Sitter (AdS) with the characteristic scale being of the Planck order.
Also, in analogy with the indefiniteness of the gravitational action, tree-level scalar
potentials are unbounded from below. Though classically this does not necessarily
imply an instability in view of the AdS background [5], unboundedness may lead to
some difficulty after a desired but yet imaginary supersymmetry breaking which
provides a small final cosmological constant.

The Planck order of the bare cosmological constant (A,~ m3) suggests that
quantum effects are to be important in these theories. If so one could hope for a
resolution of the above two problems by accounting for quantum corrections which
may stabilize the scalar potential and make A, for example, look like mgexp(—c/g>).
Quantum fluctuations may even be the origin of local supersymmetry breaking
(which thus will be dynamical), providing an alternative to tree-level supersymmetry
breaking mechanisms (the well-known statement of the impossibility of perturbative
supersymmetry breaking applies only for the global supersymmetry case [6]). With
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these motivations in mind we begin here the study of finite quantum corrections in
gauged supergravities*, calculating the one-loop effective potential in O(4) theory
[2].

This calculation is of interest from several points of view. In recent studies of
gravitational effects on phase transitions in the early universe [9, 10], GUT effective
potentials are investigated on a given de Sitter background and effects of back
reaction and quantum gravity are completely ignored. This, of course, seems
legitimate in a late enough stage of evolution, usually considered. At the same time,
the inclusion of quantum-gravitational fluctuations** may explain the nature of the
initial de Sitter world and show the way to avoid fine tuning of the cosmological
constant. However, the quantum Einstein-plus-GUT theory is known to be one-loop,
on-shell, infinite. An attractive feature of (gauged) extended supergravities is that
they provide models of one-loop, on-shell, renormalizable (finite) theories [12, 7, 8],
unifying gravity with matter. That is why it seems natural to begin the study of
quantized gravity effects in the context of supergravities, with the simplest non-
trivial candidate being just the O(4) gauged one (N < 3 theories have no scalars).

From the technical point of view we are interested in the effective action I' g,,,, 9]
as a functional of the background geometry and scalar fields. However, this quantity
is very difficult to find explicitly, even at one loop. That is why we make a
simplifying assumption that the effective geometry (i.e. the solution of 6I'/8g,, =0,
8I' /8¢ = 0) is (anti) de Sitter space with some cosmological constant A and that the
effective scalar fields are constant. It is the “effective potential” I'(A, ¢) which we
are going to calculate in this paper. Its extrema give us (in principle) information
about the effective cosmological constant and the possibility of dynamical supersym-
metry breaking. Actual interpretation of the results depends on the resolution of
three important issues, namely, gauge dependence, off-shell infinities and the reli-
ability of the one-loop approximation, which are discussed in subsect. 2.1.

In subsects. 2.2, 2.3, 2.4 we develop techniques for one-loop effective action
calculations on a de Sitter background for fields of all spins s <2 occurring in
supergravities. The crucial issue for the present investigation is the new result in
establishing the spectrum of the gravitino operator. Using the known spectra of all
relevant operators we then employ the {-function method [13,14] to find the finite
parts of the determinants. As a by-product, we streamline and simplify the procedure
of the calculation of the effective potentials for spins s <1 as compared to the
previous treatments (cf. [9,10,15-17]).

This procedure is illustrated in the examples of ¢* theory and scalar QED in sect.
3. Taking gravity to be classical, we, however, account for the back reaction of
quantized matter by assuming that the effective A may not coincide with its

* One-loop infinities in these theories were already studied in [7, 8].
** For an earlier attempt to include gravitational corrections in the GUT effective potential see [11].
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tree-level value A ,. An acceptable value of A can always be obtained by fine tuning
of Ay. At the same time, if A, =0, then (already in the case of free matter fields)
there is a new quantum solution, A = const/Ak?, representing an enormous cosmo-
logical constant induced by quantum fluctuations. This finite Planck order A term is
present even for supersymmetric theories (in which only infinite contributions to A
have better chances to cancel). To trust one-loop extrema for ¢ one is to consider the
analog of the Coleman-Weinberg mechanism [18] in dS space. That is why we
present the expression for the scalar QED effective potential, calculated in a rather
general class of covariant gauges, generalizing previous results [9,10]. We stress that
if the £R¢? term is included in the tree lagrangian, the assumption of A ~ g* [18]
alone is not sufficient to make the one-loop approximation gauge-independent and
thus reliable. If A, =0 then again a Planck-order A term is generated implying the
necessity of including quantum-gravitational effects.

These are dealt with in sect. 4 in the example of Einstein gravity. Here we
compute the one-loop effective action I'(A, Ay) as a function of the a priori
arbitrary parameter A of effective dS geometry and of the tree-level cosmological
constant A ,. This calculation is a remarkable example of an exactly solvable problem
of establishing the finite part of an off-shell quantum-gravitational effective action.
It is worth noting that the de Sitter background plays, in quantum gravity, the role
analogous to that of a constant field strength background in gauge theories (see e.g.
[19]) and thus may be useful for higher-loop studies. In view of the off-shell
(A #A,) gauge dependence of I' the question still remains about the physical
significance of the effective A. To extract information stable against the choice of a
particular gauge, we work out the expressions for I' in a number of classes of gauges,
and show, in particular, that gauges exist in which I' is free from A -dependent
off-shell infinities. The analysis of the effective equation for A shows that if
Ao =Ayk? <1 the one-loop correction is small and A =A,+ O(4). If A;=1 one
cannot trust the one-loop approximation and the summation of higher-loop series is
needed. A special case is A;=0. Here again (as in the case of matter fields) an
enormous quantum A term is generated probably implying an instability of flat
space against the creation of a de Sitter universe.

Finally, we are prepared for the study of the effective potential I'(A, ¢, g?/k?) in
O(4) supergravity (sect. 5). Putting first A and ¢ equal to their tree-level values we
find a gauge-independent one-loop correction to the classical (AdS) vacuum action
which appears to be positive for small g2. At the same time this gives a simple proof
of the semiclassical stability of the AdS vacuum (cf. [5}). Then we turn to off-shell
effective equations, starting with the supersymmetry preserving ¢ = 0 solution. The
corresponding Planck-order value of A = const/k* + O(g?) implies the importance
of higher-loop corrections. We conclude that the problem of the induced cosmologi-
cal constant does not find a solution (at one loop) in O(/N) gauged supergravities.
The set of two effective equations has also a supersymmetry breaking solution:
¢* ~ 1 —const/Ak?*+ O(g?), A ~ const/k*+ O(g?). Though the ¢ # 0 result can-
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not be rigorously proved in the one-loop approximation, we still consider it as an
indication of the possibility of dynamical breaking of local supersymmetry.

In concluding sect. 6. we comment on the probable existence of a new class of
gauged supergravities (analogous to the SU, X SU, model of ref. [3]) with a zero
“conformal anomaly” coefficient, in which an induced A term may not appear. We
also speculate on the possible resolution of the A-term problem after summation of
higher-loop contributions.

In the appendix we draw attention to the fact that the off-shell effective action can
be calculated without fixing any gauge. Though the thus obtained I" does not have a
correct on-shell limit it may be advantageous to use it (instead of the standard
gauge-dependent effective action) in attempts to find the gauge-independent ap-
proximation, trustworthy at one loop.

2. General strategy and basic techniques

2.1. EFFECTIVE ACTION AND EFFECTIVE EXTREMA

In this paper we will be concerned with the one-loop approximation to the
off-shell euclidean effective action, defined in the standard way (see, e.g. [20-22]):

GXP(—%F[M)=fdnexp{*%(1[¢+n]—%ﬂ)}, (2.1)
namely,
o] =1[¢]+ I [¢]+O(A?), I‘1=-1jhlndet1§%, (2.2)

(we do not indicate explicitly the gauge fixing and ghost terms). If ¢, is a stable
classical solution, the perturbative solution ¢ of the effective equation

8T
E_O’ (2.3)
will be
- 1 (8T,/8¢),
= ¢y + hé, + O(h?), e il 24
¢' ¢U 4)1 ( ) ¢1 h (621/6¢2)¢0 ( )
Then

F[q;]=I[¢U]+Fl[¢’{]]+0(h2)! (2-5)
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and hence the one-loop correction ¢, is apparently uninteresting (it becomes relevant
only at two loops). The problem thus reduces to the well-known semiclassical
expansion around ¢, (taking account of zero modes, etc.). One can in principle try to
solve 6(1 + I')/8¢ = 0 non-perturbatively (“non-analytically” in /) but the result-
ing solution ¢ will be sensible only if it will belong to a domain of applicability of
the one-loop approximation, i.e. if higher loops will give only small corrections to it.
This is possible, for example, when  and I'} happen to be of the same order [18].

