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We discuss and compare the Lorentz covariant path integral quantization of the three bose
string models, namely, the Nambu, Eguchi and Brink-Di Vecchia—Howe—Polyakov (BDHP)
ones, Along with a critical review of the subject with some uncertainties and ambiguities
clearly stated, various new results are presented. We work out the form of the BDHP string
ansatz for the Wilson average and prove a formal inequivalence of the exact Nambu and
BDHP models for any space-time dimension 4. The above three models, known to be
equivalent on the classical level, are shown to be equivalent in a semiclassical approximation
near a minimal surface and also in the leading 1/d-approximation for the static gg-potential.
We analyse scattering amplitudes predicted by the BDHP string and find that when exactly
calculated for d < 26 they are different from the old dual ones, and possess a non-linear
spectrum which may be considered as free from tachyons in the ground state.

Contents. 1. Introduction. 2. Definitions of string models. 3. Quantized BDHP and
Nambu strings. 4. Semiclassical approximation. 5. Scattering amplitudes. Appendix A:
Notations for geometrical objects on two dimensional manifold with boundary. Appendix B:
Divergences of log det 4 and Seeley coefficients. Appendix C: Effective action for ghost deter-
minant of the BDHP model.

1. INTRODUCTION

Strings were invented in an attempt to provide a dynamical background for various
dual models (see, e.g.. |1-3]) and were considered first as some phenomenological
objects. The advent of QCD brought a qualitative picture of string built of glue
(closed or with quarks at the ends). An approximate string description today is
believed to be valid in the confinement phase of the theory. There were several
proposals concerning particular mechanisms of emergence of one-dimensional string-
like objects from QCD. More or less recent attempts can be roughly divided on those
which do not appeal to the 1/N approximation and are based on conjecture that a
free string ansatz is valid for the Wilson loop average 4| (with closed strings being
elementary excitations in the confining phase) and those based on the large N limit
(see, e.g., [5,6] and especially |7, 8]). Migdal claimed in [7] that the presence of
non-planar graphs in the N = oo limit [9] (i.e., “string instability’?) indicates that the
“true” QCD-motivated string model is not a free Nambu one but carries self-
interaction (e.g., is populated by fermions). However, it is not yet clear whether the
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414 FRADKIN AND TSEYTLIN

Migdal string is a unique and physical solution of the large N QCD dynamics. As
was pointed out in [8], the Migdal and the Nambu strings may be considered merely
as providing two particular ansatz for the N = oo masterfield.

With this situation in mind it seems reasonable to study the properties of various
possible string models (including, e.g., supersymmetric strings with spin [10-12] and
spin and charge [13-15]), trying to establish their common features wich may be
shared by the “true” QCD string.

The aim of this paper is to discuss the formulation and compare the properties of
the three “phenomenological” bosonic string models: the Nambu [16], the
generalized Eguchi [17-19] and the Brink—Di Vecchia—Howe-Polyakov (BDHP)
[10, 20] ones. It is important to understand that these models are different quantum
extensions of the same classical theory possibly lying in one equivalence class with
respect to some (e.g., semiclassical) properties. Contrary to the statement of Ref. [20]
we see no reasons to consider the quantized BDHP model as providing (a unique)
correct quantum analog of the classical Nambu string for space-time dimension
d < 26 because one can formally write down the quantum theory functional integral
using directly the Nambu (or Eguchi) action. At the same time, the quantum BDHP
model seems to be the most simple and tractable one. For example, the well-known
factor (26 —d) appears naturally in the covariant path integral treatment of the
BDHP string [20]. Also, this model, using a metric in its formulation, seems to be
well suited for a description of processes with changes of world surface topology of
the string,

The remarkable feature of the BDHP model [20] is the appearance (through the
Weyl symmetry anomaly) of a new quantum degree of freedom absent at the classical
level. This resembles the conjectured occurence of the quantum longitudinal mode for
the Nambu string for d # 26. Keeping in mind that the quantum BDHP model is not
equivalent to the quantized Nambu string (as will be shown in the text) let us now
recall a number of earlier attempts connected with the Nambu string quantization. In
the work of Goddard (GGRT) et al. [21] it was proposed to use a canonical
approach, choosing the Lorentz-non-covariant gauge (see also [1-3])

Eab = hab - % {sab (hcd' 5“’) =0,

(1.1a)
hy,=8,x"0,x", u=1l,.,d; a,b=1,2,

(x, £ X,) (1.1b)

I
X4 Ty X + \/5
(here {z°}= {r,0}) which completely fixes the reparametrization symmetry and
reduces the ‘square root” classical Nambu—Goto action to that of the free (d —2)
transverse degrees of freedom {x;}. Then only these classically independent modes
are quantized (by means of the operator approach [21] or with the help of the phase
space path integral [22]). However, the resulting theory was found to be Lorentz-
covariant (in d demensions) only if

d = 26, a(0)=—a'u} =1 (1.2)
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(this condition was also necessary to avoid troubles in the loop diagrams when
working only with x; [22]). It was understood that one can in principle construct the
ghost-free Lorentz covariant theory for d < 26 taking into account (in analogy with a
dual model case) a quantum longitudinal mode x” (or a corresponding set of
operators) absent at the classical level [23, 3] (note that for 4 > 26 x” is ghost-like).
However, this possibility was not considered as a natural one (“to construct a
quantum theory of a string in fewer than 26 dimensions we therefore require extra,
non-classical degrees of freedom. Whether such a system should still be regarded as a
string is a semantic point” [1, p. 320]) and it was the requirement that the quantized-
string should have the same number of degrees of freedom as the classical one that
led to restriction (1.2). Let us note for completeness that proposals that longitudinal
modes may be relevant in order to overcome (1.2) were discussed, e.g., in [24].

From today’s point of view the fact that the classical and quantum numbers of
degrees of freedom are unequal speaks about the presence of an anomaly, i.e., that
some classical symmetry is not respected by quantization (i.e., by regularization or
functional measure). Then (1.2) is merely the condition of the absence of the
anomaly. Recalling that anomalies in general do not respect unitarity (“positivity of
the effective action”) we may even understand the origin of the no-ghost restriction
d < 26 as a condition of the physical sign of the action for the anomalous degree of
freedom.

The “commutator” anomalies were already found in earlier approaches [1-3] in
the operator algebra framework. However, an understanding of anomaly and the role
of a longitudinal mode from the Lorentz covariant path integral quantization was
lacking. The difficulty is rooted (i) in the non-polinomiality of the Nambu action and
(ii) in the necessity to preserve the d-dimensional O(d) (Lorentz) symmetry while
fixing the reparametrization invariance on the world surface. The last condition
implies the use of non-linear gauges which, however, do not fix the coordinate
symmetry completely (the conformal coordinate transformations are left
unrestricted). One can observe that it is impossible to fix the coordinate group
completely, preserving the O(d)-symmetry (indeed, we are to use the O(d)-invariant
combination, e.g., X,X,, X,8,X,, 8,%,0,x,, etc., but the gauge d,x,8,x, =0, is
overcomplete, while (1.1a) incomplete). The preservation of the O(d) and the
conformal symmetry are thus connected.

The first attempt to work out the path integral quantization for the Nambu string
was due to Gervais and Sakita [25]. They used the gauge (our notations are
euclidean)

hyy — hyy = 2ih,,, x, =f(z), (1.3)

which linearizes the square root in the Nambu action, fixes the coordinate group
completely but breaks the global O(d) symmetry. The main advantage of (1.3) is the

! Note that the GGRT gauge (1.1a,b) consisting of three instead of rwo conditions formally cannot be
used in the functional integral.
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possibility to evaluate (after some formal manipulations) the partition function
exactly (it turns to be equal to that of the (d — 2)-free transverse modes). But it is not
clear in this approach when (if at all) the theory is Lorentz-covariant. Choozing
different (coordinate) gauges which break the additional global (O(d)) symmetry of
the action one may obtain different results if there is an anomaly of this global
symmetry (flat space “conformal” or “Lorentz” anomaly). If the gauge is classically
complete, i.e., breaks also the anomalous symmetry, we may get a wrong answer (for
example, if one tries to quantize the BDHP string in gauge (1.3) it is impossible to
define the covariant path integral and to reveal the origin of the (26 — d)-factor).

It is important to stress that if in the old-fashioned applications of string models
(i.e., in derivation of dual amplitudes) one could in principle use non-Lorentz
covariant gauges without contradiction with the Neumann boundary conditions on
x,, in the gauge theory applications (i.e., dealing with a string ansatz for the Wilson
loop average W/[c]) we must preserve the O(d)-symmetry in view of the O(d)-
covariant boundary conditions x* |, =c* € C. Also the general covariance of the
formal path integral i§ needed in order to provide the contour C reparametrization
invariance of W|c]. That is why we are obliged to use some incomplete gauge ((1.1a)
or its metrical analog for the BDHP case g,, =0 being the most natural ones).?

