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Motivated by the study of ultraviolet properties of different versions of supergravities
duality transformations at the quantum level are discussed. Using the background field
method it is proven on shell quantum equivalence for several pairs of dual field theories
known to be classically equivalent. The examples considered include duality in chiral model,
duality of scalars and second rank antisymmetric gauge tensors, vector duality and duality of
the Einstein theory with cosmological term and the Eddington-Schridinger theory. & 1985
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1. INTRODUCTION

There are examples of field theories having different lagrangians and variables
but possessing equivalent equations of motion. If a transformation between these
theories can be carried out through the use of the first order lagrangian it is called a
dual transformation. For instance, a free scalar is dual (in d=4) to a gauge
antisymmetric tensor, an abelian vector is dual to a vector, etc. The use of such
duality transformations for construction of versions of supergravities, which are dif-
ferent off shell but have equivalent equations of motion, is well known in d=4
[1-3] and in d>4 [4]. An important issue is quantum equivalence of these dual
versions. It was already noted [5, 6] that dual field representations yield different
“topological” anomalies. Leaving aside this “topological” difference (which is absent
under certain boundary conditions) one can still raise the following question: Is it
possible that one of the dual theories has better ultraviolet properties than the
other?

Recently [7] we have carried out the explicit calculation of infinities in a d=4
theory, which follows via “trivial” reduction from N=1, d= 10 supergravity [8],
and have shown that this theory is one-loop infinite as is its dual, namely, N=4
supergravity interacting with six N=4 vector multiplets [9]. This suggests a
negative answer to the above question. The aim of the present paper is to support
the negative answer, proving the on shell quantum equivalence of dual theories.
Thus no principal advantages can be gained by going from one dual version to
another at the quantum level. It should be noted here that, asserting the

_equivalence, we are interested mainly in infinities of S-matrix and thus ignore the
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already-mentioned differences in anomalies [5] and also local anomalous finite
terms in some amplitudes induced by point transformations on spinors which may
accompany duality transformations in supersymmetrical theories [10].

To construct a dual theory one rewrites the initial lagrangian #(¢) in the first
order form (linear in derivatives) using the auxiliary (Lagrange multiplier) field
¢: Z,(¢, ¢). Eliminating the original variable ¢ on its equation of motion one finds'
some constraints on ¢. Solving the latter ¢ = ¢(p) we end up with a dual theory
P(®), which is classically equivalent to the original one. However, there exist
theories which are equivalent on the classical equations but are not related through
duality transformation (we shall call them “pseudodual”). For example, it is
sometimes possible to rewrite the equations of motion for ¢ in terms of some new
set of variables ¢’ and then to restore the corresponding lagrangian %'(¢’). Such
pseudodual transformations include, in particular, the reparametrizations
@' = F(¢). With F being nonlocal the equivalence theorem cannot be applied, and
thus pseudodual theories may have different S-matrices. The point that dis-
tinguishes true dual theories is the possibility to relate their path integrals by the
chain of formal functional transformations (insertions of d-functions and gaussian
integrations). It is this relation (absent for pseudodual models) that is the main
reason for on shell quantum equivalence of the dual theories. .

Let us now explain what is understood by “on shell equivalence.” One certainly
cannot equate Green's functions for dual variables (though correspondences
between averages of some composite operators may exist). It is possible, however,
to identify the on shell background functionals® [11], expressed in terms of the on
shell values of all other fields y in the theory (with “dual” fields ¢ and ¢ being
expressed in terms of ¢ using their equations of motion). More explicitly, if

- [dpdyer{-sorodsn+soor (D)} an

and W is the analog of W for S substituted by S, then®
WLeo(Wo), ol = WIGo(¥o), ¥l (1.2)

where ¢,, ¢, and Y, are solutions of the corresponding classical equations.
Equation (1.2) is sufficient for the equivalence of the y-sector S-matrices (and
hence, in supersymmetrical case, of the complete S-matrices), equality of -
functions, etc. Note that if we are not assuming ¥ lying on its mass shell then W
and W are gauge dependent and (1.2) in general breaks down.

! Note that dual theory is local only if this elimination can be carried out algebraically.

2 Or “reducible” effective actions, generating reducible connected graphs. Note that at one loop W
coincides with the “irreducible” effective action I, defined in [12].