Additional complications arise when gauge dependence of I’ (and thus the
solutions of (2.3)) is taken into consideration. It is I', computed on a solution of
(2.3), that is gauge independent. For the perturbative solution ¢ this is true to each
order in 4 (e.g. the on-shell one-loop correction I'y[¢,] in (2.5) is gauge independent).
As for the non-perturbative solution, one is to rely on the existence of some
(loop-wise) gauge-independent approximation for I', providing gauge independence
of the effective solution and thus of all physical quantities (like ratios of masses and
critical parameters). The validity of this approximation again depends on the
smallness of higher-loop corrections. For example, in scalar QED such an approxi-
mation is provided by the condition A ~ g*[18,23].

Having recalled these general facts let us specialize to the case of interest when I is
the gravity or supergravity action. Leaving aside (for a moment) the question of the
reliability of the one-loop approximation (which at present is the only practically
available one) we confront the problem of off-shell non-renormalizability of I'. As a
result, a naive solution of (2.3) will be gauge and cut-off (L — o) dependent. The
most satisfactory way around this difficulty would be to find a gauge-independent
approximation, restoring the off-shell renormalizability (or finiteness) property
known to hold on the classical “mass shell.” It is not clear whether such an
approximation actually exists (even supposing a higher-loop on-shell renormalizabil-
ity of supergravities). In this situation we shall simply assume that (non-perturba-
tive) solutions of one-loop effective equations do have some gauge invariant meaning
and a priori may reproduce some qualitative features of true effective extrema. To
cope with the cut-off and gauge dependence problem the following heuristic recipes
may be operative: (i) one may choose an “R gauge,” in which I" appears to be
renormalizable, employing the following statement: if a (super) gauge theory is
on-shell renormalizable (or finite) then there exists a gauge where its effective action is
off-shell renormalizable (or finite)*; the solution in this distinguished gauge may be
“near” to that in a gauge-independent approximation; (ii) working in a general as
possible class of gauges one can define the one-loop T to be finite, e.g. using the
{-function prescription [13, 14]. The residual normalization point (and gauge param-
eters) dependence of I" (and ¢) is then supposed to be irrelevant for qualitative
physical results identified as being stable under variations of gauge parameters. The

* R gauges for pure gravity were found in [24]; when the bare A term is included the only
renormalizations needed are of the topological, gravitational and cosmological coupling constants [25]
(sce also sect. 4).
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point we want to stress here is the non-triviality of any off-shell problem (for
example, that of dynamical (super) symmetry breaking) in gauge theories renormal-
izable only on shell. A possible resolution of this difficulty could be found in the way
of changing the definition of I" (2.1) for some “distinguished,” “gauge independent”
one like that of ref. [22] or that of the appendix (where I' is formally computed
without any gauge fixing). However, the definition of ref. [22] does not provide
renormalizable results [26] and thus will not be considered below. We shall mainly
use the above recipe (ii), illustrating also (i) in sect. 4.
Now let us write down several general formulas for the one-loop effective action®

I, =Y ¢;Indet( A" /u?),

}Indet(A/p?) = — §[$BoL* + B,L* + B,(In(L?/p?) - Yo)] + I;(4), (2.6)
I,(4) =1B4n(p*/p*) — 38(0). (2.7)

Eq. (2.6) is the result in the proper-time regularization (with the cut-off e = (L/p) 2
— 0) while eq. (2.7) is its analog in the {-function prescription [13, 14]. The operators
A are defined on differentially unconstrained fields and have the general form
—D? + X. Therefore the B, = (1/16m%) [b,/g d*x coefficients have the well-known
structure [27, 28]

bo=trt, by=tr(}R-X), b=tr(3X*+ ---), (2.8)

and can be used to compute divergences for an arbitrary background (for such an
off-shell computation in gauged supergravities see ref. [8]). The parameter [p]=cm™!
is the scale of the eigenvalues of 4,

Ap,=N®,, A, =0A,, (2.9)
while the (generalized) { function is defined by

((p)=2d,/A, {'=d§/dp, (2.10)

for Re p > 2 and by analytic continuation in all other points (4, is the multiplicity of
A,)- We shall assume that the sum in (2.10) goes over all modes of 4 including
negative and zero ones (zero modes will contribute an infinite constant, which should
be properly extracted, while the negative eigenvalues will make { complex, indicating
an instability). This unconventional definition is convenient because it gives {(0) = B,

* We shall use the euclidean notation and often put = 1; note that y,=0.577...; our curvature

. A = A FEs A° _ Lae
conventions are R M,—R R a1, g

pr? ripp
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for a differentially unconstrained operator A. If 4 is split into 4, ® --- ® 4, by
some differential change of variables, then B,(4) = L,{;(0) — (number of zero modes
of the jacobian), see subsect. 2.4. Note that it is'B, that governs the scale dependence
of I.

2.2. RELEVANT OPERATORS AND THEIR SPECTRA

In this paper we compute effective actions assuming the background geometry to
be euclidean de Sitter space (S*)

R}\pwp=%A(ghvgpp_g.\pgpv)* Ry,vagp.y?

[dixyg=24n?/82, =14, (2.11)

If background values of scalars are constant then all relevant operators can be
written as —%?+ X with X being some constant matrix. It is possible to find the
spectra of all such operators on an S* background and thus to compute the finite
¢(0) part of I' in (2.7). In practice, we need first to factorize the operators A”) into
products of “constrained” A, ones, corresponding to irreducible representations of
SO(5). It is the spectra of A, that can be explicitly found. For spins s =1 and 2 this
procedure was already described in [29] (see also [30]). Our treatment of the s =3
case will follow the same pattern.

Introducing decompositions of vector, tensor and gravitino fields (omitting for
simplicity harmonic forms)

A=Al +De, DAL=0, (2.12)
h,=h,+ig.h, h,2,~0, (2.13)
by = s+ Dt + D+ DD o~ g, D, (2.14)
Y=g +tivny, 19,=0,

=0t +(D,-1D)E, D=0, D=y9,, (2.15)

we define the “constrained” operators 4 (X)

Ap=(-D"+X)9¢,

61,.,14, —( D2 +g,,X) 4}, (2.16)
= (D2 + SL X ), (2.17)
41/2¢=(—6D2+A+X)4«, (2.18)

By = (— DL +3Ag,, + 8, X )9t . (2.19)
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Explicit A terms in (2.18), (2.19) are convenient for correspondence with “squared”
operators, e.g. det4, , = [det(D + VX))2. “Squaring” A+ VX g,, defined on ¢, we
in general get

(43/2)¢| = —@:' + %Rgpv - %Rabpy-yayh + Xg;.w' (2'20)
Being restricted on ¢*, (2.20) reduces for $* (2.11) to (2.19). One can straightfor-

wardly prove the following relations (which are true up to a “change of variables
zero modes” contribution to be discussed in subsect, 2.4);

det(—D*+ X) 4, =det A (X)det 4,(X—A), (2.21)
det(—D2+ X)p, =det4,(X)det A, (X —§A)detA,( X —5A), (2.22)

det(ﬁi} + \/AY) ¥, 2

det(D+ VX) i |’ = det A, ,(X) =
[e( \/_)np,l € 3/2( ) dct(—f’D2+X)¢

(2.23)

Recalling that the irreducible representations of SO(5) are labelled by two positive
integers (n, m), n > m, with the dimension of the representation and the value of the
second Casimir operator being [31,32]:

d(n,m)=3:2m+1)(n—m+1)(n+m+2)(2n+3),
C=4L,)  =n(n+3)+m(m+1), (2.24)

let us present the information about the spectra of the operators 4 ;:
(a) s = 0; (n,0) representation of SO(5),

AN,=n*+3n+X, d,=i(n+1D)(n+2)2n+3), n=0,1,..., (2.25)
where we used the notation A, = $AX,,, X = A X (the minimal value of » is that for
which d, > 0); '

(6) s=1; (nl) A;,

Ay=n*+3n—-1+X, d,=in(n+3)(2n+3), n=1.2,.... (2.26)
(c) s=2; (n,2) h,
A, =n*+3n-2+X, d,=3(n-1)(n+4)2n+3), n=2,... {227

(d) s=3; (n+31,3), both representations have the same spectra. Thus the
(n— %, 1) contribution

A, =(n+1)+X, =in(n+1)(n+2), n=1..,  (2.28)
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is to be doubled.
(e) s=3%;(n+ 1,3); contributions of both signs are again the same; e.g. for (n — 3,
3) we have

A =(+1)+X, d,=fn-1D(n+1)(n+3), n=2,... (229)

Let us briefly comment on the derivation of (2.29). The first problem is to identify
the parts of ¥, with irreps of SO(5). Slarting with a 5-vector spinor ¥ ,, we split it
according to (1,0) X (3,3)=(}, %) + (3, 1), e.g., on ¥, and y. Multiplying by (n,0),
carncd by the scalar spherical functions, we get: (3, 2) X(n, 0) =X {(nt 1,3+ (n

,H)+(n+ 3,3)}, where the three terms correspond to q’n , § and ¢ in (2.15).
cht, we are to connect the known value of C, (2.24) with the eigenvalue (A)"/% of
GD , acting on @ : C; =X+ 3. This relation follows either from an exphcxt 4+1
ana1y51s of a 5- dlmensmnal gravitino operator or from observation that tpﬂ can be
viewed as a spinor with the additional (1,0) internal index, so that C; =A+1X 3 — 3
(see, e.g. [33]).