However, quantizing the Nambu string in gauge (1.1a) it appears to be difficult to
establish the (d — 26)-factor and to prove that only free transverse modes are relevant
for d = 26. At the same time, starting with the BDHP action [10, 20] it is possible to
work out the O(d)-covariant path integral quantization scheme and to trace the origin
of the d < 26 restriction. It is still remains a possiblity that the covariantly quantized
Nambu model may also be cast in some tractable form, though at present it is the
BDHP model which seems to be the simplest and most appealing one.

Let us now summarize the results and structure of the paper. In Section 2 we
present the classical actions and the Wilson loop ansatz for the Nambu, Eguchi and
BDHP models and observe that they are equivalent at the classical level. A natural
question is whether this equivalence holds at the quantum level.

In Section 3 we first discuss the quantized BDHP string and show that contrary to
the case of the formal partition function considered in [20], in the case of the Wilson
loop ansatz one cannot in general obtain an explicit form for the conformal metric
effective action and thus reveal a particular role of the d = 26 dimension. We also
point out that power divergences may be consistently neglected in the theory and thus
no Liouville-type non-linearities are introduced (cf. [20, 15]). As a consequence, it is
possible to establish the exact result, e.g., for the formal partition function, and to
trace the analogy with the canonically quantized Nambu string (or oscillator model
[1]) in degrees of freedom counting. Then we discuss the Lorentz covariant path
integral quantization of the Nambu string and show that the resulting complicated
theory is ineguivalent to the BDHP model. It turns out impossible to reveal to origin
of the d < 26 restriction. We conclude that the Nambu and BDHP quantized strings

? Note that the resulting path integral will be of course the O(d)-covariant gauge independent.
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are different extensions of the same classical theory, BDHP model being essentially
simpler due to the additional Weyl symmetry.

However, in Section 4 we show that these two models (and also the generalized
Eguchi one) are equivalent when treated in a semiclassical approximation near a
minimal surface. We generalize and simplify the previous analysis of [26] of the
v=1 Eguchi model and obtain a more explicit form of the semiclassical loop
functional, using the results established for the BDHP model. We also discuss the
semiclassical (R + 1/R)-long-range potential which is thus equivalent for the above
three models and show that this equivalence holds also for a static potential
calculated in the leading 1/d-approximation (first discussed in [19]).

In Section 5 we consider scattering amplitudes predicted by the BDHP string
model. First we discuss the analog of the old Nambu case definition of the on-shell
amplitude in terms of the string path integral [25] and show that it straightforwardly
leads to the Veneziano model for d=26. When d < 26 we obtain a non-dual
amplitude with the linear pole trajectory with a “shifted” intercept. Then we analyse
the definition of the off-shell amplitude proposed in [20] (see also [27]). It does not
reproduce the spectrum of the Veneziano model for d = 26, but yields (for d < 26) an
interesting off-shell amplitude with a non-linear spectrum (possessing the physical
branch without a ground-state tachyon). All integrations over metric are done
explicitly under the assumption that power divergences may be consistently neglected.

Our notations for geometrical objects on a two-dimensional manifold with
boundary are summarized in Appendix A. In Appendix B we list some useful
formulae for the Seeley coefficients of second order differential operators on a
manifold with boundary. Appendix C is devoted to a simplified derivation (as
compared to that of Ref. [28]) of the boundary terms in the BDHP model ghost
operator effective action.

2. DEFINITIONS OF STRING MODELS

Let us list here a number of string models which may be considered in connection
with QCD. We begin with a famous Nambu—Goto action [16]

f~=M2j' Vhdz, M ?=2na, @1
&

h=deth,,  hgy=0,x"d,x",  8,=0/oz" (2.2)

We use the euclidean formulation throughout this paper and hence & is a bounded
region in R? ( a strip [7,,7,] X [0, 7] in the Minkowski variant), x* define the map
P - EcRq, yv=1,.,d; a,b=1,2. We shall consider only “tree” approximation
when X is without holes and handles. The generalized Eguchi models are defined as
follows:

I = M""J h* d*z. (2.3)
@D
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The v =1 case was proposed in [17] and quantized in [18, 26]; for v > 1 models see
[19].

Next comes the action first discussed by Brink, Di Vecchia and Howe [10] (see
also [11]) and used for quantization by Polyakov [20] (BDHP model for short)

I,=M? J ! g% \/g8,x"8,x" d*z. (2.4)
&

Here g,, is a positive definite metric on & considered as an independent variable.
Though in this paper we shall mainly consider the above three bose string models,

let us also for completeness write down the actions for the well-known strings with

fermions. The first two are the spinning string model [10, 11] and the model with

spin and charge [13, 14], quantized in [12] and [15], respectively. The corresponding

lagrangians are the N=1 and N =2 locally supersymmetric extensions of (2.4)

1 i »
Ip=M* J’g d’z\/g jfg“”é‘ax L0 X+ TV D ¥ + @ox + W) DYV V[, (2.5)
it i 2
= 2 2 . pgab . * I )
ICF M .[gd Zﬁ }2 g 69(0 ab@ _+_ 2 W}' jﬂw
+ A, 07 + (8,0* + Wxa) Ty 7°?'w + hee. |, (2.6)

In (2.5) the d matter multiplets (x,,¢,) interact with the N =1 supergravity (x, is
“gravitino”) while in (2.6) all corresponding fields are complex (excluding the vector
A,) with a “doubling” ¢, =x, +ig,, u=1,..,d. Note that (2.6) posesses the O(d)
(not O(2d)) global symmetry and thus describes a charged fermi string in d
dimensions. The last example is the Migdal string [7] probably connected with the
N = oo limit of QCD

L= @9"00wa + iy VR a2, @2.7)

where y, is a bispinor field (with some boundary conditions) and for x, the
orthogonal gauge (1.1a) is assumed (h,, = /A J,,).

Note that in all above actions we omitted possible counter-terms.
The classical equations of motion following from (2.1), (2.3) and (2.4) are, respec-
tively, -

8,(Vh h®8,x,) =0,
(2.8)
8,(h*h?*3,x,) =0, (2.9)
8ap=F'hyy,  3,(\/88"0,x,)=0. (2.10)
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Equation (2.8) describes the minimal surface enclosed by a curve CcRY,
x*: 8% - C. As a consequence of (2.9) for v+ } we have

h = const, (2.9b)

and thus the stationary points of the symplectic invariant action (2.3) are minimal
surfaces in the special parametrization, where (2.9b) is valid. According to (2.10), an
arbitrary constant F drops from the x,-equation and we are again left with minimal
surfaces.

We conclude that all three bose models (2.1), (2.3), (2.4) are equivalent at the
classical level (we leave aside the question about boundary conditions which may be
implied by the action, see, e.g., [29]). '

Now let us pass to the functional integral quantization. The connection with gauge
theory is commonly established through a string-like ansatz for the Wilson loop
expectation value, “String propagators” for the Nambu and Eguchi models are

wilcl=[ | 12xle™ @11)

W [C) = f dae*? L [@x) e~ *¥1E", (2.12)

lggg=C

where k(v) = ((2v— 1)/v)**~' - (1/2v) is needed for the “area law” in the classical
limit and @ = [, d?z (see [18, 19]). The functional measures include a fixation of the
general coordinate gauge in (2.11) and the symplectic gauge in (2.12). The
corresponding gauge freedoms are essential for the contour C reparametrization
invariance of W|[C]. Let

8z = £%(z), ox* =% x* (2.13)

be a coordinate transformation in . The boundary condition in (2.11) and (2.12)
x*(t)=c*(r)EC - (2.14)

(z is some parametrization of 62) is preserved by (2.13) if

&ilso =0, &, = arbitrary function of 7, (2.15)
where # and [ are the flat metric normal and tangential vectors at 82 (cf. (A.4),
(A.5), (A.10)). It is the invariance of the integrand in (2.11) under (2.13), (2.15) with
an arbitrary & that establishes the C-reparametrization invariance of (2.11). In an

analogous way for symplectic invariance (2.12) we have (h,, is used as a metric)

E=&%,A,  Alg=0, 8,A|,p= arbitrary. (2.16)



420 FRADKIN AND TSEYTLIN

The analog of (2.11) for the BDHP model (2.4) reads

W,(C] =Llﬂ=c (2x Dg|e " (2.17)

Here again some coordinate O(d)-invariant gauge is assumed. The important question
is whether some boundary conditions on the metric are to be specified. The answer
would of course be trival if g, was merely a Lagrange multiplier (for example, at the
classical level g,,|,, is determined by x* and thus there is no above problem in the
perturbation theory near the minimal surface (2.10)). However, metric becomes
dynamical through the conformal anomaly [20] (see Section 3). That is why in a
non-perturbative approach one can in principle impose some boundary conditions on
8.» but with the requirement that they do not spoil the C-reparametrization invariance
of (2.17), i.e., do not fix &, |,5 as in (2.15) (though they may restrict 8,¢, |,4), €-8.,

dz® dz®
(g"b dr dr )
Probably this question should be studied separately in each special analysis of (2.17).