3If § is independent of ¥ the analog of (1.2) is W[ @] = W[ds(®0)]-
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To give a heuristic argument for the validity of (1.2) let us assume that the dual
theories have equal vacuum (or temperature) partition functions, i.e.,

[ do @y exp(— (0, ¥))= [ dg dp exp(~3(@, ¥)) (13)

This assumption can be justified by translating all steps of the dual transformation
into the path integral language. Then the same functional transformations which
prove (1.3) can be used to establish the relation

[ do dp exp(— S0+ @0, ¥+ o)) = [ 4B dh exp(=3(3+ o, ¥ + o)), (14)

where @4, ®o, ¥, again are on shell values. The validity of (1.4) is due to translation
invariance of the functional integrals involved in the quantum dual transformation.
Now we observe that (1.4) simply coincides with (1.2).

Below we shall justify Egs. (1.3) and (1.2) for several examples of dual models.
We start (Section 2) with a discussion of the dual transformation in the principal
chiral model. Employing the parametrization in terms of currents we find that the
theory of [13] is a pseudodual one, construct (for d=2) the true dual model along
the lines of [14] and prove the quantum equivalence (1.2) of the latter with the
original chiral model. The statement of equivalence provides a general explanation
to the observation [14], that both dual theories have equal one-loop f-functions.
We also consider the dual transformation for d> 2, which leads to a theory of
interacting antisymmetric tensors.

In Section 3 we investigate the duality between a scalar ¢ and a gauge antisym-
metric tensor A,,, which is important for supergravity. We first check the
equivalence of the two quantum theories in external gravitational, vector, etc.,
fields* and then generalize the proof to the case when all fields are quantized. Again
our statement of equivalence (1.2) explains the result of [19], where it was found
that the one loop on shell infinities in “gravity plus ¢” and “gravity plus 4,,”
systems are the same. We also remark that (contrary to some claims [20]) no
essential complication in quantization of the dual A4 ,,-theory arises in the case of
the scalar—vector coupling through the Chern-Simons current.’

Two more examples, namely, duality transformations for (abelian and non-
abelian) gauge vectors and for Einstein gravity with A-term are analysed in Sec-
tion 4. The Einstein theory is dual to the Eddington-Schrédinger theory [23] with
dual variable being symmetrical connection. The quantum on shell equivalence of

41t should be noted here that the correct covariant quantization of the free antisymmetric tensor
gauge theory (as a theory with the reducible closed gauge algebra) on a gravitational background was
first given in [15] and later in [16]. The general quantization schemes for theories with reducible open
(or closed) gauge algebras were worked out in [17, 18], correspondingly, in the lagrangian and
hamiltonian frameworks.

5 As was noted in [21] such coupling appears in gauged SU(2) x SU(2) N =4 supergravity of [22].
Analogous couplings are present also in d> 4 supergravities, e.g., in d= 10 [4].
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these theories implies that the latter is non-renormalizable, as is the former [24]
(cf. [25]).

The practical conclusion of this paper is that it is not possible to improve non-
trivially ultraviolet behaviour of the theory by changing one dual model for
another. This does not, of course, exclude the importance of dual transformations
in some technical questions, e.g, in study of different coupling regimes (cf.
[26-29]). Also, the cancellation of anomalies in certain dual versions {3, 6] may be
important in some “off shell” problems [21].

2. DuaLITY TRANSFORMATIONS FOR CHIRAL MODEL

We shall start with the principal chiral model langrangian

L =—tr(d,Ud,U"), (2.1)

2;12

where U=e¢“€G and G is some compact group with the algebra g (¢ € g). The
corresponding classical equations

8, (U, U"")=0 (22)

can be rewritten as a set of two equations for the current

0,J,=0, (2.3)
F,(N=0,J,—0,J,+[J,.J,]=0. : (24)

Solving (2.4) we get
J,=U38,U! (2.5)

and thus establish the equivalence of (2.2) and (2.3). If, following [13], we solve
first (2.3) (taking d=2)

J,=6,0,l, leg (26)

and then substitute the result in (2.4) we find an equation for { which can be
obtained from the lagrangian [13]

1
#'= st (0000 +3enL 0,0 0,0) @7)

As was shown in [13], the quantum theory, based on (2.7), is inequivalent to the
initial one, corresponding to (2.1): one loop S-functions for A and A’ have opposite

signs and there is particle creation in the theory (2.7), while it is absent for (2.1).
Thus (2.7) is “pseudodual” to (2.1).
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The reason for inequivalence lies in the impossibility to carry out the transfor-
mation from (2.1) to (2.7) at the quantum level. To see that Eq. (2.3) never arises in
the chiral model quantum theory (and thus { cannot be introduced) let us rewrite
the formal path integral for (2.1) in terms of the current