2.3. EXPRESSIONS FOR THE { FUNCTIONS

Now we are ready for the computation of the finite part of the effective action
(2.6). Introducing the function

oo 2_
F(p,k,a,b)= ¥ "(';—“3, Rep>2, (2.30)
v=tir1 (¥ —0)

(where k is an integer and Av = 1) defined for all p by analytic continuation, we
notice that the { functions for the operators 4; (2.16)-(2.19) with the spectra
(2.25)-(2.29) can be written as*

¢ (p)=4@s+ 1) F(p.2s+1,(s+ 1)), (2.31)
where

b0=3—f, 512141_4?: bzzl}"f,
b= -X, b,=-X. (2.32)
Starting with (2.30) it is easy to prove that (cf. [33, 30)**

F(p=0)=13b(b—2a)+ 4a(3k>+ 6k +2) — &k (k+2)"+ 1. (2.33)

* | et us stress once more that all sums start with the minimal value of » for which d,,> 0 and thus
possible negative and zero modes are included.
** Note a misprint in eq. (10) of Chadha et al. [33].
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In an analogous way, we found
F(p=1)=4b- 4 — tk(k+2)~ 4(b-a)¥(5 +1£5),

Y(x+y)s¢y(x+y)+y(x—y), (2.34)
where ¢ is a logarithmic derivative of Euler’s I" function. Observing that

d pr(p=0)=F(p— F SE
P (p=0)=F(p=1), Fr=ap (2.35)

we can find F’( p = 0) (and thus all the {’(0)) integrating (2.35)*

F’(p=0)=%b2—T‘ib—;‘;bk(k+2)—%fbdz(z—a)><‘1f(%k+li\/.?)+C,
0

(2.36)
C=(F’)pm=p=0=284(—3,4k+1) = 2a{f(—1,3k+1). (2.37)

Eq. (2.37) follows from (2.30) and the definition of the generalized Riemann {
function: {g(p,q)=L7.,n 7, Rep>1, {g = d{r/dp. In what follows we shall use
the following notation

F(b)=F(1,25+1,(s+1).5,),
F/(b)=F/(0,25+1,(s+4)’,b,). (2.38)

To establish the form of the effective equations we actually need to know only F;
(2.34) because all the field dependence of {’(0) in (2.7) is contained in b, (2.32). That
is why we illustrate the derivation of (2.34) in some detail. If one understands the
infinite sum (2.30) for Re p < 2 being regulated by a cut-off, » < N, then formally
Fiy(p=0)= —=ZI_ »(»* - a)In(»* — b) and

N
%F(;V)(P:O):ﬂm(xf’:l): ;"("2_9)/("2_5’): t=3k+1
Using the formula [34]
m—1
Y, (n+C) ' =y(m+C)-y(C), (2.39)
n=0

* This trick is analogous to that used in [15,16] to obtain the s = 0 and 5 = 1 effective actions in terms
of integrals over the mass parameter.
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and noting that y(N+ C) — In(N+ C)+O(1/N?), we get
(N—= o)
Fovy(p=1)=3N(N=1)=}i(1-1)
+3(b—a)[2ln N=¥(1+Vb)] +O(1/N). (2.40)

By noting that sN(N - 1)=Z_'n— {z(—1,0)= — &, etc., we find correspon-
dence with the result (2.34) of analytic continuation.

2.4. CHANGES OF VARIABLES AND ZERO MODES

To prove (2.21)-(2.23) one is to change the variables according to (2.12)—(2.15).
The resulting jacobians are given by

dd4,—dA; de[det /]2, J,=4,(0),
dh,, - dht,dét do[det L1V, L=4,(-A)®4,(-4A)®4,(0),

dg, > de;* d;’[detj3/2] y  Dyp=diu(—34). (2.41)

These J; factors are cancelled by analogous ones arising after explicit substitution of
(2.12)-(2.15) in A,(—D*+ X)A,,... and subsequent integration over A4;,¢,....
However, this cancellation is true only for non-zere modes: the important point is
that the decomposition like (2.12)—(2.15) introduces additional zero modes not present
for an initial unconstrained operator (for example, in A4,(—%9°+ X YA, = A}
A(X)A}L + ¢Ag(X — A)Ay(0)$ the ¢ part has a zero mode ¢ = const, while: —6)2
+ A does not have a non-trivial zero mode corresponding to it). Thus in general

detA= (det.}')_l(ndetdsdeti!), (2.42)
5

where the prime means that zero modes are to be omitted. As a result,

B(8)= T4.0)- (), (2.43)

with 9 being the number of zero modes of the jacobian. For example, for (2.41) we
get (using (2.25)-(2.28))*

N(H) =1, R(H)=10+5+1=16, IN(J,)=4+4=8**. (2.44)

* These numbers are related to those of ha.rmon'ic forms, Killing tensors and spinors on s4,
** For example, By(%, )= 1By(D)) = 154,04
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A useful check of the consistency of the previous discussion is to compute X _{ (0)
for (2.21)—(2.23) using (2.31)-(2.33) and compare the right-hand side of (2.43) with
B, calculated for unconstrained operators with the help of the standard algorithm
(2.8). In view of the fact that it is the A, representation which is well-suited for the
calculation of finite parts, we shall write (for notational simplicity) effective actions
only in terms of £ Indet 4;, keeping, however, in mind that B, in (2.7) must be
calculated using “unconstrained” A representations or equivalently, employing
(2.43).

Finally, we want to note that the important difference between B, and X { (0) was
first pointed out in [30]. However, the true origin of this difference, namely,
I (J,)# 0 in (2.43), was not clearly revealed there, because the authors used the
standard definition of { functions when only positive modes are included in the sum.
As a consequence, B, # {(0) already for a scalar (or any unconstrained) operator, if
it has zero or negative modes, which makes comparison with B, rather indirect. In
view of the above discussion we also do not completely agree with the criticism of
the constrained operator representation of the effective action, expressed in [30].

3. Examples of the calculation of effective potentials in de Sitter space

3.1. SELF-INTERACTING SCALAR FIELD THEORY

To illustrate the general strategy of establishing effective equations we are going to
consider here two simple examples, interesting in their own right. The first is
provided by

B=—%(R—2A0)+%(3”¢)2+%¢.“+%£R¢2, K2=167G. (3.)

Supposing gravity to be classical we get the following one-loop effective action for
gravitational de Sitter space (2.11) and constant scalar backgrounds

L =%mdet£f), X=1A¢? +48A. (3.2)
1)

A and ¢ are to be determined from the effective equations. Such procedure is based
on the assumption that the full effective gravitational equations 6I'/dg,, = 0 admit a
de Sitter solution and so one has simply to find a correct value of A. This
assumption is known to be true for the A=0 and £={ case when I can be
explicitly evaluated for a conformally flat metric, integrating the known expression
for the conformal anomaly (see, e.g. [35,36]). As for the more general “ massive™ case
there are also good reasons to hope for a de Sitter-like solution (cf. [36,37]). In any

case, the above assumption provides us with a simple possibility to account for the
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back reaction of quantized matter in background gravity (more exact treatment,
including the representation of (3.2) in terms of an eigenvalue sum for 4, on an
arbitrary conformally flat background, is rather cumbersome and is difficult to carry
out for s > 0 spin fields).

Using the results of the previous paragraph (2.6)-(2.8), (2.31), (2.36) we get

By=3y*,  By=y(1-6£)—3Axy,
B, =§,(0)=§+12¢% — 4£+ &Nx> + 3(6¢ — 1) Ax,
y=1/A, x=¢*/A. (3.3)

All infinities can be absorbed by renormalization; working in the {-function pre-
scription (2.7) we have

) 2
1 =I+F1=24w2[—F(2y—Auy2)+21—4?\x2+2£x]

1
+1B,In— —%{gbg—%bn—gf"“dz(z—3)\P(%J_r\/z_)}+oonst,
3ucy 0
(3.4)

where by = § — 12§ — 3Ax. Eq. (3.4) is in clear correspondence with the results of
refs. [15, 16] for a free massive scalar field, obtained by essentially more complicated
methods. The effective equations

ar/aA=(3F Zg)( 1)=. or _ 2¢ T

o vuR)\ e %" Ax "
are equivalent to dI'/dx=dI'/dy=0 if ¢ #0. If $ =0 we get only one equation
for A

9672
F(Aﬂ —A)=3$rB(x=0)=0, B (x=0)=F+1282-4£. (3.5
If Ay#0 and A,k <1 we get a trustworthy perturbative solution: A = Ay +
O(hAk?). If Agk?~1 the quantum correction in (3.5) has the same order as the
classical term and one cannot neglect quantum gravity. Essentially the “quantum”
solution appears also if A,=0; for £= ¢ we find