However, it seems that in general one is to average over all metrics at the boundary
in order to establish C-reparametrization invariance,

_ dc, dc,

=4 __#4 2.1
a2 dr dr sy

WslCl = | dfes(t) WolC.S )y
(2.19)

WelC.f]=| |2x 2g)e s
Blaz =S Xlag=C

(it is possible of course to use 2, g, |s2 =/us» €tc.). It may turn out, however, that
some particular “semiclassical” value of f,, provide a good approximation for (2.19).

In the cases of strings with fermions (2.5)(2.7) one must functionally integrate
over all independent fields in the actions with x, |, =c, and some appropriate
boundary conditions for other variables.

As is obvious from the above discussion, (2.11), (2.12) and (2.17) are the quantum
versions of the same classical theory (corresponding to the “area law”). We are now
going to study the question whether the Nambu, Eguchi and BDHP models share
some common features at the quantum level.

3. QuanTizeD BDHP AND NAMBU STRINGS

Let us try to give a more precise and explicit form to the BDHP ansatz (2.17)
trying to proceed as far as possible without using any approximation. Following the
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method of Ref. [15] we take the following coordinate gauge (cf. [20] and also [30])
g‘abEgab_% 6ab(gcd’5cd)=09 (31)

i.e.,

8ap =P Oup> p = e’ = arbitrary. (3.2)

Being trivially O(d) (Lorentz) invariant, this gauge does not fix the coordinate group
completely: there is still a freedom of conformal coordinate transformations

aw ow'
r2 w ot
.0 ( ) aza azb p (2) 60!‘.\’

(3.3)

2
p*(z, 2), z=2z,+iz,,

dz
r2 = e
p i (w, W)= ‘_aw

which should be preserved during quantization. This incompleteness of (3.1) is in
accordance with the remarks in Section 1. Action (2.4) and also (3.1) are invariant
under the Weyl transformations g/, = A’g,,. However, this symmetry is broken due
to conformal anomaly (if one uses a regularization, preserving the general covariance
and thus also (3.3)) and so the classical gauge p =1 is not an adimissible one at the
quantum level. As a result, p represents a new “quantum” degree of freedom which
could be missed if only independent classical variables were quantized.

A naive application of the Faddeev—Popov procedure to (3.1) gives the following
ghost operator:

o)

(3.4)
Gabc = pz(aabaf Lo 5“8& = abcaa)9
(det G)~" ~ [ d, d&, Blp*(@:s — 28] 6102 (@r8 + 8, 8)]
= J‘ d¢ dE 5(p*o€) 6[p*é¢), (3.5)
E=¢ 40, 8=0,—id,, 0=20,+id,. (3.6)

However, in order to preserve the general covariance one must first “forget” about
condition (3.2) and use the following trick,

5g_nb=vacb+Vh¢a_gabvc§cEGabc:‘.’ (37)

det G=1/detd,,;,  Aygp= GG, (3.8)
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£4,¢6=[d’2\/g& 4,2,

(3.9)
Alabéb = _vbGabcéc = _(chr + R/2) Ea s
where we used (A.1). The resulting functional measure in (2.17) is
[2x Zg) = {28 6 8o V/ det 4, D x p g]}- (3.10)

Here det 4, is defined in covariant way and under the d-function condition may be
written as [20] (cf. (3.5))

det'L,, L,=p *ap?. (3.11)

Note that L, possesses conformal zero modes (@&, =0), coming from the residual
symmetry (3.3). They should be omitted in det’ L,.

The local factor u[ g] in (3.10) is necessary for correspondence with the canonical
path integral quantization [31]. If one considers (2.4) as a lagrangian for d scalar
fields in an external metric, the canonical momentum integration results in
ulg]l=T1. [V g" ]’ As was pointed out in [31], the analogous factors provide the
cancellation of the leading (momentum space volume) divergences in the g,,-effective
action (which of course may be considered as a sort of a normal ordering
prescription). In (3.10) is assumed that integration goes over non-negative metrics,

ie, g, 20,8, =g, +8gn,
_ E o0 o0 - 00
[ T1 dgas 8(81)8(810) = e, | dg_ | dei8(-)8(812) -
a< —a v —o0

As a result, the only integration left is over p> =3 g, or 0 =1logp? —0 <0 < ®
(the factor [ ], e*” is absorbed in a definition of Zg,,).
Integrating over x, in (2.17) we get

WelCl = [ doexp(—Llo, ), (3.12)

Ig=d - Idy;) — I'(4,), (3.13)
I'(4)= 4 log det 4,

1
——ga,,(g“ V8 9,) =—e0,

=

where the subscript ¢ indicates that det 4, is calculated with the boundary condition
(2.14) (it is through this place that C-dependence of (3.12) comes from).

Let us first consider I'(4,), which can be calculated in an explicit form. The
necessary boundary conditions on &, (2.15) are, however, insufficient for a well-posed

(3.14)
dy=
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boundary problem for A4,. The most natural sufficient ones are the mixed boundary
conditions (cf. [28])

éu |692' = 05 (au_ér) Ia.@' = 0’ (3 15)

preserving the conformal invariance (3.3) of the problem (cf. (3.5)). Then (see
Appendixes B, C)

r@)=rQ+r + 1, 2.16)
E? 1 L?
1 = 2 =" Iu' T o 'l
I ( 81 j &z ~5xlog ) @.17)
o 26 (-1 i(a:;r)zdzz——l [ K,.-0-dz (3.18)
o 127 Jo 2 127 Jazf 7 ’ '
r{V = 4 log det(—0), + } log det(—0),. (3.19)

Here L - o0, dz =+/dz®dz% K, is defined in (A.9), (A.10), the Euler number y
(A.12) is 1 if & is simply connected and subscripts D and N indicate the Dirichlet
and Neumann boundary conditions. The “volume” part of (3.18) was first given in
[20] while the boundary term was established in [28] (see also Appendix C). Note
that (3.16) is invariant under (3.3).

Now let us discuss I'(4, ). It is important to stress that its dependence on o can be
explicitly calculated (“through the anoma.ly ") only under some limited class of
boundary conditions. Really, if 4,0 = g, [5 ¢* \/g d*z = 1, under a variation of o we
have

84, =—2 60 4,, 6}.+1J d’z\/_Z do .9’ =%,
(3.20)
Z=-2| dz(gd; 9 —p2;0).
az

Only if ¥ =0 do we get the desired simple result (see Appendixes A, B for notations)
(tr e~ "40) = 2l j d’z \/g da(z)(z |e | z)

and so
oIy’ = —st,|dal, (3:21)
where we put |
I4,)=rI% + 1P + 15, (3.22)
r® = 1log det(—0),. (3.23)
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Z is, of course, zero for the Dirichlet and Neumann conditions (if, e.g., ¢ |; =0, then
0|, =0) and also for the o-independent Robin conditions (&;+ ¥)¢|,2=0,
0y/do =0, cf. (B.9). However, in the general case of (2.14), X depends on
(c*0; 0x") |, and thus (3.21) is not valid. As a result, one cannot separate the
anomalous dependence on o and on the contour C as it was naively assumed in
(3.22), (3.23) and so I'(4, ) canhot be in general calculated “through the anomaly.”
This conclusion is rather evident in view of the requirement of the C-
reparametrization invariance of (3.12). If o0 and C dependences were separated as in
(3.22) one may simply integrate over ¢ in (3.12) with the non-covariant result

‘Ws[C| ~exp (— % log det(—D)c), (3.24)

which is obviously dependent on parametrization of 6% and C. In the correct
expression the reparametrization invariance is restored by the (possibly non-local)
boundary terms, involving o as well as c*. Note that if we assume some restrictive
boundary conditions on ¢ (e.g., d|,5, =0, 8,0 |,5 = 0) these terms may vanish, again
leading to a non-invariant result (3.24) (cf. the discussion after (2.17)).

Observing that the local “volume™ part of I'(4, ) is of course independent of ¢, and
any boundary conditions, it is useful to write down the expression for I'(4,) assuming
for concreteness that the Dirichlet or the Neumann conditions are imposed on x, (see
(B.3), (B.13), (B.14) and also [26, 15])

1 1 1 | 5
{1} 2 20 g2 L °dz — ——ylog —-, 3.25
f o SELer a’z:l:g\/?_r a@e 4 12x0g,u2 ( )
rwl:__]_j i(aaa)ldzz—Lj x,-a-dﬂ—l—j 8;0dz +, (3.26)
= 127 Jg 2 127 )0 87 Joo "

where according to (A.10), (A.11) A° =%z}, 2" = dz°/dz, K; = €,,2'2"" and & is
the Neumann case zero mode contribution

D:0 5
= loga, A= j@ Vz dz. ; (3.27)

There is a close similarity between results (3.17), (3.18) and (3.25), (3.26):
sign—changing terms cancel in the 4,—case due fo the mixed boundary conditions
(3.15).