Id(p exp{—éjddx tr (0, %0, e‘“‘)} (2.8)
=j¢u,‘ dp 8(J,—e® 3, e *) exp {-21? :rJ:} (29)

1
=Cjau,, 8(e,,F,;(J)) exp {ug tr .12} (2.10)

(throughout this paper we neglect all local measure factors, irrelevant in dimen-
sional regularization; also, we often do not indicate explicitly [d“x in the
exponents). In order to prove (2.10) one is to use the following general formula:

[ @x,6(fx)) 4(x)

= [ @y, [det K,,(y)/det M. ,(y)]" A((y)) (2.11)

where i=1,.,n, a=1,.,m A=1,.,n—m, f,(x)=0 has the solution x'= x'( y) (if
there are several solutions, one is to sum over them in the r.hs. of Eq. (2.11)) and

ax’ ox' af, 3f3
e o) S .12
9yt oyt My (Bx ox, =R (212)
In the case of our interest
x—d,, y—=e, Jo =€ F (J), X—>e®d, e ? (2.13)

Taking into account the “pure gauge” nature of J,, one finds (g, b= 1,..,, dim g).
det K, = det(—d,,0), det M4 — det(—9,,0) (2.14)

and thus (det K/det M) = 1. This proves the equivalence of (2.9) and (2.10).

As was already claimed, Eq. (2.10) suggests no connection with the pseudodual
model (2.7). Rather it makes it possible to define the true dual model for (2.1) (this
was first noted in [14], where, however, the equivalence of (2.10) and (2.8) was not
proved). lntroducmg an auxiliary field ¢=¢%“ (+° is a basis in the algebra g,
tr(t,5) = —20,4, [ta) ty]= fosct.) One can rewrite Eq. (2. 10) as

Z= [ arg g exp {33 90, 5,0 = ") ) 215)
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Next, one is to note that the (gaussian) integration over J, is easy to carry out
exactly with the result

Z = dp exp(—3(¢)). (216)

1
P =3 (2,,0,8°) N0 (e15 054°),
Nab 5«& v_:fabcgscgw’ N.N—l =1. (217]
More explicitly, N~ ,,=Cé,, +ie,, D, C?=06%+ -+, D= —f%¢c} -+, we get
P u " u

(74 =% {C*(¢) 2,0° 0,4° + ie,, 2*($) 0,4 3,4°}. (2.18)

The classical equivalence of (2.1) and (2.18) follows from the observation that the
action in (2.15) is the first order action for (2.18) and at the same time, when
calculated on shell (J,=U8,U""), coincides with the chiral model action
(S(¢, J) sy = S(@), S(o, J),(,,_:s"w)) Varying the former with respect to ¢ and J
one finds

F, (J)=0, J,=e*d,e”", (2.19)
Ji=ie ,@‘,’b(lwb or Jo=iN~ "‘f{¢) £,,0, #°, (2.20)

where D% =59, + f**J. Equation (2.20) defines the classical correspondence
between the dual variables ¢“ and ¢°. Being nonlocal (like the one given by (2.6)),
this transformation (in contrast to ¢ — {) can be carried out in the path integral.

Now let us prove the quantum equivalence of (2.1) and (2.18). As was aleady
stressed in the Introduction, it is inadequate to try to compare the standard Green’s
functions for ¢ and ¢. In fact, the dual transformation is impossible if one adds a
source term ij¢ in the exponent in (2.8). If the source is introduced for the current,
ij,(e? 8, e~ *), then the same chain of transformations which led from (2.8) to (2.16)
gives

ZLj]=[dpe=" 38, )=5)lop-aurammnic  (221)

Thus the correlation functions for the currents in the ¢-theory can be expressed in
terms of expectation values of some non-linear composite operators in the ¢-theory.
This off shell correspondence is obviously inconvenient. A more direct one,
advocated in this paper, is possible if one goes on shell and compares the
background functionals (1.1) in both theories. It is easy to prove the analog of
(1.2), namely

Wigol= WIdo(®0)], (2.22)
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where ¢, is a solution of (2.2) and ¢, is the corresponding solution of (2.19), (2.20).
We have already proved this equality in the vacuum sector (¢o=0). To switch on
non-trivial backgrounds (¢, and ¢,) one is to use the translational invariance
(¢ =@+ @y, ¢—¢+9¢) of the integrals involved. Then all functional transfor-
mations go just in the same way as in the vacuum sector (one introduces the
background values for the auxiliary fields J, and ¢, which for consistency must be
taken to be their classicl values, etc). Equation (2.22) implies the identity of f(4)-
functions and correspondence of S-matrices in both dual theories. Thus any explicit
checks of equivalence (cf. [14]) are now unnecessary.

