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We proceed with the study (started in Refs. 1 and 2) of the Hilbert space of confor-
mal field theory in D dimensions. We discuss an infinite family of secondary fields
PT generated by the action of the components of energy-momentum tensor Ty, on
the fundamental (primary) field. It is shown that the states of these fields form a
specific sector of the Hilbert space H which is determined by the Ward identities and
[2(D + 1)(D + 2)]-dimensional conformal symmetry. We demonstrate that for D = 2
the subspace H coincides with the space of representation of the Virasoro algebra. Each
exactly solvable model in the case of D > 2 is defined by the requirement of vanishing
of a certain state Q,(z)|0) C H analogous to the null vector of two-dimensional theory.
The Green functions of the fields P,T are calculated in terms of the Green functions of the
fundamental field. It is shown that all the Green functions of the type (T'PT -..) satisfy
the anomalous Ward identities. The anomalous contributions are given by the fields PE: 4
where 8’ < s — 1. The fields Qs are constructed as superpositions of secondary fields
with the anomalous contribution equal to zero, i.e. having the transformation properties
of primary fields.

An approach developed is based on a finite-dimensional conformal symmetry for any
D > 2. Nevertheless the resulting models have the structure analogous to that of two-
dimensional conformal theories. This analogy is discussed in detail. It is shown that for
D = 2 the family of models coincides with the well-known family of conformal models
based on infinite-dimensional conformal symmetry. The analysis of this phenomenon
indicates the existence of the D-dimensional analog of the Virasoro algebra.

1. Introduction

In Refs. 1 and 2 the Hilbert space of conformal quantum field theory in D dimensions
was considered and shown to have a specific subspace

HcM (1.1)
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completely determined by general principles of QTP supplied with the requirement
of [3(D + 1)(D + 2)]-dimensional conformal symmetry. The states of this are asso-
ciated with a pair of infinite sets of tensor fields

PP=pPT (z), Pi=Pi

R epey 8=0,1,..., (1.2)

of scale dimensions dY = dJ = d + s, where d is the dimension of fundamental
(primary) field 9. The fields P7 are begotten by energy—momentum tensor, and
the fields P/ by conserved currents.

The transformation properties of the fields PT and P/ are analogous to those of
secondary fields appearing in two-dimensional models.®#* Further on, it was shown
that there exists a family of models (including Lagrangian ones) defined by the
requirement that certain superpositions @, of the fields PT or P’ should vanish.
The coefficients in these superpositions are chosen from the conditions that Q,(z)
must represent primary fields (the conditions of self-consistency of the models).
Each model defined by the equation

Qz)=0, a=13,..., (1.3)

can be solved exactly in the case of D-dimensional space D > 2. Some of these
models are discussed in Refs. 1 and 2.

These analogies with two-dimensional models are discussed in much detail in
the present paper.

We are concerned with the family of secondary fields in D > 2 generated by the
action of energy-momentum tensor components on a (neutral) fundamental field.
This family results from the operator product expansions

Tuw(@)e(z2) = Y [Pl  Tw ()Pl (22) = Y [PT],....

The basis of the space H is formed by the states
p()|0), Pr(z)l0), PI*(z)|0),....

In Secs. 2-4 we shall find closed expressions for the Green functions of the fields
PT pPT ||| and study anomalous Ward identities for the Green functions of these
fields. These results are obtained for the space of arbitrary dimension D > 2 (the
analogous results for the fields P/ were obtained in Ref. 2).

In Secs. 5-7, this formalism is applied to the solution of two-dimensional models.
We demonstrate that in the framework of this approach the well-known® family of
conformal models is reproduced in the case of D = 2. The fields PT turn out to be
the superpositions of secondary fields resulting from the action of Virasoro algebra
generators on the fundamental field. The sector H (found in Refs. 1 and 2 for D > 2)
mentioned above coincides with the representation space of the Virasoro algebra,
while the states Q,(x)}|0) coincide with null vectors of two-dimensional conformal
models.
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Let us stress that our approach assumes [3(D+1)(D+2)]-dimensional conformal
symmetry in the space of any dimension D. In the case of D = 2 this symmetry is
six-parametric. Its generators