As was already pointed out, an appropriate choice of the local measure in (3.10)
subtracts the L>-divergences in (3.17), (3.15) (note that L? and L dependent terms
are automatically absent in the dimensional or {-function regularization). Saying in
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other words, we may always put the renormalized values of 4 and A in the
corresponding counter-terms (cf. [20, 27])

u? J edz4+A| e°dz (3.28)
o

ez

equal to zero in a consistent way, because the above infinite terms exhaust all
divergences of this type in the theory (one need not worry about “next order”
corrections, etc.). The conditions # = 4 = 0 simplify the discussion of string scattering
amplitudes (Section 5) and are assumed in the following.

At the same time, it seems interesting to note the necessity of the & - x (6 = const)
bare term in the string action in order to renormalize the logarithmic divergences.
This term leads to the anomalous dimension (W, ~ u~2%'%) in the Wilson factor and
may be important in next to the leading order approximations in 1/N, where one
must average over surfaces M, M = C, with holes and handles and thus is led to the
sum over topologies of the type W[C] =3, e~ *W?[C].

Let us finally give the total expression for the o-effective action (3.13) as if the
Dirichlet or the Neumann boundary conditions were imposed on x*. The first case
corresponds to the functional integral (2.17) treated as a formal partition function
while the second is useful for the discussion of the strings Green’s functions.
Summing (3.18) and (3.25) we get

_26—d (g
I,,r[o]——FUQT(ao) dzl+J Kr-a-dz]

agt

iij' bpodz+d-& (3.29)
81 Jao _

(for the “volume” term see [20], while for the boundary terms see Ref. [28], where,
however, the Neumann case zero mode contribution (3.27) was omitted). We
conclude that if 26 —d > 0, o is a physical degree of freedom (this is the analog of
the no-ghost theorem for the Nambu string [3]). If d=26 and the boundary con-
dition :

8;01,5=0 (3.30)

is imposed on ¢, we conclude that there is no Weyl symmetry anomaly in the formal
function integral for the BDHP model. This, however, does not imply that (2.17) with
the correct boundary conditions (2.14) is simplified for d =26 because Eq. (3.29)
cannot be used in this case.

Let us remark that using (3.29) is possible’ to obtain the exact result for the

*In contrast with the approach of Ref. [20], where x in (3.28) was assumed to be non-zero.
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formal partition function, neglecting the boundary terms and differences connected
with boundary conditions (recall (3.19), (3.23))

z=j do e~'em = [det(—)] /¥, (3.31)

N=d-1, d < 26,
=d-—2, d=26.

Here N is the number of “quantum” degrees of freedom. We again observe the
similarity with the Nambu string which is known [1-3] to have equal numbers of
classical (transverse) and quantum degrees of freedom only at the critical dimension,
while for d < 26 one must also take into account the quantum longitudinal mode,
here effectively represented by a.

It is probably worth noting that the expressions, analogous to (3.29) and (3.31),
can be obtained also for the supersymmetric strings (2.5) and (2.6). Let us present
the corresponding result, e.g., for the charged spmmng string (2.6), obtained in our
work [15],

2 d

1 1 | o e
= (@2 |5 @,0) =5 @A) + 5 1%, (3.32)

Iel‘f

in the “incomplete” quantum gauge, where
Xa=1Vahy  Ag=36,p0°#. (3.33)

Here o, -# and A terms correspond to the Weyl, chiral and superconformal
anomalies. Note that different signs of the first two terms in (3.32) are connected
with the fact that anomalies do not in general respect unitarity. Thus, the theory is
ghost and anomaly free only for d=2 in agreement with the result of [13]. For the
neutral spinning string (2.5) one must put # =0 and (2 —d)— (10 —d)/2 (see
[12]). When d < 10, ¢ and A are analogous to longitudinal degrees of freedom of the
Neveu-Schwarz model [1-3].

‘Let us now develop the Lorentz covariant path integral quantization for the
Nambu string trying to follow the same way as in the case of the BDHP model. First
of all, we want to show that the Wilson loop ansatz in the case of the Nambu (2.11)
and BDHP (2.17) strings are formally inequivalent. Substituting the identity

1= Doy 6(8ap — F*hoy(x)) (3.34)

in (2.11) and noting that according to (2.1) and (2.4), I;| g,, = Fh,] = I, R], we
get (2.11) in the form

wy[C] :J (28 Zx) 3(gap — F8,% - Byx) e "1, (3.35)

x| gz =C
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Comparing (2.17) and (3.35) we conclude that the functional integration in the
Nambu case goes over the surface g,, = F*h,, in the (g, x)-space. However, this
condition holds for the BDHP string only in the classical .(and also semiclassical; see
Section 4) limit (2.10). The fixation of the coordinate gauge of course does not
eliminate this discrepance, which is connected with a peculiar role of g,, in the quan-
tized BDHP model (2.17). Indeed, the dependence on the metric is a non-linear one
and g, cannot be treated as a simple Lagrange multiplier (which can be, e.g.,
eliminated before the x-integration).

To illustrate this point let us rewrite (3.35) introducing the tensor density auxiliary
field @*® (with integration limits +ico) and assuming F =1

wy =j (2¢ Zx Za) exp | —M? J’ d’z

X (]iaabaa'xu 3bxu e %aabgab + \/E) . (336)

Supposing that the result of the g, integration (being a local factor) can be absorbed
in the measure Za, we are left with the expression, analogous to (2.17). However, we
cannot put a®® = g \/§ with g,, playing the role of the metric in (2.17), because in
general det a # 1. If we now choose the gauge (cf. (3.1))

a® =ad®,  @*=0 (3.37)

and formally give up the condition of general covariance, we obtain for the product
of the ghost and x,-determinants (cf. (3.5), (3.11))

(det(adad)]? - [det(d,ad,)]~ /4. (3.38)

Though the a-dependence of the first factor can be explicitly evaluated (the
corresponding operator has a product structure), this is not valid for the &,ad,
operator, leading to a non-local dependence on a. Thus possible conjecture that a
plays the role of p? in (3.2) in the BDHP case and that the result, analogous to (3.29)
can therefore be obtained for the Nambu string, is incorrect. This is probably due to
the fact that the BDHP action (2.4) possesses the additional Weyl symmetry which is
absent in the auxiliary action in (3.36).

We obtain a useful explicit form of the Nambu model path integral if we choose
the orthogonal gauge h,,=0 (l.1a), and introduce a collective variable
h*=8,x,0,x,

we

Wy= | (2x, Dh Da Da®) cxp(—fN), (3.38)

-

¢ 1
Ly=M*| d'z ] (ab® +@™)3,x,0,x,
/o 2

1 1 ‘
+ R (1 —%)+F26-m(6n log A)*!, (3.39)
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where used the explicit form of the ghost determinant contribution available from
(3.18) under substitution e° — h and omitted boundary terms.

We conclude that quantizing the Nambu string in the covariant (“incomplete™)
gauge we do not obtain the (d — 26)-factor (i.e., we cannot say that for 4 = 26 only
free transverse modes contribute). The resulting theory is inequivalent and essentially
more complicated than that of the BDHP model. However, it is possible to prove that
beth theories are equivalent in the semiclassical approximation.

4. SEMICLASSICAL APPROXIMATION

Let us begin with a semiclassical approximation for te Nambu (2.11) and Eguchi
(2.12) models. Expanding near a minimal surface we have

de*
= @* + £¢*, e |3Q =c*, ¢* |a-ﬁ i ?, (4.1)
Ok = 2600”0, 8" + 20,0, 0y 9,» 4.2)
2
8(det h)* = v 6k — % Oh,, SR + % (8ha)2. (4.3)

We consider fluctuations ¢* which leave the contour C fixed up to a
reparametrization, i.e., (¢" + &¢*),z =c"(r + &). All indices are contracted with a
background minimal surface metric

Boy=0,0,8,0,,  0,(/h h*®8,9,)=0. (4.4)

The O(e?) term in the Eguchi action (2.3) can be written in the form

IP(E?) =M | d'z h*0,4* M, 2,4", (4.5)
M2 =M 20— M2, Mkt =05% d%,, (4.6)
ML = b5, + 8%, 8%, — 8°9,8%, — h™8,0,5,. (4.7)

For v=13, (4.5) and (4.7) give the result for the Nambu case (2.1). Introducing
bu=9ut0L, ¢'-41=0, ¢.=000,, (4.8)
we have (with the help of the classical equations (4.4))
o9 M 0¢ = 09" M* 8¢ + 2(v — }) o¢' M1 g, (4.9)
op M* ¢ = o¢* M* 69" (4.10)
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(note that (4.10) is a consequence of the general covariance of the Nambu action and
the fact that ¢! describes the infinitesimal coordinate transformation; cf. (2.13)). In
view of (4.8), 2¢ = Z¢' Z¢* and we formally get the following semiclassical results
for (2.11) and (2.12):

W,[C] ~e MM Z4, A(C):JI Vhdz, (4.11)
@

W‘;"[C] ~p MM ZL, z'II1 (4.12)