We shall end this section with several remarks about generalizations of the
duality transformation described above. Let us first discuss the generalization to
higher dimensional (d> 2) case. Solving (2.3),

Ji=39,Bs B =B (2.23)

pZpur uv vur
and substituting this in (2.4)
d,0,B:,—08,0,B%, +f**d,B® o,B:, =0, (2.24)

Yo py o pu pZppYeTav
we get a pseudodual theory in terms of a set of antisymmetric tensors B,
¥'=0,B.,06,B.,
+ f“*(B4,8,B%, d,B:,+terms of analogous structure). (2.25)

w “pPop
Note that (2.24) is invariant under

8Bs,=8,48 A,,=A

ppv?

(2.26)

[ouv]:

while (2.25) is not. This is an interesting example of a theory with gauge-invariant
equations of motion but non-invariant lagrangian. Note that it is the interaction
term in (2.25) that is not invariant under (2.26).° This may imply inconsistency of
the theory at the quantum level (even if we neglect its power counting non-renor-
malizability).

To find the dual theory we start again with (2.8) and repeat the argument for
equivalence of (2.9) and (2.10) (now with d(¢,,F,,) = I1,.,d(F,)). The simplest
reasoning for the triviality of the jacobian factor (det K/det M)"? (see (2.11)-(2.14))
is based on the invariance of the measure dJ,[],.,d6(F,,(J)) under the gauge
transformations of J,, implying that no non-trivial (9,¢-dependent) terms can
appear in (2.9) if one starts with (2.10). It should be noted that the whole argument
is at least formal since the number of é-functions in (2.10) is greater than the num-
ber of J -integrals for d> 3. Now instead of (2.15) we get

z = drg g, exp {113 [ide, Fa (J)— (J;)l]}. (2.27)

© This is easy to understand from the absence of the corresponding Noether identity, which would
follow from (2.24) if (2.25) were invariant.
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Integrating out J% we are left with the second order dual lagrangian (cf. (2.16)) with
the dual variables being antisymmetric tensors Aj,

{3 AS N~'%(4)d,4 ,,}
(2.28)
Nab 5«& v !-fabcA;v

The classical equivalence of this model and the principal chiral model (2.1) was first
demonstrated in [30]. Here we assert that the equivalence (cf. (2.22)) holds also at
the quantum level. It is interesting to note that because of %, F,;1=0 Eq. (2.27)
possesses a new gauge invariance absent in d=2 case (cf. (2.26))

545, =D(J) A8, (2.29)

It leads to a non-linear gauge invariance of (2.28), namely, (2.29) with
Jé—iN ' 9,4% . However, the corresponding algebra closes only on the mass
shell [30], producing complications in straightforward quantization of the theory
(cf. [30, 31]). These complications are probably irrelevant if we are interested not
in the Green’s functions for 4,, but only in on shell background functional (which
is gauge independent).

Our next remark is about generalization on the G/H-chiral model case. Let & be
an invariant subalgebra of g and H,eh. Then instead of (2.27) we have

uv S uv

Z= dJg i exp { [id2, Fe (J)

(L4 HY = u:m}, (230)

where i = 1,..., dim A, a = 1,.., dim g —dim 4 (we have split the basis ¢, on ¢' and 7*).
Integrations over H, and J¢ are easily carried out. The resulting dual action
depends on A4, and is analogous to (2.28). It generates the quantum theory, which

is on shell equivalent to the G/H-chiral model theory.

3. DuALITY TRANSFORMATIONS
FOR ANTISYMMETRIC GAUGE TENSORS

Here for simplicity we shall consider only the example of scalar-second rank
antisymmetric tensor duality in d=4 (generalizations to other cases are
straightforward).