A =1728072/hk?. (3.6)

The existence of such a solution was first noted in [13] (see also [36]). Though the
result (3.6) lies beyond the range of applicability of the approximation, neglecting
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quantum-gravitational effects, its analog will be shown to exist also when gravity is
quantized (sects. 4, 5). Formally, (one-loop) contributions of free fields of any spin
are all of the same order and thus a solution with Ak? of the order of some natural
number is always supposed to exist. As a consequence, an enormous cosmological
constant is induced by quantum corrections in all reasonable theories, including
supersymmetric ones. Global supersymmetry helps to cancel quartic (B,) and
quadratic ( B,) divergences [38], but not finite contributions to A governed by B, (cf.
(3.5)). For example, B, + 0 even in N =4 super-Yang-Mills theory. It is only in
theories with antisymmetric tensors with a zero (curved space) conformal anomaly
(B, =0) [39], where the situation might be improved (see also sects. 5, 6). If ¢ # 0 we
have

ar _ 96m* h
0= 3_}’ - ?(A'Oy s 1) = _j}-B‘“ (37)
ar
Omig = 2472(2¢ + HAx)
+3hA[(68— 1+ 3Ax)In 12 + 2 — 6§ — 3Ax
3’y

+(66— 1+ 3Ax)¥(3 £13 - 12¢ - x|, (3.8)

(the latter easily follows from (2.34), (2.35)). If £ < 0 then quantum effects give small
corrections to the classical solution A =A,, x = —24\ & If £=0 and A — 0 then
(3.8) reduces to the Coleman-Weinberg-type equation with the non-perturbative
solution lying away from the domain of applicability of the one-loop approximation
[18]. If £ > 0 no perturbative solution exists while the non-perturbative one is again
untrustworthy. Let us formally ignore this difficulty in order to illustrate an
interesting mechanism of natural suppression of the A term, which may be operative
in a more realistic context. Namely, let us take £=¢ and assume that A <1,
o = Ax < 1. Then (3.8) reduces to

A = 3p%exp(—12872/3Nx), (3.9)

providing a natural hierarchy between the scale of A and the Planck (or GUT)
scale™. Still this is not a final solution of the A-term problem, because to satisfy (3.7)
we need fine tuning of A .

For the application of the above theory to the early Universe, one is to take
p~my and to fine tune A, so that we get A =0 for the ¢ + 0 solution. Then

* The known experimental bound |A&?| < 10 ~'?? suggests such an exp(—c/g?*) mechanism.
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quantum corrections in the dI'/dA = 0 equation (i.e. the back reaction of quantized
matter) can be neglected and one simply has to study the minima of the effective
potential for a given A (cf. [9,10]). The only problem is whether the one-loop
approximation is believable. This problem can in principle be solved as in flat space
[18] by introducing gauge fields.

3.2. SCALAR ELECTRODYNAMICS

Our next example is the following theory (a = 1,2)
["l——i R-2A +—1—F2+‘(57 "2+-}L A )2 LER (9% 3.10
= k:[ U) 4g2 wr 2 Lp‘p) 41(¢¢a +T§ (¢¢q) ( X )

Using the general class of gauges (¢ is the background and ¢ is the quantum scalar
fields)

1 2
£y = 5 (0u A+ BEEs$:s) (3.11)

it is straightforward to find the corresponding one-loop effective action on the
de Sitter background (see (2.16) for our notation)

I'=1+34{IndetA,(A +g%") +Indet A,(3A¢? + 4A¢)
+Indet B+ Indet E — 2Indet A,(Bg%?)} . (3.12)
B=—D2+ (A + Ba~'g?)¢? + 4AE,
E=—D%+agl? + aB 'g%?(1 — B/a)’ D2, (3.13)
Here we made use of the decomposition (2.12) and thus are to take into account

(2.43), (2.44). To illustrate the gauge dependence of I' it is sufficient to put a = B.
Then

B,=Y6(0) - 1= —% + 248 - 8¢ + }x?(9g* + $X* + 2alg?)

+x(3g% + 6atg>+4(£—HA), (3.14)

where x = ¢*/A as in (3.3). Instead of writing down the explicit expression for the
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effective potential (following from (2.31), (2.32), (2.36))* we directly pass to the
effective equations for ¢ # 0. They easily follow from (2.34), (2.35)

ar _ 96x? 1

5}‘—_?(‘40};_1)_#—2}’3‘1_0‘ (315)
A shet(at 4 k) e L Loap, L

a5 = 247 (2§+1:?\x)+2 I ]n3,u2y

—%{—9g’[—%—%gZX+(%gZX+ )¥(3+ W]]
3N~ B+ 68+ IAx —(3Ax+ 66— §) ¥(3+ Fhx + 12¢ )]

+(4A + Bagz)[—%+6£+%hx +3ag?x — (JAx + Jag’x + 66— 1)

X 'F(%:t VEAx + 3ag?ix + 125)]

_3agz[—%+§agzx—(§agZX‘ Jﬁ)‘f’(%i 1;'30!32XH} =0, (3.16)

To obtain a reasonable one-loop solution for ¢ which survives in higher orders in flat
space one is to take A ~ g* [18]. Such an assumption makes it possible to omit all
gauge-dependent contributions in I" and thus to prove the gauge independence of the
relevant physical quantities. Here we want to stress, that in curved space this
condition alone is not sufficient for a gauge-independent approximation if £ # 0. In
fact, a-dependent terms are present in (3.15), (3.16) even for A ~ g*. This implies
that an additional assumption like £~ O(g?) is needed in order to make the
Coleman-Weinberg mechanism work in curved space**. This fact seems not to be
well understood in recent studies of the early universe (cf. [9, 10]).

To obtain an appropriate solution for A on a GUT scale fine tuning of A is again
needed, because (3.15) naturally predicts the A of Planck order (cf. (3.6)). On smaller
scales the back reaction of quantized matter (already accounted for in (3.15), (3.16))
and quantum-gravitational corrections are to be taken into consideration.

4. Einstein gravity with the cosmological constant

As a next example on the way to N = 4 supergravity we shall calculate here the
one-loop effective action for quantized gravity on a de Sitter background, assuming
that S* is the solution of full effective equations. To give an idea of our program

* Note that our approach is much simpler than that of Shore [9], who used the a =1, § = 0 gauge.
** Note that { = § is thus excluded.
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consider the classical action on the S* background

fd“xJ_(R 244)= (yz—?-y), y=Ay/A. (41)

Ak2

Varying y (or A) we get the classical solution y =1 (or A = A,). In the same manner
' /0A =0 will give the value of the effective parameter A. Prior to any physical
interpretation of A one is to solve problems of gauge dependence, off-shell infinities
and the reliability of the one-loop approximation®. Still we consider the above
program worth following, because there seems to be practically no off-shell (i.e.
non-semiclassical) calculations of the finite part of the gravitational effective action
(see, however, [40]) while the de Sitter background provides (a physically interesting)
exactly solvable example. Also, it illustrates important theoretical issues concerning
the gauge dependence of off-shell problems.

Let us start with the bilinear part of the Einstein lagrangian on S* background
([29, 30]) using the decomposition (2.13), (2.14)

£,= [ R, (—D%+$A-24,)k,,

2k?

(178, (34 - 240) R +2(A - Ag)E- A, (- A) &

—&[08,(0)A,(—4A)A(44,—4A) 0

+204,(0)Ao(—$A)h+ hAg(—44,)H] }. (4.2)

The simplicity of the de Sitter background gives as a possibility to calculate I"
explicitly for a wide class of gauges; this is important in attempting to extract
gauge-independent information. Let us start with the standard covariant background
gauges

B_
& 22

L(D,k,— 589,h), (4.3)

(T

(y=B=1 corresponds to the de Donder gauge). Changing the variables according

* In fact, even the assumption that S* can be an effective geometry may be criticized in view of the
conformal non-invariance of Einstein theory.
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to (2.41) and integrating exp(— I, — Ig) over h*, ' and o and ghosts we finally get
Z(y,B)=e"N1=detA(—A)[detA,(A(2y 1 —1) -2y “1A,)] iz
X [det 4,(54 —24,)] " det A4(44,(B-3) ")
X [det(D*+(aA + bA,) D2+ cAd + dAA,)] T2, (4.4)

(B2+3-28-2y71), b=—4—(—ﬁ‘2+3+2‘y‘1),

(B-3)°

gt
(B-3)
16
c=—,
Y(B—3)

It is straightforward to calculate the infinite part of I' either by converting all
operators into unconstrained ones (using (2.21), (2.22) and employing the B,
algorithm) or computing X.§,(0)— 9, 9N =16 — 2 =14 according to (2.43), (2.44)
(ghosts are also decomposed in (4.4)). On mass shell A = A, (4.4) reduces to the
gauge-independent expression (first found in [29]; see also [30, 25])

d=c(y—1). (4.5)