Z' = [det; 4] Zt=[det 4 ,]7"7, (4.13)

AII(L}nv \/_3 (\/_Mu[“ﬂ?,@ (4.14)

(we used (2.9b) for v+ } in order to “covariantize” all determinants and thus trivially
integrate over the area a in (2.12)).
Changing the variables ¢! — & according to (4.8) we have

Z' = dE, exp

_ J;, (V, &) Vhd*z!. (4.15)

In view of (4.1), d¢* |,;; =dc* or 8,9 |,4 ~ ¢" |52, implying the following boundary
conditions (cf. (2.15), (3.15)):

uloa=0,  $ls0=0. (4.16)
Splitting &,
ga = aa C 53 gab ab‘l’ (4 l ?)
we see that (4.16) is satisfied if (cf. (A.4), (A.5))
,8|: =0, A2 =0, (4.18)
and so
= [det 4, ]"?. [detd, ] (4.19)
Here (and in (4.17)) we omitted the harmonic zero made and also the infinity due to
the symplectic zero mode (represented by A; cf. (2.16)). Subscripts D and N in (4.19)
indicate the type of the boundary condition for 4,=— (1/\/h)d,(\/h h**3,). For
the derivation it is sufficient to note that (V,£9)* = (4,{)* and that the Jacobian of
transformation (4.17) is |f d¢ dA exp(— [ dz & \/h)] .
Result (4.12), (4.19) for v=1 Eguchi model was first obtained in [26], but our

derivation seems more general and straightforward. However, the Z* factor (4.13)
was written in [26] in a not very explicit form. Let us now work out a simple
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representation of Z* which is useful in order to make contact with the BDHP model.
The main observation is that according to (4.7)

o M* 39 =h0,9 - 8,6 — (0, has)’, (4.20)
O1hap=0,0 - 0y +8,90,0 — hoy 0.0 - 3.9, (4.21)
and thus 5,50,}:0 may be taken as a coordinate gauge. Averaging in a standard

manner over a class of analogous gauges one can cancel the last term in (4.20) and
then integrate over ¢, (we use integral representation of Z + and (4.10))

Z* = [det(dy), | 17 - [det 4,,,]"2. (4.22)

Here the 4,-factor stands for the Faddeev—Popov determinant, which is the same as
in the BDHP case (cf. (3.1), (3.7)—(3.9) with g , — %_,) because under the coordinate
transformation

6¢u = naaa Pus 6(61 Eab) = va 7y + vb Mg — hab Vf.‘ M- (423)
Thus 4, is defined on #, with boundary conditions being (cf. (3.15))

Mn |6@ =0, an 7 Ia.@ =0. (4.24)

Now we note that det A, is explicitly calculable according to (3.16)-(3.19) which are
valid in coordinate system, where h,, =e’°d,, (in arbitrary coordinates we need
appropriate Green’s function insertions, e.g., oldo — RO~ 'R, etc.). If we formally
neglect a possible “twist” of fluctuation on the boundary and put ¢* |, =0, the first
factor in (4.22) is also calculable and we get

W—-d; o, 1
1. L Bl = 2
Z+ ~exp T Jgdz 5 @,0)
2-d d
_ K.-0-dz———| 0.0d ZH0), 4.25
B g ol axja@"gzx © (4.25)
Z1(0) = [det(—00),] ~/PE-? (4.26)

Note also that according to (4.19) (see also [26])

1 1
Z'' ~ exp ?logA(C)—E’agaﬁa-dz : (4.27)

Let us now consider the semiclassical approximation for the BDHP string (2.17).
Expanding near the classical configuration (h,,,¢,) (2.10), we get

Bap = hab 7 81”&&’ Xy = wu +* aéu L (428)
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Io(e) ='M* | d'z\/h (h**0,9,8,9,
@

- zfabaa(a“ 3b¢,u + %}-’aby_ab }‘ (4'30)
Tab = Yab — thas¥s y= B gy (4.30)

We see that y drops from (4.29) due to the “quantum”™ Weyl invariance which is
preserved (in contrast to the background one) in the semiclassical approximation. As
a consequence, one can choose y=0 as a quantum Weyl gauge. Integrating over 7,
we immediately obtain coincidence with the £*-part of the Nambu action (4.20).

Therefore after fixing the coordinate gauge (J, h,, = 0) and integrating over ¢, we
are led to the same result (4.11), (4.22) (or (4.25)) as in the Nambu string case. The
final expression can also be obtained from the exact result (3.12), (3.13) if we put
there g, = h,,(¢). This simply corresponds to fixing the gauge y,,=0 instead of
0,k =0.

It is worth pointing out that this semiclassical equivalence is rather obvious from
the comparison of the exact expressions (2.17) and (2.35): one is simply to note that
the d-function in (3.35) is trivial on the classical equations. At the same time it
contributes non-trivially in the next (“two loop™) order, leading to different results for
the Nambu and BDHP models.

As a next remark let us mention the emergence of the universal (d — 26)-factor in a
semiclassical approximation for bose string models (cf. (4.25)). As a result, for
d = 26 “one-loop” corrections are rather trivial. They are also “trivial” if the contour
C is a planar one (the minimal surface is flat and 0 = 0 in (4.25)). Then the result is
simply proportional to (4.26). A simple exercise then is to derive from (4.11), (4.12),
(4.26) a universal static long-range (R + R~ ')-potential [26, 32]

Y n d—2
V. . =MWR-—-L s 2 4,31
semiclass. M R =+ COnSt, / 12 2 ( 3 )

by considering the standard R X T" Wilson loop (and taking & to be a rectangular
region) and noting that the Dirichlet boundary conditions ¢,(0) = ¢,(R) =0 imply
that we are dealing with a free Casimir type problem (or the partition function for a
one-dimensional gas), i.e.,

Itl’ IOg(_D)D]ﬁnlte 2 ’IT:F C('" 1 )! C(_l ) = 1_12 (432)

(we note in passing that the formal expression (4.31) first appeared in [33]). As a
result, the BDHP string leads to the same semiclassical long-range potential (4.31) as
other reasonable string models (including the Migdal one [34]).

Let us now prove that the equivalence of the Nambu, Eguchi and BDHP models
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holds also in the leading 1/d approximation for the static potential. For the first two
models this approximation was discussed in [19] with the result

Voo = MPR(1 — R}/RY)",
4,33
o (#.33)
€ 12M*

If we take C to be the R X T Wilson loop and & the rectangular R X T region,
choose (instead of (3.1)) the following coordinate gauge for the BDHP model,

X1 =2y, Xo=175 (4.34)

and then integrate over x; (i=3,..,d;x,|,5=0) in (2.17), we get the following
effective large 4 action

1
73“ \/E(‘sab + 0up)

I, =M J'm dt r dr
0

—-T/f2

d
- % a®®a,, + St log(—2@,a%d,) ¢,
(4.35)

Wgn~ J |Zg Zo Da) exp((—I).

Here we introduced the collective variable o,,=3J,x,9,x, with the help of the
Lagrange multiplier a®® (cf. (3.36)). The leading 1/d-contribution is obtained by
minimizing (4.35) with respect to g,, 0, and a®®. Varying g, we get
&ap~ (045 + 0,4p) (cf. (2.10)). Substituting this result in (4.35) we recover exactly the
corresponding large d action for the Nambu model (Eq. (2.25) of Ref. [19] or (4.35)
with the first term replaced by [det(5,, + 0,,)]"/?) and thus get the same result for the
potential.

It is probably rather obvious that the equivalence, -observed in the semiclassical
approximation, holds also in the leading term of the 1/d expansion, because the
functional integral over metrics in (2.17) in this case is simply evaluated in a saddle
point. It is conceivable that the difference between the Nambu and BDHP models will
show up after an actual integration over metric in (3.12). If we formally integrate
over g in (3.12), using (3.29), neglecting boundary terms and assuming the Dirichlet
boundary condition for g, we get one more copy of log det(—),, in (4.26) (cf. (3.31))
and thus are to replace (for @ < 26) the (d — 2)-coefficient in (4.31) by the (d — 1)
one. This result is in analogy with the degrees of freedom counting (3.31) and may be
sensible if the “longitudinal mode” o, appearing through the anomaly, contributes in
the long-range potential.
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5. SCATTERING AMPLITUDES

In this section we are going to consider scattering amplitudes, predicted by string
models, using a covariant path integral approach discussed (in the case of the Wilson
factor ansatz) in the previous sections. It was observed in the early days of string
models that some appropriate quantities, constructed with the help of a formal
functional integral for the Nambu string, reproduce the Veneziano or
Shapiro—Virasoro dual amplitudes (see, e.g., [1,2]). The more or less consistent
approaches of Refs. [25] and [22] (based on the non-covariant gauges (1.3) and
(1.1a, b), rt_:spectively),‘ however, worked only with the transverse modes (though
the d = 26 restriction was not evident in [25]). Treated in this way the Nambu model
was equivalent to the corresponding dual models and thus possessed the same
shortcomings, e.g. the tachyonic ground state (cf. (1.2)).