The construction of classically equivalent dual model is based on the first order
formulation. Suppose that the lagrangian for the scalar field ¢ depends only on its
derivatives, (3,9, ¥) (Ystands for all other fields). Then introducing two auxiliary
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fields we have (the imaginary unit is inserted in order to keep the analogy with
quantum path integral case)

LH=L (W) +idfu—0,0). (3.1)

Eliminating ¢ on its classical equations

6:‘"‘#:0’ A.“=Eﬂ“ﬂ]f auAﬁT’ (3.2)
we get

.‘2”,=.Sf'(f,,, W)+ ieunpy 0uAp, fo- (3.3)
“Integrating” over f, (substituting its classical value) we finish with the dual
lagrangian

-(?= "?(F_uvp! ’I’)’ Fyvp:a[uAvp]- (34)

Note that in order for Z to be local, #(f,, /) must be an algebraic function of f,,

i.e.,, .Z must depend only on first derivatives of ¢.
Let us now specialize the form of & to

L = [40,0)*+0,07,0)] Vg (3.5)

Such a (pseudo) scalar lagrangian is found, e.g, in SU(4) (or gauged
SU(2) x SU(2)) supergravity [1, 22] (any additional factors in the kinetic term can
be absorbed.in a redefinition of the metric). Here J, depends on all other fields in
the theory, e.g., vectors, spinors, etc. Following steps (3.1)-(3.3) we get the dual

lagrangian [3]
L=+ fudu+ ikl = 3,0)] V2, (36)
P=YFX—il, )’ 2  Fl=t,p 0,4 (3.7)

An apparent paradox with (3.7) is that it depends on the full “current” J,, while
(3.5) depends only on its longitudinal part

" A
JN=V V-V J =] —J} Vu=an+{pp}.

The resolution of this “paradox” is provided by the observation that in view of the
trivial invariance of (3.6) under 6J,=a,, d4,= iaj, we can always rewrite (3.7) as

P =4Fr—ill) /g, (38)
A,=A,+a,J)), Ti =8,y Vuitp,.
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Thus any of the equivalent models (3.7) and (3.8) can be called dual to (3.5). The
only advantage of (3.7) is its explicit locality. At the same time, Eq. (3.8) can be
simplified to

2 =[F)* -1 Ve (39)
The analogous factorized form of (3.5) is

£ =[40,6)*— 411 /2 .

o=¢0+VV,J,. =

The above observation also helps to clarify the following point. If ¢ interacts with a
gauge vector through the ¢F,, F3-term, then J, in (3.5) contains the Chern-Simons
current

J, = 6,05 (A2 35 A2+ L [ A5 A5 AS), (3.11)
Vo= FLEs,  Ji=sVVHELFE) (3.12)

It is JI| that is invariant under vector gauge transformations. Hence the lagrangian
(3.8) or (3.9) is explicitly gauge invariant under the independent transformations of
A2 and A4,

SAL=DP(A,) <", 6A4,,=0, (3.13)

av

64, =V, 4,9, 542 =0. (3.14)

To provide the invariance of (3.7) one is to note that under (3.13) éJ,=aq;,
ar=é,p 0,25 and thus non-invariance of J, can be compensated by the
additional transformation of 4,

2, =2F° &% (3.15)

nv v

04,,=iQ,,,
Note that A, is invariant under (3.15) and thus is a proper gauge invariant
variable. Using (3.8) or (3.9) we never confront the problem of the modification
(3.15) of the gauge algebra and thus anticipate no specific problems in quantization
of the theory. It should be stressed that the possibility of introducing the gauge
invariant variable here is due to a trivial (bilinear) dependence of the action on 4.
Thus the situation is similar to that in the theory of quantum abelian vector in
external gravitational field where one can easily split the variables on the
“longitudinal” (which drops from the action) and gauge invariant “transverse” ones.
Just the same separation of variables applies to (3.7).” Having said all this, in what

7 That is why the complicated quantization scheme, developed for (3.7) in Ref. [20], seems to be
unnecessary and artificial.
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follows we shall not specify the particular structure of J, in (3.5) since it is
irrelevant for the proof of quantum equivalence of dual models.