Lo, L1, Lo, L1 (1.4)
form the algebra of the group
SL(2,R) x SL(2,R), (1.5)

which constitutes the maximal finite-dimensional subalgebra of the Virasoro alge-
bra. Note that the form of the Ward identities for the Green functions of the
energy—momentum tensor is determined by the symmetry (1.4). Thus the com-
mutators [Ty (z1), T4 (z2)] of the energy-momentum tensor components are given
implicitly. Therefore, in the approach concerned, the infinite-dimensional confor-
mal symmetry arises as an auxiliary result, and is not e priori presumed. Hence
it follows that the implementations based on the Virasoro algebra, being probably
useful, are not necessary in the framework of our formalism. One can act as if
the existence of the infinite-dimensional conformal symmetry was not known. An
analogous situation is likely to be realized in the models (1.3) for D > 2 as well.
In Secs. 5-7 and in App. B we demonstrate the equivalence of the two approaches
for D = 2 in more detail. The analysis presented here may prove useful for the
construction of a D-dimensional analog of the Virasoro algebra; see, for example,
Ref. 5. In particular, the subspace (1.1) might coincide with the representation
space of such an algebra (in the case where this algebra will be actually found); and
Eqgs. (1.3), with the conditions selecting its irreducible representations. As shown
in Ref. 2, the self-consistency conditions of the models (1.3) allow one to derive, in
principle, a D-dimensional analog of the Kac formula revealing the dependence of
scale dimension on the central charge.?

2. A General Conformally Invariant Solution of the Ward
Identities in D-Dimensional Space and an Irreducibility
Condition for the Tensor T},

Consider the Green functions
GL (221 2m) = (T (2)p(z1) - - 9(Tm)) » (2.1)

where ¢; - - - ¢, are the conformal scalar fields of scale dimensions d; - - - dr,. Con-
formally invariant Ward identities in D dimensions (D > 2) have the form

m m
dy
8ZGTL, (221 -+ Tm) = — {Ea(z — x )05 — BZ [Z 20— mk)J } G(@1 - Tm),
k=1 k=1
(2.2)
2For the sake of the reader’s convenience we have included a brief review of the traditional

approach based on infinite-dimensional conformal symmetry (see App. B), as well as the con-
current juxtaposition of the latter approach to the one being presented.
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where
Gz Zm) = (p1(21) - Pm(Tm)) - (2.3)
The general conformally invariant solution of the Ward identities for®
D>3 (2.4)

is the sum of two terms of a different nature:1?
= tr
va(le By ) = G:,,(zzl T )+ G’fv (zz1+ 2m), (2.5)
where Gf:,,h (zay - - - ) is the transverse function
S:Giyu(xm e Ty) =0, (2.6)

and é;{',, is uniquely determined by the Ward identity. Note that for D > 3, Gf:y
cannot be decomposed into a sum of longitudinal and transversal components in a
conformally invariant fashion.

The two terms in (2.5) correspond to the two types of contributions’ to the
operator product expansions of T}, p:

Ty (@1)p(z2) = Y IPT] + SIRT). 27)

The state of the fields PT and RT belong to mutually orthogonal subspaces® M (™)
and M)

PT(z)|0) c M(™) RT(z)|0) c M@,
(0|P (z1) R (22)[0) = 0.

Correspondingly, the Green functions of the metric field hy, (z) (which is a confor-
mal partner! of the energy-momentum tensor)

G::u (x21 - Zm) = (hpw(z)p(21) - - - p(Tm)) (2.9)

may also be represented as a sum of two terms,

(28)

h long

G:,,(z:rl o Zn) =G, (ET1ccTm) + éﬁ,,(za:l v Bm) s (2.10)

where G&,'* is a longitudinal conformally invariant function,
1
Gh, " (221 Tm) = 82G, (2T + - Tpm) + OZCu(2T1 -+~ Tm)
— —%JppafG,\(zzl S Zm), (2.11)

bThe solution of the Ward identity for D = 2 is considered in Sec. 4.
©As shown in Ref. 1, the total Hilbert space of conformal theory may be represented as a direct
sum

M=M™ oM,
where M (™) includes the states of the matter fields, while M(9) includes the states of the gauge
fields.
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and the function Gtv cannot be split into longitudinal and transversal components
in a conformally invariant way.