1,/2

detA,(—A) (4.6)

det4,(%A)

Zo'n shell — [

(we omit zero-mode contributions, recalling subsect 2.4). It might be helpful to
rewrite (44) explicitly for some simple choices of 8 and y*

[ deta(—A) ] detay(—24)
Z(]’l)_z"_dmai(A—on)] detAg(—24,)° ¥
[ detay(0) 172
z(m,oo)-zﬂhdetdo(mo_m)] 5 (4.8)
[ detA,(-24) ]2
)=2| —2—~ :
Hses 1) °_detdo(“2A0)] ‘ (47)
7 =|_detdi(=4) |7 (4.10)
07 | deta,(3A-24,) '

Now let us consider another class of gauges more suited for the calculation of the

*The “Landau” gauge y= o0, #=1 is distinguished by the fact that, as was noted in [26], the
corresponding I' coincides (for the S* background) with the off-shell effective action defined
according to Vilkovisky [22].
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finite part of I'. Observing that the gauge transformation 8k, = %D, ¢, + %, ¢, implies
P T = s — 2602 _— .
8hy,=0,08¢, =¢, 80=2¢ Sh= 20D%, g, =¢; + "‘I)“s, we can choose the following
gauge
- « yu—— R '
h=0, §&l=a;(x). (4.11)

Averaging over a;, with the help of the operator H = (1/2r)4,( pA + qAy)4,(—A)
( p, g, r are gauge parameters), i.e. using the following gauge breaking term

B

£, = %s*altpmm)al(—n)sa (4.12)

we find (after proper inclusion of ghost and H determinants and the jacobian in
(2.41)*

detA,(-A) |2 det A,( pA + gA,) 172
o)

Z(p,q,r)= [dta $A—24 detA,((p+r)A+(q—r)A,)

x[ det 44(0) ]m, 413)

detA,(4A,—47)

which again coincides with (4.6) on shell. The simplest gauge is r = 0, where (4.13) is
equivalent to (4.8). To study the effective action (2.6), (2.7) for (4.13) we need first to
know the B, coefficients; a long calculation gives

3

Bo=Fs B, =

2A2 ——(pA +p47,), (4.14)

pi==3r=, p=3r+s,
B,=).5(0)-14=y, + v,y + 1307,
i

— ] 1724
n=3r+dpr—dr+ 13,

Y, = —3r’+ 3qr—$pr+ 3r—178,
Ys=2r2=3gr+27, y=Ay/A, (4.15)

(for comparison, in the de Donder gauge p, = — %, p,=20, v, =%, v,= —52,
¥; =30 [25]). On shell y =1 and B, = — 3% in agreement with [30]. Even neglecting
power divergences, we confront the problem of off-shell non-renormalizability

* 1t should be noted that the well-known indefiniteness of the Einstein action [41) manifests itself in the
h = 0 gauge in the necessity of rotating the contour of integration over o (0 — ia) (cf. (4.2)).
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(compare (4.1) and (4.15)). It is thus interesting to note that there exists a one-
parameter class of gauges (r # 0)

r’+12 —3r2+2r—68
= s P="e= = (4.16)
in which the theory is free from y-dependent logarithmic infinities (i.e. y, =vy; =0).
The constant B,In L? infinity (B, = — 3%) can be absorbed in renormalization of
the topological coupling constant, if we add
L=ax, x= L f R*R*/g dx (4.17)
32q?

(x =2 for S*). Starting with (4.13) and using the {-function prescription (2.7), (2.31),
(2.32), (2.38) we get

r=I+ JILB41n3A° - {5F/(-% +6y)

uy
—3F/(%)+3F/(%-3(p+r)-3(q-r)y)
—3F/(% -3p-3qy) +F(T —12y) - F{(3)} - (4.18)

On shell (y = 1) it reduces to (cf. (4.1), (4.6))

§ — 46y +3h(-%)n Ao const, ApmAk? (4.19)
on shell A{) 2 45 3}52}(2 * g g o

giving us the one-loop corrected de Sitter vacuum action (a complete semiclassical
analysis should include treatment of zero modes etc., cf. [29]). We remark that (4.19)
is real because the operators in (4.6) have no negative modes according to (2.26),
(2.27)*. Raising an analogous question for (4.13) we get the following conditions for
the absence of negative modes (assuming, e.g. r=0): 1<y<$. Hence any ex-
tremum of (4.18) lying out of this interval will be complex. Varying (4.18) with
respect to y we get the effective equation for A (supposing A, # 0)

9?(22@- 1) -3 {30F(-¥+6y)=9(g—r)F(¥-3(p+r)=3(q—r)y)

+9gF, (4 — 3p — 3qy) - 12F,(¥ - 12y)}

A 1
+%(]’2+2Y3.V)lnﬁ & z—yB4=0- (4.20)

* This is a simple proof of the semiclassical stability of the de Sitter background (see also [42] for the
general classical proof of stability).
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In the “R gauges” (4.16) p-dependent terms vanish and we get, using (2.34)

% (y-1)- B+A(y) 0, B=-%, (4.21)

A(y)5135+%r+¥(r2+pr—qr)
—y[81+ Z(r?—24r)] —15(5 - 3y)¥(3 + 6y = 5§ )+ $(g—7)
x[=143(p+r)+3(q-2)y]¥(3 £\F -3(p+r)-3(q-1)y)
~3q(~1+3p+3¢y)¥(3 + 5 - 3p - 3¢)

+6(6y — 7)¥(3 £ 7 —12y).

If the natural coupling constant A, <1 the classical term is the leading one and we
get the perturbative solution®

y=1+ 9’:“’2( —A(1))+0(A3). (4.22)

If, however, A, ~1 (i.e. A, is of the Planck order) higher-loop corrections are
important and perturbation theory breaks down. Looking formally for non-
perturbative solutions of (4.21) we again see that no real solution exists unless
1<y < ¥ (in the opposite case, ¥ functions of negative arguments appear which are
complex). This “quantum stability” of the classical vacuum y =1 seems rather
remarkable.

Now let us discuss the special case of A,=0. Suppose, we are interested in
spontaneous creation of de Sitter space from flat space due to quantum-gravitational
fluctuations. Taking A, =0 (y =0) in (4.18) we get

967

W + c, (423)

where A = Ak?, B, = const (e.g. v, in (4.15)) and ¢ is a complex gauge-dependent
constant™*. The formal extremum of (4.23) is given by

19242
hBk?

(4.24)
This result is the gravitational analog of the phenomenon of quantum generation of

*One is to extract from A(l) an infinite constant ~(0) corresponding to the zero mode of
[Aq(4A — 4A)], which drops out from (4.13).
** Note that I is always complex due to the indefiniteness of the gravitational action.
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the Planck-order cosmological constant already observed in sect. 3 (cf. (3.6)).
Though B, is gauge dependent, in any reasonable gauge it is equal to some “natural”
number and thus Ak? is not unnaturally small but rather of the order unity. This
implies that higher-loop corrections are important and one has to sum the perturba-
tion series to give a definite answer concerning the value of the induced A (cf. sect.
6). Still it seems possible that the origin of de Sitter space needed in the “inflation-
ary universe” scenarios (see e.g. [10] and references therein) might be due to
quantum gravitational effects (for another suggestion see [43]).

5. O(4) gauged supergravity
The lagrangian of this theory is given by [2, 4]

a,d4d d* 2 .
1 2 9,70y _8_3__(14_1;)4.%( u)z

E=—-—=R+—
k2 k2 (]_ |¢|2)2 k4

v { P (@88, — 4ei00 )| EZEL + iEYEX) + h.c.}

e @2 ikYje prdpp wet py
ey, Db+ — =5 Plo, V!
pisiv™=pYa 11— I¢|2 pprYy

gV2

ky1—|®|?