Before turning to the quantum theory we want to add a remark on the classical
equivalence of (3.5) and (3.7). Writing the field equations for (3.6)

futd +ih,=0, f,—8,0=0, V,i,=0, (3.16)

we find the on shell “interpolation relation” between the dual variables ¢ and 4,

0,9 +J,+ 18,05, 0, A5, =0. (3.17)

The two consequences of (3.17)
Vi +V,J,=0, &upo Vo FE—iJ,)=0, (3.18)

are recognized as the classical equations for (3.5) and (3.7). It should be understood
that (3.17) is senseless off the mass shell defined by (3.18) (in fact, it states that an
exact one-form is equal to a closed one, but such an equality is non-trivial only for
harmonic forms).

Let us now discuss the quantum equivalence of the theories (3.5) and (3.7),
starting with the simplest case when gravity and fields ¢ in J, are external. Thus we
are to compare the “partition functions”

Z[8,J1= dp exp{—[3(0,0) +3,07,1 2}, (3.19)

208, J1= dd, exp{ —Heyup, DAy, — iJ,)* /). (3.20)

Integration over ¢ in (3.19) gives
Z=exp[4(J1)? /gl(det 49)~"2,  dg= —V2. (3.21)

To integrate over 4, in (3.20) it is not necessary to use the general procedures for
quantization of gauge antisymmetric tensors (cf. [15-18]). It is sufficient to split
A, on gauge invariant and pure gauge parts with respect to the background metric

A=A+ AL +V EL -V L, V,.4;,=0 (3.22)
(A" is a harmonic two-form; we assume the space-time to be compact), to

integrate over A" and to define the integral over pure gauge variables. The
corresponding splitting of the measure is

dA=dA"™ dA* dE*(det’ 4,,)'%,  4,,,= —V2,+R,, (3.23)
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(the prime means that zero modes are omitted). Then (cf. (3.8), (3.9))
e (det'A,l)'”J'dA‘”‘dé* dA*

X EXP{HIL) — HEuap, 02 A% )?} V8- (3.24)

Shifting the variable A+ — 4+ (observing that a!!, drops from (3.8)) and integrating
over A+ we get the additional factor

(det' 4,,)™"2,  Ayty= —V?4 4 2RE, 55— 2RE. (3.25)
The integral [ d&* is defined using the relation

di,=di'"™ dEt dp(det’ 40)'2, E,=EM+EL+0,0,
1 (3.26)
J dét ~ {J dE)(det’ Au)”z} x “group volume.”

Then

Z = {exp[4(J!))? /2 ](det 40)~ '}
x {[det' 4,,/det' 4,, 1"}

x {I dA}flJ'dwm/J' dﬁ{;‘“}. (3.27)

The first bracket here is identical to Z in (3.21). It is easy to prove that the second
bracket is equal to one (we substitute 4 by ¢, 0,87 and check that d4;, =
dB;(det4,,)"?, A* 4,A* =B*(4,)*B*. The third bracket is the contribution of
harmonic zero modes which produce additional anomalous scale dependence of Z

(cf. [51)
Z~ptPZ, y=2(by— b, +by) (3.28)

(y is the Euler number and b, are the Betti numbers). The conclusion is that (3.19)
is equivalent to (3.20) up to topological anomaly (3.28) (which is absent for
asymptotically flat boundary conditions).

The same conclusion can be reached by direct functional transformation of
(3.19). Rewriting the action in the first order form and integrating over ¢ one finds

Z={di, 8(V,4,) exp{ — §(4,~ i1, \/}. (329)

Splitting then 4, on harmonic, exact and coexact parts

A=A 40,6+ 6,5, 0, AL, (3.30)
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we obtain

Z= j' 42 exp{ — YA — iTHY [z} J' dé(det’ 45)"2 5(409)
x [ dAj(det’ 4,,)" exp{— K pup, Gy~ iT,) /8}- (331)

Integration over A" and ¢ brings us back to (3.20), (3.23)® (with
dE* ~(det’ 4,) ') but now with the zero modes’ contribution subtraced.

Now let us extend the proof of equivalence to the case when gravity is quantized
(but J,=0). According to (1.2) we are to prove that