In Ref. 1 the two terms in (2.5) were juxtaposed with nonequivalent representa-
tions of the conformal group

Qr and Q% (2.12)

pertaining to the energy-momentum tensor. If both the terms in (2.5) are nonzero,
then the energy—momentum tensor transforms by the direct sum of irreducible rep-
resentations:

QroQ¥. (2.13)

Analogously, two terms in (2.10) correspond to a direct sum of two nonequivalent
representations,’

Q¢ @ Qn, (2.14)
compliant to metric field h,,(z). The irreducible representations are pairwise
equivalent:%7

Qr ~Qy"%, Q¥ ~Qs.
The equivalence conditions are expressed by the following relations between inde-
pendent irreducible components of (2.5) and (2.10):

Gh @1 2m) = [ @Dl pol@~ )G (a1 2m),  (215)
where D::v’ o 18 the conformally invariant propagator of the longitudinal field h:f,f,’s,
D}, oo (T12) = (or8(z1)hor8(z2))
= O [Ous(212)010 212) + 9uo (012)00012) = S| 1 (216)
where C}, is a constant and

P
Iur(T) = O — 2 :2 § (2.17)

The expression (2.16) may be represented in the form®
2
D}, o (%12) = 85 Du,po (€12) + 85 Dyyypo (212) — 55;:»3;’ Dj po(12), (2.18)
where
2
D

From (2.15) and (2.18) the representation of éi:’ung in the form (2.11) follows.
The second condition of equivalence is given by the relation

1
D::v.pa(":) = th [-"’agpp(l') + TpGuo () + 5,”-1‘;;} . (2.19)

GL," (a1 Tm) = f dyDl% (z — y)Gh,(yz1 - - Tm) , (2.20)
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where Df:v‘:,, is the transversal propagator. The general conformally invariant ex-

pression for the propagator of the energy-momentum tensor has the form

DY, 1o (®12) = (T (21)Tpo (22)) = ér{gpp(zlz)gua(m1z)

+ Guo(02)0e) ~ b s (220

In the space of odd dimension this expression is given by a well-defined function
and may be represented as®

1

Dt @12) ~ B o (0°) i —
where
Ht.r ..-. (D 2)
ﬂ,,p,( ) = (D= )3 1,0,0,0, — (5,,.98,,6., + 0u00,0, + 6,,0,0,
1
+ 6;;96#6'9)[] + m (JWBpB,D -+ JNB“BUD)
1 2 2
+ 3 Gupbue +8u08p) 07 = 15— 1)5 o W } , (2.23)
H:};IP,—H:LM—H:,W, H:‘:‘PO'_

u)rr(az) 4\1' P 6:) = DzH;rupo(az) (2-24)
8“Hff,,m( ):0. (2.25)

In the even-dimensional space the expression (2.21) diverges due to the singularity
of the factor (z2,)~P. Let us redefine this propagator as follows. Introduce the

conformally invariant regularization by the addition of a small anomalous correction
to the dimension I of the field T},

lr=D—1&=D+e. (2.26)

The regularized propagator D#, po Tesults from (2.21) after the substitution of the
factor (x2,)~P¢ for the factor (z2,) L. Define a new propagator for the space of
even dimension D > 4 by

DT i (1‘12) = hm E‘D‘w W(Ilg) (227)

pu,po

Resolving the ambiguity with the help of the relation®

2\-D—¢ _ 1 7D/24-D/2 OP/2
(‘r ) ls—}(] . € I‘{D)I\ (2}-2_) 5($) 3 (2'28)
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one gets

DE;:;,(Iu) ~ HE, 0 (0 )EI"QQ__‘l o(z12), for even D > 4. (2.29)

Depending on a parity of space dimension, either (2.22) or (2.29) is used in the
relation (2.20).

It is convenient to introduce the projection operators P** and P°™¢ into the
transversal and longitudinal sectors accordingly. Owing to (2.24) the latter is done
in a manner which is natural to conformal theory, by setting

r 1' r
P;v,pa (62:) = ﬁmv,w(az) 1 (2'30)
1 2

Plont (37) + P, 0 (0%) = = (5,,p5,, + 8podup — 55#.,5‘,,,) . (2.31)

One can easily check that the thus-defined operator Pi‘:,’f‘gd has the properties
P%.(0%) Pars (07) = P05, (6%), (2:32)

ti 2 X
P8, (0%) = 03Py, po(87) + 85 Puppo (%) — 0B Papa(07),  (2:33)
where
1({D-2 1 1 1 1
Pﬁ.pﬂ(ax} -3 ﬁa.uapaaﬁ — (0up %0 +5m3p)a 23 5__16.003# E] .