+ quartic fermionic terms, (5.1)

+ix'Dx' + Vv, (D) +ivs D)X’

B

v_":hcre kz = 16'”6! Y(p?v} = gpv’ 752 =1 Up;v - %T[p?rjs b = ‘YpD‘,s Dy, = ()D” T gAu}
F,, = 3&,,,,F,,- It contains a graviton; an O(4) gauge field (i, j=1,...,4); a
complex - scalar field @ = @, + iP, parametrizing SU(1,1)/U(1) space and thus
satisfying |®| <1; four gravitinos; and four spinors (all Majorana). The theory is

invariant under gauged N = 4 supersymmetry

oyt = D4 —8 v | ¢,
b (1 T M

i ﬁg

k1 - |®|?

and possesses a unique stable supersymmetric classical “ vacuum” [5]
12g>

k2’

ox (@) +ivs@,)e', (5.2)

g, =AdS, withA,=— ®=0, ¢,4,x=0, (5.3)
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with @ = 0 being the only extremum (maximum) of the classical potential*

8g? 2
Vo= ——=-[1+ —— . 5.4
¢ k“( 1—!¢|‘*) et}

An apparent problem in the way of calculating the effective action is the negative
sign of the tree-level cosmological constant (recall that the spectra of the operators in
subsect. 2.1 were given for the S* background with A > 0). Though formally the
effective A may well turn out to be positive, it seems safer (at the one-loop level) to
keep the same sign of the tree and the effective A. To overcome this difficulty one
may use the following recipe: consider an unphysical theory with g?= —%* <0 (and
thus with A, > 0), calculate I} for A >0 and finally make an analytic continuation
A — —A, g* — —g?. This procedure probably corresponds to an appropriate choice
of boundary conditions on eigenfunctions in a possible direct AdS-background
calculation (cf. [45,5]). We shall call the unphysical g? <0, A >0 theory an “S*
version” in contrast to the “AdS version” with g?> 0, A <0. The calculation of I"
will be done for the S* version, assuming that the background is given by (2.11) and

® =¢=const, ¢*<1, &,=0, ¢,x,4=0, (5.5)

(the dependence on the pseudoscalar @, follows from U(1) invariance). In view of
the off-shell non-renormalizability of gauged supergravities we shall use the {-func-
tion prescription to obtain the finite expression for I'(A, ¢, g%/k?) (see the discus-
sion in subsect. 2.1). Also, we shall carry out calculations in a wide class of gauges
with the idea of understanding which properties of I" are gauge independent.

Let us start with the scalar fields contribution in the effective action, using the
following conventions:

1

kr=2, = —gt=-1, a=
g°=-8 -

>1, V,=2(1+2a),

onshell: a=1, A=V¥,=6, (5.6)

(actual dependence on k2 and g2 is easy to restore in the final answer). Shifting the
fields, @, > @, + ¢, g,, = &,, + h,, we get for the scalar terms in (5.1)

Lp=a2(89,)" + a?(3®,) +[V, + 8a%®, + 40’ (4a — 3) B} + 4> D2
X (1+ 3+ &h? = §B2,) + - . (5.7)

* Thus there is no tree-level supersymmetry breaking in this theory, which is possible, however, for
N > 5 gauged supergravities [5,44].
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Assuming (as always, in one-loop calculations) that it is the background field that is
constrained (¢*> <1) while quantum fields are arbitrary —oo < ®,,<00 (in a
similar fashion, g,, has a euclidean signature while /,, is unconstrained) we can
integrate over @ with the result given by

Zy=[det A, (16a —12)det 4,(4)] /2, (5.8)
and also by additional terms in the quantum gravitational lagrangian
AL, = —4a(a—1)hA5 (16— 12)h + V,(&h? — 3R2,). (5.9)

In the derivation of (5.8) we made the rescaling @ > a~*® and assumed that the
corresponding jacobian is cancelled by the proper local (¢ model type) measure
[d®]=I1,d®d®*/(1 — |®|*)>. This choice is necessary for consistency of the
theory (e.g. for SU(1,1) invariance of the measure) and also for cancellation of
quartic divergences*. It is worth stressing that it is only gravitational (~ ‘/g_r ) quartic
infinities which automatically cancel in supergravities**. In view of the non-poly-
nomiality of scalar and vector kinetic terms in scalars (cf. (5.1)), scalar-field
dependent quartic infinities will be present in the naively defined functional integral.
To eliminate them (and also to restore the global symmetry of the measure) one is to
include a proper local scalar-dependent factor in the measure. As for finite parts,
there is a possible source of ambiguity here: if ¢ = const, one may define det(c4)
either as det[cd(x, x")]det A or, in the {-function prescription, as c¢%det A. It is only
in the first definition that scalar-dependent factors in kinetic terms are completely
cancelled by the measure. With the latter definition in addition to (5.8) we get

ATy = }[B,(4((16a —12)) + B,(4,(4))]Ine?, (5.10)

(let us note in passing that the contribution of scalar factors of kinetic terms in the
finite part of the effective action for ungauged N = 4 supergravity was also discussed
in [48]).
Assuming (5.5), one can rewrite the gauge vector piece of (5.1) as
Cs= 'ézf;kz(‘?’)FUFM

gy py t

_1+¢ ¢

2= 1—¢ 1=¢

Changing the variables 4, = 4" + ), a (as in (2.12)) we finally get
| detAy(0)

a det4,(+A)

Oy — Eijki- (5.11)

1/2%6
s (5.12)

* In general for £= g, (9)d,9'd,¢’ the proper measure is [dg'] =TT, ,[det g ,(p))'/*dg’ (see ref. [46]).
** For a discussion of power divergences in supergravities see [25,8,47].
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if the det = factor is completely cancelled by the measure, or in the {-function
prescription, also (cf. (5.10))

12
AT, ,=1B,(A,(+A))ndet T,  detZ ;.= (-11-+—¢) . (5.13)

Next we are to include the gravitational contribution. Comparing (5.9) and (4.2) we
see that ¥, plays the role of the bare cosmological constant A,. Thus the only
complication is due to the scalar field-scalar graviton mixing in (5.9). It can be
avoided by choosing & =0 as part of the gravitational gauge. For example, in the
gauge (4.11), (4.12), we again get (4.13) but now with A, — V,. Working in the
standard class of gauges (4.3) one has to add (5.9) to (4.2) and then to integrate over
ht, £+, 0, h with the result analogous to (4.4). For example, in the de Donder gauge
(y=pB8=1) we find

Z,=det A, (—A)det Ay(—24)[det 4y (162 —12)]'
X [det 4,(5A — 2V, )det 4,(A - 2V;)
xdet Ay(—2V,)det Ay(—12)det Ay (8a—4)] 2. (5.14)
On the classical mass shell (5.6) this expression coincides, of course, with (4.13) or
(4.6).

Let us now discuss the fermionic sector contribution in I'. Integrating over x the
spinor part of (5.1)

L =1xDx - iaddx, V=1, (5.15)
we get

Z, = [det D]'/>*“ = det 4, ,,(0), (5.16)

and also the additional term

AR, =3(a=1)yD Yy, (5.17)

in the gravitino lagrangian. Introducing the decomposition (2.15), the latter can be
rewritten as

E’ﬁp = %S#ppul;p-ys.rv@p ‘;’a + m‘;gﬂp‘h
=154 (D-m)e* +%[§(6b+2’“)41/z(_%[1)§
_25751/2(“%[1)4’_\(7(@_2”‘)‘1’], m=iV2a,

(5.18)
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(let us recall that —D?= —D? + LR =4, ,,(0), so D> - 1% = — 34, ,(— $A)).
Observing that under (5.2) 8¢+ =0, 8 =¢, 8¢ = (%) + 2m)e, we recognize ¥ =0 as
the simplest gauge in which there is no  — x mixing (5.17). Integrating over @+, {, ¢
and including the ghost and jacobian (2.41) factors we are left with

L det(%) +2m) - det4, ,,(4m?) ’

m?=—2a.

(In the final form we used (2.18), (2.19) and (2.23).) It is possible also to find a

simple one-gauge parameter extension of (5.19). Integrating first over ¢* and { and
adding (5.17) one obtains the residual ¢ term,

B, =15[(A +3m2)(D+2m) " +2(a - 1)D ]y, (5.20)

which vanishes on shell (5.6) in agreement with the on-shell supersymmetry of (5.18).
Though off shell it is possible to integrate over ¢ without any gauge fixing (see
appendix) here we follow the standard route, adding a gauge fixing term

R,=i0HY, H=v(D+2m)”",

(any other choices of H are also admissible but they complicate the result). Trading
Yo(A, a, v) for a new gauge parameter y, we get the expression

i 5.21
v det A, ,(4m*)det 4, ,(0) (#21)

coinciding with (5.19) for y =0.

We conclude that the total four-gauge parameter dependent off-shell effective
action is given by the product of (5.8), (5.12), (4.13) (with A, = ¥}), (5.17) and (5.21)
(for simplicity we shall omit contributions (5.10), (5.13), which vanish on shell (5.6),
from the following discussion)*. It is straightforward though tedious to compute the
infinities of this action**. Recalling egs. (2.43), (2.44), (4.14)-(4.16) we

* An analogous y-dependent factor was also emitted in the derivation of (5.21). The neglect of such
factors can be considered as part of the definition of I'}.
** For a previous discussion of off-shell infinities of gauged supergravities, in the mixed gravitational-
gauge field background, see ref. [8].
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get
B,=0, B,= %{—3(” 6)(A —V,) +8(y—2)(a—1)},
B,= Zfs(o)_%
= %{(A - Vo)l(3r2+3pr—r+ $)A

= (37 =3gr = 25)¥, + H(y - 4)(a - 1)]

+a(a = D[(¥ -y )@ - 1)+ $(1 + 2a)(y — 4) + 4(5 + 49a)] ks

N=14+6—-1x4x8=4, (5.22)

Thus on shell (5.6) the theory is free from quartic and quadratic infinities [8] and is
renormalizable. Only the last term in (5.22) survives and corresponds to the
renormalization of the topological coupling constant (4.17) and the gauge coupling
constant for general backgrounds [7, 8]

3
(Bd)onshell i ﬁ(_ %R*R* - 4A2)s‘- (5-23)

Comparing (5.22) and (5.23) we notice that £.§;(0)= 0 on shell and thus B, = —4 is
completely due to the zero modes of the jacobians (2.41), a rather unexpected result
in view of the non-zero B function in the N = 4 model (and the non-self-dual nature
of S4, cf. [49])*.