At the same time one may hope that if the longitudinal mode is properly taken into
account, some more realistic amplitudes may emerge for d = 4. This implies the use
of the Lorentz-covariant incomplete gauges with the correct account of the anomaly.
However, at present it seems difficult to realize this program working directly with
the Nambu action. As it is evident from Sections 3 and 4, the BDHP action (2.4)
provides a more simple quantum extension of the same classical theory. That is why,
it is the BDHP model we shall consider mainly in this section.

The basic point is how to define a scattering amplitude given a covariant string
path integral. One may try to follow the old strings interaction formalism [25,22], in
particular the definition given in Ref. [25]. However, it implicitly assumes that the
spectrum of the model is already known (e.g., from the operator formalism) and thus
gives only the on-shell amplitude. On the other hand, one may propose some heuristic
definition of the off-shell amplitude (appealing to the obvious differences in
formulations of the Nambu and BDHP models) with a belief that for d < 26 it may
cure the troubles of old dual models. Such a definition was proposed by Polyakov
[20] and non-trivially interpreted and extended in Ref. [27], where it was shown that
using a saddle point approximation (with d - —oo) for the BDHP model it is possible
to recover not only the amplitude but also the spectrum of the standard Veneziano
model. There was expressed a hope that next 1/d corrections will give more realistic
dual-like amplitudes. The main obstacle which precluded verification of the above
conjecture was the inclusion in Refs. [20, 27] of the non-linear “area” and “length”
counter-terms (3.28). As was pointed out in Section 3, it seems consistent to put (in
this or another way) renormalized values of u# and A to zero. Then all functional
integrations are carried out explicitly and we obtain the exact expression for the
amplitude (see below).

Let us start with the analog of the “old” definition of Ref. [25]. This is justified by
some uncertainties present in the Polyakov’s heuristic definition to be discussed later.
Basing mainly on a “correspondence principle” with the d =26 Nambu string case,

* Note that the phase space path integral of Ref. [22]| was not of course a true configuration space
integral with the GGRT gauge but rather a direct analog of the operator formalism.
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let us define the N reggeons (open strings) scattering amplitude (we consider
throughout only tree amplitudes) as (cf. [25])

w0 N ,
V(PrresP) = dligy [ 12000 = 2]~ ZI7(@)], (1)
-0 i=1
N N
dﬂm\f = I [ dzj |za 2 zb] 1zb_ zcl |zc N zal H |zx'+l o zr‘l_ l’ (52)
j+a,b,c i=1
N
Ji2)= Y préP(z—z), 2,€62, Imz,=0, (5.3)
i=1
Z[J] = (€YY xispm0s ,r.xzj'g d*zJ,x,, (5.4)

where all particles are supposed to be in one state p} = —u® (p; are the euclidean
momenta), du,, is the projective invariant Koba-Nielsen measure (see, e.g., [1]), the
domain & is taken to be the upper half-plane with variables z; lying on the real axis
0%. Averaging in (5.4) is assumed to be done with the help of the string functional
integral with the Neumann boundary conditions J,x, |5, =0 imposed. We omitted
complications connected with a limiting procedure in the current (5.3) and self-energy
factors (see [25, 35]). Let us also remind that (5.1) may be obtained by a conformal
transformation from the qualitatively more obvious integral over “interaction times”
7; (with & being a (o, 7) strip with cuts; see, e.g., [1, 2]).

In the closed string case (pomeron or glueball scattering; see, e.g., [36]) interaction
is possible along the whole length of the string (or the whole cylindric world surface)
and so integration in (5.1) is to be carried out over all complex plane (ie., z; € C in
the current (5.3) and in (5.4))

N
V(Dyses Py) = J dﬁxyzl']o(z)] 1—[ |24 “zsl_a{"zus (5.5)
i=1
i N
dﬁka’\f: l d22j|za_zblz|zb_zc|2|zc_za|2 I—[ |z£+lrzil 2‘ (56)
j#ab,c i=1

In the case of the Nambu model with d =26 definitions (5.1) and (5.5) were shown
[25, 37, 36] to reproduce correspondingly the Veneziano and the Virasoro-Shapiro
amplitudes with ground states being a’u = —1 and a’u} = —4 and with, e.g.,

Zy g-26ld] = I—[ |z; “zjlza’pw‘rs z;€R. (5.7)

i<j

Note that it is the momentum dependent integrand (5.7) of the amplitude that arises
from the string path integral while the procedure of establishing measure (5.2) or
(5.6) is not very compelling and straightforward even in Mandelstam’s approach
[22,36]. As was already mentioned above, the derivation of (5.7) in [25] is not
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completely satisfactory one (for example, the non-covariant gauge (1.3) used depends
on the source and thus the result was not manifestly factorizable). Let us now show
that in the case of the covariantly quantized BDHP model expression (5.7) is the
immediate consequence of taking d = 26, while for d < 26 a natural generalization
emerges.

Using (2.4), (2.17) (now with the boundary condition &, x, |, = 0) and thus (3.29)
(for the Neumann case) we get

J d*z d*z’

1
ZgJ] =Id‘7 exp | —Ixlo] + M2

X J(2) G(z,z' | @) J(z')|{, M ?=2na, (5.8)

where G is the Neumann problem Green’s function of the covariant Laplacian
4,=-V,V? (3.14) '

1
4,G(z,z') =—0(z, )= ——=06%(z—2"),
e V&® 555

8,,G(z,2') =0,

and J is a tensor density like (5.3). For & being a halfplane and g, =J_,

1
Go=0)=G,=—1In(z' —z| - |2' — Z]), z#z'

2n
| . (5.10)
=—2?lns+§ln|z—z|, z'=z+4+¢ €-0.

When g,, = e?’ d,, we are to use a covariant regularization:

o

(z'*—z9) 2z’ - %) g,, =€ or |z'—z|=e"c.

As a consequence of preserving the covariance we obtain the result of Refs. [20, 27|

G(z,z' | 0) =Gy, zEzh
| (5.11)
=G0—Ea(z), z—z',
Substituting (5.3) and (5.11) in (5.8) we get
1
2l =2t 2, Z, ~exp (— S GUJU), (5.12)

Z'=do. et f_:-f%gp} 6P (z—z)), (5.13)
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where Z, is of course equivalent to (5.7), i.e., to the result of the analogue model
[37] or that of the naive transverse mode treatment of the Nambu model. If d = 26
and the Neumann boundary condition (3.30) is imposed on o, I, is trivial (K; =0
for a flat 62, cf. (A.11), and we omit the zero mode contribution in (3.29)); i..,
there is no conformal anomaly in the theory and that is why the Weyl gauge 6 =0
must be imposed. As a result, we are straightforwardly led to (5.7) as the exact
prediction of the BDHP model for d = 26. This is indeed a trivial consequence of the
fact that for d = 26 the gauge g,, = d,, is an admissible one and thus (2.4) is just the
action of the analogue model. Comparing the above derivation of (5.7) with that of
Ref. [25] for the Nambu model we once more are convinced that the BDHP model is
a simpler one.

In order to evaluate (5.13) for d < 26 we need some boundary condition on ¢ (cf.
the discussion in Section 2). A natural choice is again the Neumann one (3.30) and
we get ’

26 —d

Z! =Cre—(1a’2v)-fﬁcrf, p= 27 > 0. (514)

The resulting amplitude is (5.1) with

Zo~[1lzi—2,

i<j
24 /a'\?
}’uza'P.'Pj_m (T) pipi=a'p,p;—F, (5.15)
3 a'l
E ey I B (5.16)

The whole effect of the integration over ¢ is thus a finite shift 5#” in (5.16). It is now
a standart exercise (see, e.g., [1]) to work out the poles of the corresponding
amplitude

a(s)=a(0)—a's=n,

2 (5.17)
n=0, l,.., s:(Zp.-) "
i<t
a(0) = —a'u® + #, (5.18)

(recall that our momenta are euclidean). Thus we have a linear Regge trajectory and
the Veneziano condition a(0) = 1 implies that the ground state mass is a@’u” ~ 15.6 or
a'u?~ —0.94. As a result, the ground state is not necessarily tachyonic (note that the
tachyonic value is near to that of the Veneziano model). The amplitude is dual (i.e.,
the integrand of (5.1) is projectively invariant) only when -# =0, i.e., only for
d = 26, and therefore it is not clear whether we are to impose the condition a(0) = 1
or rather to assume a’u’ = —1 in accordance with d = 26 case. In any case it should
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be noted that deviations from the Veneziano model are rather small for d =4 and
probably do not contradict the common wisdom.