(2.34)

Furthermore, one can explicitly check that the longitudinal propagator (2.16) sat-
isfies the relation

Plone (851)DE , (z12) = Dy ar(212) - (2.35)
As follows from (2.22), (2.29) and (2.30), the transversal propagator of the energy-
momentum tensor satisfies the relation

1\ Tstr _ nTtr
P;.tx.i,pa(as )Dpa't.hr (.‘1‘.‘12) =T ‘Dpvt,.\'r ” (2'36}

Using these relations one finds from Eqs. (2.15) and (2.20) that

P, 0o (07)G o (@21 ¥m) = GJ" (2217 Tm) 5 (2.37)
Plone (9°)GhlovS (g, - - £m) = GLLo (221 -+ - Tm) - (2.38)

Note that the remaining pair of irreducible functions, GT and G*, do not satisfy
similar relations. Each of these functions has both the transversal and the longi-
tudinal components, and only the whole sums possess the property of conformal
invariance. As shown in Ref. 1, the requirement of conformal invariance allows one
to reconstruct the transversal part of the function @E, uniquely from the longitu-
dinal part which is known from the Ward identities provided that one chooses a
certain realization of the representation Q7. The choice of the realization in this



4844 E. S. Fradkin & M. Ya. Palchik

case is imposed by the orthogonality condition (2.8). As shown in Ref. 1, the latter
allows one to separate out the contribution of the gravitational interaction into the
Green function (2.1) in an explicit manner; see below.

A summary consists in the following. The general solution of the Ward identi-
ties (2.2) represents a sum of the two conformally invariant terms (2.5). The first
one, wa is uniquely determined by the Ward identity and the requirement of the
conformal symmetry. The second term is transverse, and may be expressed through
the Green function of the metric field by Eq. (2.20). In the space of even dimension

this equation takes the form
GE:"(:L'I1 D) = DD/zP vpa(az)< po (Z)@1(21) - pm(Tm)) - (2.39)

In four-dimensional space it coincides® with the equation of linear conformal gravity.
The longitudinal part G21°" of the Green function G%, = (hu; * -+ ) does not
contribute to (2.39). It is determined from Eq. (2.15) and may be calculated directly
from the Ward identities:

Ghiene iz -+ 2m) = ~2 [ dyDyp(z ~ YO Tye Wor(@1) - om(an), (240
where D, ,(z) is the function (2.19):

Dpv,p(x = y) = Pp,}\f (az)D::v,Af(I s y) ¥ (241)

Thus, the functions

G, and Ghlws (2.42)
are determined by the Ward identities, the function @ﬁy remains arbitrary, and
the function G7.}* is expressed through it by Eq. (2.39) (or a similar one for odd
D) To this pair of functions (2.42) a pair of equivalent irreducible representations
Qr ~ Ql‘“’g corresponds.

According to Ref. 1, the Green functions (2.42) describe the contribution of
matter fields into energy-momentum tensor, while the function G® s 8 well as the
transversal function G’T r which expresses through it, are related to gravitational
interaction. To this pair of functions, G’T“r and Gh 4y another palr of equivalent
irreducible representations Q“' ~ Q" corresponds

Due to this, the theories which are free of gravitation interaction are selected by
the following condition: the energy—momentum tensor transforms by the irreducible
representation QT. Its Green functions coincide with éz'v:

(T @)1 (21) -+ Pm(@m)) = Gy (321 Tm) » (2.43)

and, in virtue of the above arguments, are uniquely determined by the Ward iden-
titzes.

The condition of irreducibility was formulated in Ref. 1 in terms of the equation
(for s > 2)

[ du18436s,..p @110 T s 01)0(02) - o)) =0, (248)
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where the function C—';' = C‘ .a,uv 18 the conformally invariant function of
the type
C3, (x12273) = Ch ..o o (312223) = (P (z1)D-a(22) P (23)) - (2.45)

Below the symbol o will stand for the pair of quantum numbers of the (symmetric
and traceless) conformal tensor

P,(z)=P. (), o=(,s). (2.46)

K1 pha

The amputation is equivalent to the substitution’
c—»a=(D-13).