W[ g 9ol g0)]= l:"vl[&’us Ao(&o)]s (3.32)

where go,,, ¢o and Ao, are solutions of the classical equations (here we neglect
harmonic zero mode contributions assuming space-time to be topologically trivial).
We have already discussed the case of ¢,=0 and A, =0. To switch on the
backgrounds one makes the shift ¢ — ¢ + @, g — go+h, A = A+ A, and proceeds
in the same manner as in Sections 1 and 2. Namely, under the on shell condition all
terms linear in quantum fields cancel and thus simple transformations of path
integrals go just as in the vacuum case (cf. (3.6), (3.29)). We have symbolically

et = [ [dh] d exp{—So( 8o+ h)— 42,0 + 3,00 Glgo+ M)}, (333)

where S, is an action for gravity and G stands for g"” J;} Inserting
1 = df, di,exp(id,(f,— 3,9 —0,¢,)) and integrating over ¢ one at the same time
is to assume a non-trivial background for 4, (satisfying (3.17) in order not to spoil
the consistency, i.e., the cancellation of all terms linear in quantum fields). Treating
g0+ h as an effective background metric, finally we are left with

e Wlaneol =j [dh] e—Sclan::-J’ [‘Mm]

x eXp{ — (2 ,apy Ox(A g, + Aop,) 1> G(go + h) } = = VLs040), (3.34)

where G stands for the metric factor and [dA4] is a proper gauge fixing measure,
depending on g, and g, + h (we assume that the gravitational gauge is independent
of A,,).° The correctness of all formal manupulations with the path integral can be
directly checked in the one-loop approximation. Thus our result (3.32) provides the
general explanation for the equivalence of on shell infinities for gravity plus scalar
and gravity plus antisymmetric tensor theories, first found in explicit one-loop
calculation in [19].

8 We again make use of the relation det’ 4,, =det’ 4,,.
? This assumption is of purely technical nature since W is gauge independent on shell.
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If J,#0 all reasoning goes analogously (for simplicity hare we ignore gravity)
e~ "tous0i0) — [ iy dg exp{— S, (¥ + o) —4L(3, 0 + 8,90’
+ (0,0 +0,00) J,(¥ +¥o)1}

= [ aprda,,] exp{—S,( + Vo)
— ALF(A+ do)— i, +Y) T}
= exp{ - W[AO('!’O]: 'flo] }s (335}

where ¢, and A, satisfy (3.17), (3.18), while y, is a solution of the classical
equation 8S,/0y + 30,9, 6J,/8% =0 (S, is an action for ¥).

Finally, let us comment on an alternative attempt to relate the generating
functionals for Green’s functions in both theories. Starting, for example, with

ZLj,) = [ do dp exp{—S, — (40,0 + (L) +j,) 0,01} (336)

and repeating the chain of functional transformations, we end with

ZLjd = [ dp exp{—S, — 40,0, + ) O 71 3,(0,(0) +J,)}

= [ dy[dd,.] exp{— S, — Yeuup(0udp) —iT,— 5,07} (337)

Changing the variable 4 —» A4 as in (3.8), (3.9) we see that j, decouples from 4,,,
i.e., that Z[j,] does not generate Green’s functions for 4, (cf. [32]). We conclude
once more that the comparison of on shell background functionals seems the most
natural way of demonstrating the equivalence of dual theories.

4. MoRre ExAMPLES OF DUALITY TRANSFORMATIONS

We start with duality transformations for abelian vector theories. Let us consider
a prototypical example of vector lagrangian which appears in extended
supergravities

= %[fl(‘p) F;.l ,pw+!.f?.((p} By ,f.w} (4'1)

Here F,,=0d,A,—03,A,, Ft=4¢,,,;F,;, and f, and f, are functions of the scalar
field ¢ (in a realistic context there are several vector and scalar fields, f; are
matrices and there are also terms linear in F,, and bilinear in fermions). The first
order lagrangian for (4.1) is

'2?1 = }lf[fl Fiv + '!'fZF;:vF:v] + iGHv(va . zanAv)' (4‘2)
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Integrating out A, we get a constraint
0,6 =0 (4.3)
with a solution
G = 36,028 Bap> B,y =0,By—04B,. (44)

Elimination of F,, then gives the lagrangian for the dual variable, i.e., abelian gauge
vector B,

'? = %[fl Bfn' + i?ZBuvB:w]s

A 5
f=-mtp lrpEim

The quantum equivalence of (4.1) and (4.5) (understood again as in (1.2), ie.,
Wlgo, A 0o)]= Wl o, B,(9o)]) can be demonstrated in complete analogy with
the examples discussed above in Sections 3 and 4. As a by product, we conclude
that inequivalence of the finite parts of S-matrices in SO(4) and SU(4)
supergravities,'® observed in [10], is completely due to anomalous redefinitions of
spinors and not to the vector duality transformation. It is worth noting also that
the abelian vector duality transformations were discussed at the classical level in
Ref. [33], where a remark was made that these transformations should leave
invariant the S-matrix because they leave invariant the equations of motion and the
energy-momentum tensor (and hence the hamiltonian).