The above approach has a drawback of not revealing the spectrum of states (e.g.,
we are to assume a(0) =1 as in the Veneziano model). Let us therefore consider the
following definition of the off-shell amplitude suggested in [20] (cf. (5.1)—(5.6)):

[Py = (11 [, a2 Ve 7= ' (5.19)

J=1" Epxlagz=0

Poles of (5.19) are to define the mass spectrum, while the residues in these poles are
the scattering amplitudes. It was claimed in [20] that for d = 26 one obtains from
(5.19) the standard dual model in the Koba—Nielsen form. However, this proposal is
somewhat ambiguous and unclear. Really, only closed surfaces were considered in
[20] and so {z;} in (5.19) are supposed to lie on a closed one. Then we recognize that
the author of Ref. [20] was probably speaking about the scattering of short closed
strings or pomerons (imagine the closed membrane with tubes coming out of it). The
fact that surface (and not boundary) z-integrations appear in (5.19) is now justified
by the analogy with the Virasoro—Shapiro amplitude (cf. (5.5), (5.6)). However, it
seems impossible to obtain (for d = 26) the whole spectrum and the Koba—Nielsen
measure for the Virasoro—Shapiro model starting only with (5.19).

This heuristic definition (5.19) was given rather different (and more precise) inter-
pretation in Ref. [27], where (5.19) was identified with the off-shell reggeon (meson)
scattering amplitude (with 2 being a half-plane) with the idea to reproduce the on-
shell amplitude (where z, € 62) taking the residues in the poles (i.e., for z;— z;). This
idea does not work for the closed string case, where integration goes over the complex
plane already in the on-shell amplitude (cf. (5.5), (5.6)). Restricting to the open
strings, let us study this proposal, assuming first that two counter-terms (3.28) (with
U, A # 0) are added in (3.29). Observing that (5.19) is closely related to (5.1), (5.12),
(5.13) (now with z; € 2) we get (cf. [20, 27, 28])

I(Pyyer Py)=C j [ J do exp(—I.|0] + 7 0)

N
na’ Z PIPJ'GO(ZE’ZJ)

X exp y (5.20)
if=1
- 26 —d 1 o 20
I:ﬂ'[o] :m_ I:J’Qf (7 (300)3 +ﬂ2€2 ) d’z

= 4 d r
‘+‘J;9 (Kro+le )dZ} +—8;J3Q3,;odz,
u~mgAi~2), (521)

N ’
F=23 0Pz-1z) (1 _“Tp}), (5.22)
j=1
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where we separated all o-dependent terms, using (5.11). If we put at this point d = 26,
taking the Weyl gauge o = 0, we get the amplitude of the general structure

N N N
r(pn--pr): ]—I J’ dzzj l_[ (| Z;— zj, izi —7-_;!)"“ l_[ lzk - z_klako (523)
=172 i</ k=1

where for d = 26

1 r
W =app, 6 =27 —7pi. (5.24)

According to Ref. [27] the poles of the amplitude like (5.23) occur when z;,— 7;
(integrations in the residues go over the boundary Im z = 0), i.e., the mass spectrum
generating condition is

Oy =—n, n=12,.. (5.15)

Using (5.24), (5.25) we get the following spectrum for d = 26,
a'p;=—2n, (5.26)

which does not coincide with that of the Veneziano model (a’p} = —n + 2), e.g., there
is no ground-state tachyon. This result implies that the above definition (5.19) does
not satisfy the correspondence principle with the basic fact (obvious when starting
with (5.1)) that for d = 26 the amplitude is the Veneziano one.

However, in [27] the Veneziano model was claimed to follow from (5.20), (5.21)
in rather unphysical d - —oo saddle point approximation. Being unable to calculate
the integral over ¢ in (5.20) (for & A+ 0 in (5.21)) these authors evaluated it at the
saddle point

o@) =g o8 s A=V (5.27)

i.e., a solution of the classical equations corresponding to (5.21), which is singular on
the boundary (0,5 = o, 6,0|,5 — o). In this case one again is led to (5.23) but now
with

5O =2+ a'p? (5.28)

yielding (through (5.25)) the proper Veneziano spectrum (a'p; = 1,0, —1,...). At the
same time it is not quite clear if the proper Koba—Nielsen measure (5.2) can be
naturally obtained after taking z,— Z; in (5.23).

The above result is not a very appealing one: we got the same Venezlano model
(with all its drawbacks) as an outcome of rather non-trivial approximation essentially
based on /, A + 0. The only merit is a possibility to obtain the off-shell amplitude. Let
us now see if the situation can be improved by putting the renormalized values of g
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and 1 in (5.21) equal to zero and integrating over ¢ in (5.20) exactly. Again (cf.
(5.13)) we confront the question about a boundary condition on o (note that this
question would not arise if one develops a perturbation theory near (5.27), which
automatically dictates singular boundary behaviour). When g=4=0 the most
obvious choice is the Neumann one. This condition is even necessary in order to
integrate exp{—[[(é0)* + # 0] d’z} over o by the shift 0 — 0 + 0,, 6, ~O0~'.7 (one
must equate [,, dz(08;0,) to zero in order to cancel the linear in ¢ terms). In
complete analogy with a previous treatment (5.13)—(5.16) we get (5.23) with

, 1 ap? 1
Yi=a'DiP;— Cys Oy = Yer = 3 £ TC& (5.29)
24 a’ , a .
=gz (1-52) (1-F8) =t (530)
When all particles are in the same state with p} = —u’
24 a ,\?
=0, =—(14+—u*}. 31
(=t=g—g (1+5+) (531)
According to (5.25) for the mass spectrum we get
a:'uz 12 a’ 5 2
— — 1 fe = —n, 5.32
2 " 2%-4d ( 5 ) ¢ (5:32)

Il
~

34 \/ 34 \? 11
¥ _ a—
a'yt = = + (—3 ) B 16( 5 n l), d (5.33)

As a result, for each n =1, 2,... we have a physical as well as a tachyonic state. If we
omit the tachyonic trajectory (as “unphysical” one), we approximately have for small
n a'u*=~1.3n—0.7, while in general the physical trajectory is a non-linear one.
Summarizing the discussion of this section we conclude that in the framework of
the first definition of the scattering amplitude (5.1)—(5.4) the BDHP model naturally
gives the old Veneziano (or Shapiro—Virasoro) result for d =26, while for d < 26
(e.g., d=4) it predicts a slightly modified non-dual amplitude (5.1), (5.15), (5.16)
with the linear Regge trajectory with a “shifted” intercept (5.18) (providing a
possibility of having a non-tachyonic ground state). Starting with the off-shell
definition (5.19) we do not obtain the spectrum of the conventional dual model for
d =126 (cf. (5.26)). This probably may be considered as a drawback of this heuristic
definition. When d < 26 we are led to some off-shell amplitude with a non-linear
spectrum (5.33) possessing a physical branch without tachyonic ground state.
Though in the absence of some reasonable QCD-motivated definition of strings
scattering amplitudes the discussed results are certainly incomplete and preliminary,
it is the possibility itself that the covariantly quantized BDHP string leads (for d = 4)
to a non-linear mass spectrum and non-standard amplitudes that seems very
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interesting and may show the way from the old “ideal” dual models to more realistic
ones expected to follow from QCD.

APPENDIX A: NOTATIONS FOR GEOMETRICAL OBJECTS
ON Two-DIMENSIONAL MANIFOLD WITH BOUNDARY

Let M? be a two-dimensional manifold with boundary dM®. We shall mainly
consider the simplest case when M? can be covered by one coordinate system, i.e., is
diffeomorphic to a domain & < R? with boundary é2. The corresponding coor-
dinates are {z°}, a=1,2. If g,, is the (euclidean signatured) metric on M?, the
following relations are valid for the curvature:

a R ﬂl a R
bcd=?(5c 8sa — 04 8vc)s RabZTgab’
(A1)
Rgcd:arrgd_ ttty RabzR:cb’ R =Rabg“-
In the conformal coordinates we have
8 =P"0us P=¢ (A.2)
R =—2¢" 0o, O0=4é,0,. (A.3)

Let ¢% and n® be some vector fields in a neighbourhood of the boundary, coinciding
on 8M with the unite tangent vector and outward normal to the boundary

_ dz*®

= ds® = g,, dz° dz°, (A.4)

zﬂ

na=gb‘b, gab=

g, 2=+, (A.5)

t°t, =1, nn, =1, t°n, =0,

(A.6)
gab = tatb Rk Mgy

(all indices are raised and lowered with g,,).
The second fundamental form of the boundary and its trace are defined as follows

Kab= Vr"d?fa}'g)’ Kanbgab0 (A?)

where y,, = g, — N1, is the induced metric on &M and V. is the g,,-covariant
derivative. Using (A.6) we get

K=v,n" or K=-—n,V,0
V.=tV

(A.8)
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One can always split Kds on metric-dependent and metric-independent
(“topological™) parts

VYK=V7 Kz +Kr. (A.9)