In particular, the argument z, is amputed in (2.45), which is equivalent to
the change
wa(z) = ¢p-d(z) = p4(x) - (247)
The explicit representation of the function (2.45) is found in Refs. 1 and 10. It is
not used in this discussion.
As shown in Ref. 1, the condition (2.44) is equivalent to the equations

GL¥ (a1 Tm) = Gl (z21 -+ Tm) = 0. (2.48)

In what follows, only the models where these equations are satisfied will be con-
cerned. It is essential that all the Green functions of metric tensor are longitudinal.
In such models the propagator (2.21) is well defined in any space dimension, both
the even and the odd. The reason lies in the fact that the only contractions with
the propagator (2.21) in these models are

f dz dy hyo8(z) DY, 0 (z — Y)her®(y) , (2.49)
where h}f,fg is the longitudinal conformal field
R28(z) = Buhy(z) + By hu(z) — %6#.,8Ah; (z). (2.50)

The transversal part of the propagator Dw oo+ Deing divergent for even D, disap-
pears from (2.49) due to the fact that the functions h,, are longitudinal. However,
dealing with practical calculations, one should introduce the conformally invariant
regularization (2.26). The regularized propagator (2.21) reads

DEv,pa' (xlz) ( ( ) (32))

= 2 1
= CT Q.up(xlz)gva (312) + Guo (312)91&,0(312) = Eapvapo] W .
1

(2.51)
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Correspondingly, the Green functions of the field hi?,‘,“ in the contractions (2.49)
should also be generalized by an addition of the anomalous correction to the dimen-
sionly =D —lp:

hol=D-15=-¢. (2.52)

Consider the expression (2.51) in the space of even dimension D > 2. Calculating
its divergence, we find that

i ” _ D—-1+¢
Dy po(T12) = €Cr[(D ~1+€)(D + 1 ~¢)] 1{6#6,,8‘, "3 D129)
1 s =
X (Jppa,, + Jwap)[j — '(D—-l_e')"iépga.un}(mlz) Bl .
(2.53)
Defining the derivative of the propagator (2.21) as the limit
80T (21T (22)) = Jim B34 (T3, (20)T, (22)) (2.54)
we get the Ward identity
85 (T (21)Tpo (22)
D-1 1 D_2
= C74 8,0,0, — —-2-5—(6,,,,8, + 8,,0,)0 — -D—ZJNSPEI 077 §(z12),

where Cr is an independent parameter of the theory analogous to the central charge.

8. The Green Functions of Secondary Fields PT

Consider a theory satisfying Eqgs. (2.44). As was already mentioned above, the
Green functions G’f:,, and G"f:,, coincide,

Gl (@21 - 2m) = (T (@)91(21) -+ Pm(@m)) = G7 (@21 -+ Tm),

and are completely determined by the Ward identity. To calculate them it proves
helpful to apply the method of conformal partial wave expansions. The latter are
shown! to include two terms,

Gl (@T1 - Tm) = Z/dy; dyz CY,, (22131) Do (112)G1, (1272 - - Tm)
+ Z / dyl dyﬂ C'gpv (33713}1 )-Da'(yIZ)Gga (yzzg s 'Im) . (31)

All the notations are explained in detail in Refs. 1 and 2. Two independent sets of
functions, CY,, and C3,,, are found in the next section.
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A general solution to the Ward identities contains, together with (3.1), the
additional term

> / dys dya C157 (z2131) A7 (412)Gh, (1272 Tm) (3.2)

where
Ci (z12223) = (Fo(z1)p(22)(22) T}, (23)) (33)
6:“035;6 (I1$2$3) =0. ’

The poles of the kernel G’:{:' in the o variable determine the Green functions of the
fields RT; see (2.7). The condition (2.44) is equivalent to the requirement

GL (z1--am)=0, or RT(z)=0. (3.4)

Consider the kernels GT, and G2, of the expansion (3.1). According to Ref. 1 they
are represented by

Gio(z1++Tm) = f dz dy G, (:129)GE, (yzza -+ Zm) (35)
G =+ ) = / dz dy G5, (@12y)GT, (yaza - - Zm) (3.6)

where éfw(xlxzzg) and égw(m’]ngs) are independent invariant functions of the
type (Po(21)¢D-d, (2)huv(z3)), orthogonal to the function (3.3) (see Ref. 1):

/ dys dy> €5, (z10112)CLe” (z2t112) = f dy1 dya €3, (z19132)CI57 (z23132) = O

for all o/, 0. Due to transversality of the function C;;;” both of the functions C_Jﬁw,
i = 1,2, are longitudinal,