As follows from (5.22), our four-parameter gauge freedom is not sufficient to
make the theory renormalizable also off shell. That is why we rely upon the
{-function prescription (2.7) to define finite I'. Let us first write down the functional
form of the effective action in the simplest possible gauge r=0, y=0 (i.e. h=0,

* This interesting property is also true for N =5 and 8 gauged supergravities: in view of the zero 8
function for N> 5, B, = 3A~2[1(3 — N) X R*R*]= —2(N — 3), while the number of zero modes of
all jacobians (2.41) is J= 14 + §N(N — 1) — ;N X 8. Thus from (2.43) L,5,(0) = L(N — SN — 8), if
N=>5. Z§,(0)=0 holds also for N =4 super-Yang-Mills theory on the S* background, having
By=—1andN=1.
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£+ =0, y=0), restoring the dependence on g* and k*:
I impt = 3Indet 4, ($A — £%¥,) — 4Indet 4,(—A)

+3Indet 4,(A) + 3Indet 4,242V, — 4A)

2
—JIndet A,(0) + %mdctﬁo(%(é} - 4a))

2
+%lndetA0(— %) —Indet 4, ,,(m?)

+Indet 4, ,,(4m?) —Indet 4, ,(0), (5.24)

where now V= —(8g%/k*)1 + 2a), m* = (4g”/k?)a. Using the results of sect. 2
we get (cf. (4.18))

—3F/(%)+18F/() + Fy (3 + 4y + 8x)
—TF(§) + /(3 —6y+8x)+ F/(§+2y)

—16Fy),(—x) +8F/;,(—4x) —8F,(0)}, (5.25)

where
12g2 y
= , xsEay=—"——7, 9.26
= Y=1lg (5.26)
B, =31+ 4(19y? + 110x* + 12xy + 74y + 172x), (5.27)
472 2
I=—F(y +2xy+6y). (5.28)
g

If we now substitute A = —A, g> - —g? in the quantum part I'}, x and y remain
invariant and we simply get (5.25) with In A — In(—A). This gives the final result for
the effective action in the physical AdS version of the theory. Let us first discuss the
gauge-independent, on-shell limit of this action, i.e. the one-loop-corrected classical
vacuum action, taking A = —12g%/k?, x=y = —1 (cf. (4.19)):

472 4g?
rcmsheu: T';. o= Zﬁll'l zg 2
g nk

+ const. (5.29)
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This quantity is real and finite (after proper subtraction of the zero modes contribu-
tion); note also that the quantum correction is positive for small enough g*. One can
show that these properties hold also for ¥ > 4 gauged O(N) supergravities if one
considers the one-loop correction for the supersymmetric vacuum state (then B, =
—2(N — 3)). The reality of (5.29) follows from the absence of negative modes for all
the operators in the on-shell limit of (5.24) in the S* version. This observation
provides a simple proof of the stability of the AdS vacuum (5.3) (for a different proof
see [S]). A natural question then is about the off-shell negative modes in (5.24).
Employing (2.25)-(2.29) we get the following restrictions from the Bose, §A >
—(4g%/k*)(1+2a)> A, and Fermi, A > —(12g?/k?)a, sectors. Recalling that
a > 1 in (5.6) we conclude that (5.25) is real only if A = —12g?/k* and a = 1, i.e. on
shell. This rather startling conclusion is due to the opposite bounds in Bose and
Fermi sectors and thus is probably due to supersymmetry. It seems to be gauge
independent (cf. (5.21), (4.13)) and thus amplifies the statement of the classical
stability of the AdS vacuum. ,

In what follows we shall formally ignore the complex nature of any non-classical
extrema of (5.25) anticipating that this may be an artifact of the one-loop approxi-
mation. Turning to the effective equations, following from (5.25)

F7 +a—— s =2x ¢6x 0, (5.30)

or __ (dr  ar\_, ar ar
My T %ax ’

we see that the supersymmetry preserving solution ¢ =0 is always present. The
corresponding A satisfies the equation, analogous to (4.20) (we use the AdS version)

811'

2
“(1+y )——(31+32y+47y2)+(41+47y)1n( :g )
prk?y

—4[-15F,(— % —6y) + 6F (£ +12y) +2F, (2 +2y)
+8F, 5(~y) —16F, ;,(—4y)| =0. (5.31)
Supposing g2 to be small we get

_ 19272 -
B{®k*h

0(g?). (5.32)

where B{® = B,(g = 0)= 31 in the gauge we used (cf. (5.27)). Thus gauging gives only
small corrections to a Planck-order quantum cosmological constant induced already for
ungauged N = 4 supergravity. As a consequence, O(4) supergravity does not improve
the situation as compared to the pure gravity (4.24) and matter field (3.6) cases.
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Now let us discuss eqs. (5.30) for ¢ # 0:

oL —8W2(3+x+ )— L (93 + 192 + 110x2 + 12xy + T4y + 172 )
ay 3g2 Y 6y y Xy 4 X
1 4g?
+3(37+ 6x+19y)In -—=2—|—4,=0,
wky
ar 81’1’2 4g2
ax 332 p.zkzy 2

A,(x,y)=%{ 5(5+y +2x)¥(3 £ i + 2y +4x)
~2(7+2y+4x)¥(3 £ +4y +8x)
+3(1 -3y +4x)¥(3 + /3 — 6y + 8x)

—(1+y)¥(3 J%i]+—%l+6x+l9y}

Ay(x,y)=3{- 10(5+y +2x) (3 £ /5 + 2y +4x)
—4(7+2y +4x)¥(3 £ {F + 4y + 8x)
—4(1-3y+4x)¥(3 + /7 -6y +8x)
+4(4+ x)P(3 + iVx ) —8(1 + 4x) ¥(2 + idx )
+3¢ + 6y +80x}. (5.33)

Expanding in # we get the perturbative solution A = —12g%/k*+ O(h), a=1+
O(h). Expanding instead in g2 and noting that according to (5.26) x = g°%, y = g2,
we find

7=G+0(g%), x=G+0(g%), (5.34)

where C, and G, are calculable constants. Thus up to all problems of interpretation,
raised above, we find indications for dynamical local supersymmetry breaking, i.e.
¢ # 0. Contrary to some expectations this breaking does not, however, help to solve
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the problem of an enormous A term which is thus relegated to higher-loop summa-
tion approaches (cf. sect. 6).

Still it seems possible that this induced A-term problem may find a perturbative
solution in yet unknown® gauged supergravity with B{®=B, .. 4.(g=0)=0 (cf.
sect. 6). Suppose first that such a theory will have zero tree-level cosmological term
in the supersymmetric ground state like ¢ = 0. Then quantum corrections will respect
this remarkable property, because the analog of (5.31) will look like

8n? A

— +an— =0,
gz ' 22
A=Ak  @=a,u’k*>+0(g?), a,,a,=const. (5.35)
Hence
A=m}(1 +0(g2))exp(— cor;st), (5.36)
g

an extremely desired result. If at the tree level A, ~ O(g?) will turn to be non-zero,
then an additional A,/A term appears in (5.35) (cf. (5.31)) and the solution (5.36) is
excluded. But here a rescue may come from dynamical supersymmetry breaking: A
can be compensated by non-zero scalar field contributions. We stress that this is
possible in principle only if no A term is induced in the g* — 0 limit (i.e. if B{® = 0).
Though some conditions for the realization of this possibility can be guessed from
(5.33), a quantitative analysis obviously depends on details of the theory and thus
awaits for its actual construction.