(If 7 is an arbitrary parametrization of oM, ds = \/y dr). In conformal coordinates
(A.2) we have

ds =pdz, dz=\/dz,dz,,

de=dzaia+Ksz, 3 ﬁaa
(A.10)
K,=—A,a =00, A fi,=1,

fﬂ'ﬁ!:l’ ﬂa:ﬁa'p_ls

where dz, i° and 7° are the flat metric counterparts of ds, n“ and ¢°. Note also that in
an arbitrary parametrization of the boundary

nb
pK =€,,2'%0, o+‘”’;—z-, (A.11)
where
dz*® ik d
= A =—, K,=¢,F—0P"
z dr |z] =t gr
The Euler number of M? is
X=tv+¥s=73= U Rfd’z+J ZK\/;?dr). (A.12)

As a topological invariant it must be independent of g,, in the case of M* being
homeomorphic to 2. This is really true as one can see from (A.3), (A.9), (A.10):
[y R \/g d*z and [,,, K \/y dt simply cancel (R \/g = —200c) and as a result

1 1 .
k==, ZKrdr=§J'agaqn,, dr, (A.13)

implying that y(M)=1— N, N, =number of holes (one is to use that for a unit
circle 7 = (cos 6, sin §), 9,1, =1 and y=1/2n [}*df =1). The general case of a
“non-planar” M? is treated by cutting it on a number of “planar” parts and using
(A.12) (and the Gauss theorem) for each part. As a result, x(oM #¢)=
1 — Ny, —2N,, x(0M = ¢) =2 — Ny, — 2N,,, where N, is the number of handles.
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APPENDIX B: DIVERGENCES OF log det 4
AND SEELEY COEFFICIENTS

Let 4 be the following elliptic differential operator,

1
4=——2,8"%\/2 2, + X, (B.1)

Ve

where &, =0, + B, (B, and x are internal space matrices). By definition

1
F—Tlog det 4 == —tre ",  &£-+40. (B.2)

The infinite part of I' is given by (L — o0)

1 L?
I’m=—?(ADL1+2AIL +Azlogp—z), (B.3)
where
2
(tre™®) o 3 A2 4 o0(/1), (B4)
AR=J' by \/§d12+j eV/ydr, by, =0. (B.5)
M aM

Equation (B.4) is a consequence of the general expansion

JM (zle ™ |2)f(2) \Vedz| = kz_o [ 1% 1 0(/1), (B.6)

where fis a smooth function on the closure of 7. As a result,

Ay =tr [ f=1] ®

The values of .+, depend on the boundary conditions assumed in the definition of
det 4. Let us consider the Dirichlet and the generalized Neumann (or Robin)
boundary problems

An¢:’l¢’ ¢|a§3=01 (BS)
4e9=10,  (On+W)los=0 (8.9)

(v is a given matrix function). For the Dirichlet case one has (see, e.g., [26])

dnsty =1 J‘Q fVedz,  dnsi=— —? SN L (B.10)
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" R 2 I .
ansi= 1\/z —I—X)dz+—IJ 2KF ds
@ 6 6 az
1
+—=1| o,fds, (B.11)
2 o

where ds = ﬁ dr and [ is a unite internal space matrix. The analogous result for the
Robin case is
Vr

Ao, =Ijgf\/§dzz, dnsd, = + Tfjagfds,

4m%=J‘@f\/g_ (%I—X) dzz+%fj _2Kfds (B.12)

a5
. 1
+2| (Bﬂn“—w)fds——fj 8, fds.
oz 2 Jsa

Thus the difference between (B.11) and (B.12) is in the change of two signs and in
the new (B, — y)-term. The corresponding Seeley coefficients are (B.7), (B.5)

bp = 4erp, c,= 4:ftcp,

_ i % (B.13)
Ay, dgiby=tcl,  by=tr (1.?_,1’),
4,:6,=0, Elz—\/T/Etr!,
; (B.14)
Ez__6"' ZK'trI.,
Ag: 8 =0, E,=+\/T:Etrf,
(B.15)

1
c, =?2Ktr1+ 2tr(B,n" —y).

Results (B.13), (B.14) were obtained by McKean and Singer [38] (see also |39, 26]).
The Robin case (for B,=0) was discussed in [40]. Finally, the Neumann case
(v = 0) results of Ref. [38] were corrected by the B,-term in [28]. It should, however,
be pointed out that problem (B.9) is a “well-posed” one only if w=B, or
n°Z,0l,, =0 (and so in this “well-posed” case the results of [39] are correct).
Really, only under this condition the operator 4 is a symmetrical one: (¢,, 4¢,) =
(¢,,4¢,) and the boundary condition is covariant under the internal gauge transfor-
mations. At the same time, the expression for ¢, with (B, — w)-term is sometimes
useful in the formal discussion of non-self-adjoint operators.
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It is easy to check the consistency of the (B, — y)-combination. For example,
consider the case of 4 being the flat Laplacian defined on scalars and y =, log p.
Then the change ¢ — pé results in the Neumann problem for 4 = -2,2,, Z, =0, —
8, log p. Thus the results for c, in both cases are the same.

APPENDIX C: EFFECTIVE ACTION FOR THE GHOST
DETERMINANT OF THE BDHP MoODEL

Establishing expressions (3.17)—(3.18) for I'(4,) in (3.13) is a non-trivial problem,
solved for the “volume” part in [20] (see also {15]) and for the boundary one in
[28]. However, the discussion of Ref. [28] seems to be too complicated and slightly
incomplete. Boundary terms actually were found there for a half-plane case, where
K,=0, while the K,-dependent terms were then reconstructed demanding the
conformal invariance of the A,-effective action. The condition of conformal
invariance (under (3.3)) of the result must be the consequence not only of invariance
the (“incompleteness”) of gauge (3.1) but also the conformal invariance of the
boundary conditions on &, (3.15). We want to show here how to obtain the correct
result working only with covariant operators (B.1) on a general domain &, defined on
scalars with the appropriate Dirichlet and Robin boundary conditions, automatically
establishing the conformal invariance of the result and thus using only results (B.10)-
(B.12) (with B, = 0) which were known before the analysis of the B,-contribution in
(B.12) made in [28].

We begin by noting that [15] (see Appendix B for notations, cf. (3.21))

3I(d,) = =257 L0 [d0] + L2 [d0]), (C.1)
where
A= (—V:—R/Z)gab, ‘jlab: (—V: +R) gap» (C.2)

and the boundary conditions for 4, and 4, are assumed to be of the mixed type,
respecting the coordinate invariance and thus the residual conformal one (cf. (3.3)
and discussion in [28]). By the appropriate rotation of ¢, we get

detd,,, =detd,,detd,,, detd,,, =detd,,detd, (C.3)
where
4,=-V:—R/2, 4,=-VI+R (C.4)
are defined on scalars with the Dirichlet or Robin boundary conditions

4,p: 9lsa =0, A4, (@, +K)$l;2=0, (C.5)
jw:ﬂagzos jm: (33_2)'()5{33&:0: (C.6)
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where K is defined in (A.8) (and so, e.g., 4,z V,(n°¢)|,0 =0). If 8. = €°°6,, and
K;=0, K=0,0 and 4,;:8,(e°¢)|;5 =0 which should be compared with a,&=
2,(e°%)=0 in (3.15). Note that geometrical Robin conditions like (C.5) were
considered also in [40]. Following [12, 28] it is useful to consider a generalization of
above problem:

AF—Vﬁ-j%, A_j_1=—V§+(j+l)%, (C.7)
4ip:8loo=0,  Ajp: (0, +JK) bjls2 =0, (C.8)

O (d;0p) = —(j + 1) #{[d0] +js7 47/~ V[ da], (C.9)
I )= —% (A{,”L’ +249L + AY log i—:) (C.10)
A N= B0 4 EP, k=0,1,2. (C.11)

Here 4,,, is defined on &% and in our case of 4,, j=1 (ie, 4,=4_,). Applying
(B.10)~(B.12) for 4; with the above boundary conditions and using (C.1 1) we get

AP =2( gz AP=0, 4P=2.%, (C.12)

&

anst Pldo] = & +) (J R\gdad'z+| 2Kébods). (€.13)
@ 8%

Using (A.2), (A.3), (A.10) and the Gauss theorem we can rewrite the expression in
the bracket in (C.13) as a total variation and thus integrate over ¢. This is essentially
due to conformal invariance of the boundary conditions providing the “correlation”
of the “R” and “2K”-terms in & {”. The result is (cf. [12, 28])

6(j+1) (
re =—LE ([ 2 @00 a2

+ j Kr-0- dz) + const, (C.14)
82

coinciding for j=1 with (3.18). Note that if the boundary is flat (as in the case of
applications to scattering amplitudes; see Section 5), K, =0 and hence boundary
term in (C.14) vanishes.

As a final comment let us indicate some connection of (C.7) with operators %=
—e~ W+ Dogetiod on complex functions used in [12, 28].

According to (A.2), (A.3),

4;=—e °0,€/70,e7°, (C.15)
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or after the change of variables (4,4, =A¢_,.—>£1:.@ = Aﬁj)

-~

¢'}= e—k%" 4= __e—zutm+uaaeza-umaﬂ_ (C.16)

Note added in proof. Recently we derived the general formula for the string scattering amplitude in
the context of the N+ oo QCD [41].
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