Next we consider the case of non-abelian vector gauge field. The analog of (4.2)
now looks like

(4.5)

S =4LN\F,, F,,+i,F, Fj

vt v

+ A4 (F5,—20,A4%2— gf 4% A5). (4.6)

Integrating over A (formally defining the corresponding gaussian path integral by
an analytic continuation) we obtain the dual lagrangian in terms of the dual
variable—now the antisymmetric tensor A3,

-~

P =i[f 42,42, + i, A2, A"

vt v

+é(a,,A;p) M~'e(3, 4" (4.7)

pa va /Y

M= [ gc M-M~'=1,

hav?

where 7, and. f, are the same as in (4.5). The limit g — 0 brings us back to the
abelian case with A, having a potential. Analogous duality transformation for a

12 Which differ on the vector duality transformation plus point transformation of spinors and scalars

[1]
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non-abelian gauge theory was considered several times in the literature [27-29].
Here we want to stress the on shell quantum equivalence of the dual theory (4.7)
and the original Yang-Mills one (for example, both theories are to have the same
B-functions for the gauge coupling g). It is also interesting to compare (4.7) with
the lagrangian (2.28) of the theory, dual to the chiral model (2.1). The invariance of
(4.7) which is the direct analog of (2.29) is generated by

0A4s,=(8"0,— M~'%(4) f*®d,45,) A° (4.8)

puv*

This gauge algebra should be taken into account in an attempt to calculate Green’s
functions, corresponding to (4.7).

Our last example is provided by the Einstein gravity with a cosmological con-
stant

& = —%(R—ZA)\/E, (49)

which is classically equivalent to the Eddington-Schrédinger theory [23]

Z=1/A/det R (I, TIi=T%,

: (4.10)
va(n=alr;v-_avrﬁl+r:ir:v_rsrrfp'

To demonstrate the classical equivalence of (4.9) and (4.10) we rewrite (4.9) in the
first order form, introducing R, and I';, as independent fields

1 _ A
%= ~ 73 (g"R,—24) Jg+iNw (rg, - {m})
+iG*"(R,,— R, (I)) (4.11)

(N and G are Lagrange multipliers). The corresponding equations of motion can be
rewritten as

- i
G~ -z J2g"  N=0, Ii= {uv}’ R,=R,(I),  (412)

R, (IN=A4g,,, V,I)g"=0 (4.13)
(note that N =0 is the origin of the Palatini principle). Here we recognize (4.13) as
the equations of motion for (4.10) written in the first order form (with g, being

auxiliary field). The corresponding first order lagrangian is a natural starting point
in the proof of quantum equivalence

z=dederexp(—S.), (4.14)

2 =% Jdet R,, +iG"(R,,— R,(I"), (4.15)
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Trading G*" for g,, by the point transformation
;
G"=—5VEg" A= -k (4.16)

we identify the G*'R,,(I") term in (4.15) as being the Einstein lagrangian in the first
order (Palatini) form. Therefore, the result of the gaussian integration over I, is
well known (see, e.g., [34]): it reproduces the Einstein action in the metric

representation, —(1/k%) [ R,,({ }) g \/g &*x. To carry out the integration over
R,, we expand it near the classical extremum
R,=RD+b R =Ag,y,

pvs

Zz‘l.dgmexp {—%I(R(g}—ZA}Jéd‘x}

x [ db,gexp {—é J2 d*x [(b"b2—2b, b") + 0(53)]}, (4.17)

where the integral over b,, contributes only in a local measure. The proof of
equivalence of the on shell background functionals

W[gn]=W[Ffw={A} ] (4.18)
uy £0.

goes analogously. A natural consequence of on shell equivalence of (4.9) and (4.10)
is non-renormalizability of the latter theory [24]. This conclusion contradicts the
claim made in [25].

Finally, we note that analogous quantum equivalence considerations can be
applied to various other kinds of dual theories (for example, to those recently dis-
cussed in [35]).

Note added in proof. Historically, the first time duality-chirality relations were noted in supergravity
was in [36]. A lagrangian similar to (2.28) first appeared in [37]. Duality between scalar and antisym-
metric tensor was first observed in [38]. Some interesting aspects of duality transformations were
recently discussed in [39, 40].
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