6. Concluding remarks

In this paper we considered the one-loop effective potential in O(4) gauged
supergravity in an attempt to understand whether quantum corrections can resolve
the problem of the tree-level cosmological constant in this theory, Though a
one-loop calculation is obviously inconclusive it seems improbable that taking into
account any finite number of loops may be of help. Our method can be straightfor-
wardly applied to N > 5 gauged O(N) supergravities [4]. We anticipate no qualita-
tive differences in the results in spite of a zero 8 function in the latter theories [7]. A
peculiar quantum behaviour might be in principle expected in theories with a zero
(on-shell) “conformal anomaly” (or topological infinity) coefficient B{” because if
B®+ 0 a Planck-order cosmological term is induced by quantum fluctuations of
fields of any spin on a gravitational background. However, B{” + 0 for all O(N)

* The only exception is the SU, X SU, theory of ref. [3] with the pseudoscalar traded for the
antisymmetric tensor as discussed in sect. 6.
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gauged supergravities. Trying to make B{® equal to zero, one is to introduce
antisymmetric tensors [39] but this seems to be impossible without breaking O(N)
gauged supersymmetry (though probably possible for ungauged U(N ) supergravities
following the idea of Nicolai and Townsend [39]). One is thus led to the question of
whether it is possible to construct a realistic (i.e. gauged ) supergravity with zero B{.
It seems to us that the answer may be “yes” if one gives up the idea of a simple total
gauge group. To provide an example of such a theory, consider the SU, X SU,
gauged N = 4 supergravity of Freedman and Schwarz [3]:

1
B 1(9,) + 3e2**(3,B)
+ %c_""[(Fl‘;‘,)z +(F2‘;")2] —2(g2+g})ere+ a,BJ+ -+, (6.1)

where i =1,2,3, g, and g, are gauge couplings,
J,= —tke, g, (AiuraBAi'y + %gle,.jkA‘iaA{ﬁA‘fT) + (1 = 2) + fermionic currents,

and we omitted a number of terms irrelevant to our discussion. The crucial fact is
that irrespective of gauging, the pseudoscalar B contributes in the lagrangian as
explicitly shown in (6.1), i.e. only through d, B. That is why it is possible to convert
B into an antisymmetric tensor A4 , just in the same way as was done by Nicolai and
Townsend [39] for ungauged SU, theory with the resulting e ~ 2¥%( 3#1 wtd, ) term
instead of the B terms in (6.1). Hence we found gauged supergravity with B{” = 0. At
the same time, the quantum status of this theory remains unclear because of the
absence of an obvious ¢ = const “ vacuum” in this theory (as compared with O(N)
gauged theories). The difficulty is due to the e*® scalar potential that is reminiscent
of the 2-dim Liouville field theory (see e.g. [50]). It is disturbing to find that ro
classical solutions exist if we admit ¢ # const, but still hope for g,, = (anti) de Sitter.
Thus one has probably to look for soliton black hole-type solutions, like those
already discussed for ungauged N =4 theory in [51] (cf. [50]). Then it should be
possible to study quantum properties of this theory (including on-shell 8 functions
for g, and g,).

Even admitting that this particular N = 4 SU, X SU, theory might be pathological
at the quantum level, we see no reasons for the non-existence of its more “fortunate”
higher-N generalizations with the total gauge group G being, e.g. for N =8, G, X G,
or SU; X SU, X U, (we have to employ all 28 vectors of ungauged SOy supergravity).
To establish zero B{” we have to assume that 7 out of a total of 70 scalars are
singlets of G and thus can be converted into 7 antisymmetric tensors 4,,, (plus one
A,,»)- Another suggestion is to use N = 3 multiplets as building blocks (cf. [39]). It
remains to be seen whether such theories can actually be constructed and whether
they have brighter perspectives for phenomenological applications than O( N ) gauged
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supergravities. An insight into the question of their existence might be provided by
further study of the solutions of d = 11 supergravity™* (cf. [52]).

Our next remark concerns the possible resolution of a large induced A-term
problem due to summation of higher-loop contributions. Consider first the effective
action in a pure Einstein gravity for a de Sitter background (2.11),

r~fd4x@(—%x+ﬁzln(%)+

Introducing the dimensionless parameter A = Ak? we symbolically have
(for p?k?~1)

I~ % +lA+A(nA+I2A) + - (6.2)

This implies that the one-loop effective extremum A ~ 1 is untrustworthy because for
A ~ 1 higher-loop corrections are all of the same order. To give an idea of what
might happen after summation of the series, let us turn to higher-derivative renor-
malizable theory £= —(1/k?}(R—2Ag)+ (/8> R}, —1R*)+ ---, which is
known to be asymptotically free in g? [25]. The latter property implies that the
corresponding (S* background) effective action can be approximated as (A, =
AG kl)*i

Ay b

1
T~ g~ g g gunt Ao e

If > 0 this function is extremal near A ~ exp(—a/g*). As a result, we get a very
small effective A term irrespective of the value of the tree-level cosmological constant.
This observation shows the way to solving the A-term problem of gauged O(N)
supergravities either by summing higher-loop corrections or by directly coupling them
to (higher-derivative) conformal supergravities, known to be asymptotically free or
finite [54).

Note added

After the completion of this work we became aware of ref. [55] where a similar
t-function approach to calculations in de Sitter space is discussed in the example of
scalar QED and also of ref. [56] where one-loop quadratic divergences of the

* Note, however, that it was proved to be impossible to obtain SU, x SU, gauged theory by
M* x §? x §? reduction of d = 10 supergravity [53].
** This expression as well as the R+ R? theory itself may be considered simply as a model of a
resummed Einstein theory.
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effective potential for matter scalars in N = 1 supergravity are computed. New N =4
gauged supergravities are constructed in [57]. We were also informed that *“phenom-
enological” models of the small effective A term were recently discussed in [58].
Finally we mention ref. [59] quoted in [55, 56] but yet unavailable to us.

Appendix

GAUGE NON-FIXING PROCEDURE FOR THE CALCULATION OF THE OFF-SHELL
EFFECTIVE ACTION

The notion of the off-shell effective action is ambiguous in gauge theories. One
can either use the standard definition (2.1) with the resulting I" being dependent on
the particular gauge used or resort to some “aesthetically distinguished” new recipe
like that of Vilkovisky [22] (see also [26]), which is gauge independent by construc-
tion. Here we want to point out that there exists yet another possible definition of I,
The principal observation is that the naive functional integral in (2.1) is already
non-degenerate if we assume an off-shell background (e.g. 82//8¢” has no gauge
zero modes if ¢ does not satisfy 81 /8¢ = 0). Thus no gauge fixing is formally needed
at all. An apparent objection to this proposal is that the resulting I" will be singular
in the on-shell limit 6//8¢ — 0 (for simplicity we consider only the one-loop
approximation). This, however, seems not to be a serious defect if singular terms can
be separated in some natural way from the non-trivial part of I'. The final quantity I’
may be helpful in an attempt to find a gauge-independent approximation and may
possess improved ultraviolet properties (especially in supersymmetric theories) as
compared to the standard I' in a general gauge.

Now let us illustrate the suggested procedure in a number of examples starting
with flat-space scalar QED (see also [26]). The standard effective potential in the
(a, B) class of gauges (3.11) can be written as (cf. (3.12))

v=—4[dk{3In(k>+ %) +In(k* + $\¢?)

+ln[(a_1k2+g2¢2)(k2 + IAg? + Bla1g%?) — g%k (1 -ﬁa‘l)z]

4
~2In(aV2) (K + Bgi)),  dk=

LY (A1)
(27)

At the same time, if ¢ # 0 one can calculate it without gauge fixing
7 ——%fdk {3In(k?+g%?) +In(k>+ 4r¢?) +In(4Ag%¢%) ). (A2)

The last (¢ — 0 singular) term is quartically divergent and thus can be cancelled by a



506 E.S. Fradkin, A.A. Tseytlin / One-loop effective potential

local measure (or is zero in dimensional regularization), while the first two terms
coincide with the result in the unitary gauge.

Next consider the Einstein gravity with the A term (sect. 4). Integrating over A*
and o, we find from eqgs. (4.2), (2.41)

detA,(—A)
detA,(3A —2A)det Ay(4A, -

1/2
4A)] fdhdglexp(—f), (A.3)

1272
zkz

I'= {24 -4p)8+ 8, (- A)E +3(A - Ag)

XhAo(—2A4)A5(4A,—4A) R} . (A4)

If A+ A, we can formally integrate over {* and & with the result (after omitting
~ In(A — A,) terms)

Z=[detA,(3A —2A,)det Ay (—24,)] 2. (A.5)

This expression is to be compared with that in the £* =0, 2 =0 gauge (4.8) which
follows after the “brutal” insertion of 3(h)8(£)%y05, Ponost = [det 4,(0)]*2, in
(A.3). We observe that (A.5) does not have a correct on-shell limit. For example it
describes six instead of two degrees of freedom. This is a manifestation of “massive-
ness” of the off-shell theory in the approach we use.

Further evidence for this is provided by the example of the gravitino contribution
in the effective action (see sect. 5). Integration over ¢* and ¢ in (5.18) gives

Z= [det(@—m)qﬁdet(ﬁﬂD+2m)]1/2fdn,bc"',

= 2472

[4(A +3m2)§ (D+2m)"y]. (A6)

Again A + 3m? # 0 off shell (cf. (5.6)) and we find (for one gravitino)
= [det("al)—m).,#]lﬂ, (A7)

while the definition of (A.6) with =0 as a gauge brings us back to eq. (5.19).
Finally we note that to use the analogs of (A.5) and (A.7) in the context of the O(4)
supergravity calculation of sect. 5, one has to take into account the scalar-graviton
(5.9) and spinor-gravitino (5.17) mixing terms before integrating over 4 and ¢ in
(A.3) and (A.6). The resulting I" does not however describe a zero total number of
degrees of freedom (5+1+2+6xX2—-4X4—-8+0) and thus we refrain from
further discussion of it here.
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