5 (@12233) = (Po(@1)pD-a (22)WipS(2a)),  i=1,2,
and have the form

éﬁw (z1z273) = 05° By, (T172%3) + 0,° B (717273)
2
— -56“,,8? B}, (z1z223) , (3.7)
where

B;‘(Iwzz;;) = ng‘ul_..#‘ (:171..“'.'233)
B {"ia (212225 . (2322)

- 1 - * e
+ g~ [Z Gun (T13)N0 4, o, (T3T2) — traces} }A}‘(zlxﬂa) .
13 | k=1
(3.8)
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Here we have used the standard notation

Ai‘(zlzzza) — (I?s)_ I+di —a—2-D (zga)__ l+d] —a42-D (z]z;z)_ I.—d] —a424D : (3.9)

AL (®122) = AT (2122) - - - A3 (Z122) — traces,

(3.10)

223 (2127) = (z21)s _ (%31)u

2 2
Ti2 T3

where i means that the index p is dmpped and the function g, (z13) is given by
the formula (2.17). The coefficients &; in (3.8) can be found from the orthogonality
condition.! Their precise values are redundant in what follows.

The fields PT correspond’? (see also Ref. 11) to the poles of one of the ker-
nels (3.5) and (3.6) [depending on the choice of the functions Cf,, in (3.1)]. Let
this kernel be Gb,. In Sec. 4 we demonstrate that its physical poles are exhausted
by the poles at the points ! = d + s. The other kernel, G7,, has no physical poles;
see Sec. 4. The Green functions of the fields PT are determined! (see also Ref. 2)
by the equations

(PY (z1)pa2(z2) -+ Pm(zm)) = A] res Gf, (21" Tm), (3-11)

T=0,

where AT are definite constants,®!!

os = (ls,8), lg=dy +s.

Using (3.6) and (3.7) we find that

( Bl e (zl)w2 (..":2) o "Pm(xm» = _2AT o i fdyl dya B2:J B1tefhs (Ilylyz)ayn

I=d; +

X (T (y2)p1(11)p2(22) -~ om(Tm)) - (3:12)

Thus the Green functions of the fields PT may be calculated directly from the Ward
identities.

The technical subtleties in evaluation of the right hand sides of the equations
of the type (3.12) are considered in detail in Ref. 2 on an example of the fields P?
and in Sec. 6 on an example of two-dimensional field theory. One can show that
the final representation for the Green function (PT ---) takes the form

(Pione (@1)2(22) - m(m)) = P, (2,0)(01(21) - om(zm)),  (3.13)

where PT = PT

4i1...u, 18 the tensor differential operator of the rank s + 1:

PT(2,8) = P,,..n, (X1 - T3 8,...,8°). (3.14)
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In the general cased D > 2 the expressions for these operators are quite cumbersome.
As an illustration, we write down the formula for the simplest one: PE = F¥lui.
In the condensed notation (d; = d2 = d, d3 = d4 = A) one has

P (z,0%){p(@1)@(@2)x(%3)x(24))

d
= /dxs{cﬁ,,(mlmglms)é}:’ + B"’:’Cﬂ.a(ﬁxﬂi‘:s)
A 3 Aatscﬂ
+ G (2123]25)95° + D% o (T123|Z5)
A
+ Ol er2alzs)O3 + 505CR, (Brzales) boles)p(aa)x(as)x(as),
(3.15)

where
1 i
Ci ,(z122|25) ~ { [m + 0!2] 232900 (%12) 0z 6(15)

2 T
+ D—Hmfzgw (212)8;°07°6(z15)

|:2(g ; zd) +2&2(D -2 — 2d)] Gpo (212)(212)r076(15)
B 253:21) (%12)ugor (£12)07°6(215) + 421: 21) (212)00;°0(z15)

2d(4d + 2 — D)
D+2
4d(d +1)
— D+2 (5“,5(:315)}.

To obtain (3.15) we use the same technical tricks as in the derivation of the
differential operators P; see Ref. 2. The expression (3.15) underlies the derivation
of differential equations for the Green functions (pppy) and (p@xx) obtained in
Ref. 1 for the models defined by the equations

QL@ =0, QU(z)+pQ}(z)=0.

Equations (3.12) determine the Green functions of the fields PT of the first gen-
eration:

—260d(D -2 — 2d)] Guo (T12)0(z15)

Ty (@1)p(e2) = ST

a

dThe case D = 2 is remarkable for its simplicity: the derivatives of the highest order in the
operators (3.14) cancel, and the order of the operators becomes s. Their explicit expressions are
quite simple and are presented in Sec. 6.
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The fields of succeeding generations are treated similarly. They arise in the operator
product expansions

Ty (@) P (22) = 3 [P],  Tw(®)Pi(za) = Y [P5*?], ete.  (3.16)

Denote the field of the kth generation by
P ®)(z) = Ppox-i(z). (3.17)
The set of such fields spans the basis of the operator product expansions

T.ulvl (zl)Tmrm (-‘32) . Tﬂ-hl’k (3&)@(3) . (318)

The Green functions for any field (3.17) may be evaluated directly from the Ward
identities and are determined by equations of the type (3.12):

(PT®) (1) pa(22) -+ @rm(Tm)) = AP / dyy dya BE)o1 701 (311 5) B2

X (T (y2) PTED (1)p(22) -+ m (T )) -
(3.19)

The formulation of the conditions leading to the appearance of the entire set
of secondary fields PT in the operator product expansion T),,¢ did not belong to
the list of problems we intended to solve in this article. One can show that for
D > 2 the solution depends on the behavior of the product T, (z1)T,a(22) at
neighboring points. As shown in Refs. 1 and 12, the expansion may have three
kinds of operator contributions,

Ty (21)ToA(22) = [Cr] + [Pr] + [T (2)] + -+ (3-20)

where [Cr| is the c-number contribution and Pr is the field of scale dimension
Ilp=D-—2:
Pr = PP 7(z). (3.21)

Note that the field Pr(z) can be easily shown to be a primary field, while the
field T,,.(z) belongs to a family of secondary fields generated Pr. The c-number
contribution to (3.20) is absent for odd D.+!2

In the work to follow we shall show that the theories which do not imply the
introduction of the field Pr(x) have just several fields P depending on the choice
of anomalous contributions to the third term of (3.20). The theories with the field
Pr(z) being present comprise the complete spectrum of fields PT for s = 1,2,....
(The field PE of dimension l; = d + 1 may exist only under a definite choice of the
anomalous contribution to [T}, ]; see Ref. 1). In such theories [with Pr(z) # 0] the
formalism developed here should be slightly completed. This will also be done in .
the other publication.
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All the above remains valid for the theories in any space dimension D > 3. The
case D = 2 is exceptional. The expansion of the type (3.20) has the form

T (21)Tpo (z2) = [Cr] + [Tp] +---, D=2, (3.22)

where Cr is the central charge. The fields PT, s = 2,3,..., exist for any Cr,
the case of Cr = 0 included, and represent the superpositions of secondary fields
introduced in Ref. 3.

4. The Green Functions (PTT),,) and the Anomalous
Ward Identities for the Secondary Fields

Consider the Green functions

Gs. (z12223) = (P (21)9(22) T (23)) » (4.1)

where the dimensions of the fields ¢ and PT are d and d, = d + s. In order to find
its coordinate dependence, let us consider the conformally invariant expression for
the Green function of the field P! for [ # d + s, and then take the limit [ = d + s.
The general conformally invariant expression has the form

(P sy @1)P(@2) T (7)) = A1y o, (212238) + A2C sy ., (172T3)
+ A3Cs o, (@12273) (4.2)

where A;, A, A3 are arbitrary constants,
C v o (B1€2T3) = NZ3 (2122) N2, (w322) A (212023) , (4.3)

1 a8
C" 2t g (@1273) = zT{ZA:i...ﬁ....ﬂ.(xsxz)[gm(mn?(z:zz)
13 \ k=1

2 z3
+ Gvps (.’.l'.:n)z\ﬁ’ (lez) + 56,, a2 /\zl (zzxa)]

— traces in py + -+ U }Aé‘-ﬂ(mxzxs) ) (4.4)

-

1
C,3mam -, (T17223) = @( Z ’\E ko (xaxz)

k,r=1

X [gp,,;.(mlg)g,.,,(zlg) = %‘Snv‘sprm] (4.5)
— traces in gy - -+ iy A%‘«‘(wﬂzza) y
Af(@izazs) = (ad) T (@) (@)
As in the case of the current, each term of (4.2) is singular in the limit
lodr=d+s. (4.6)
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To prove this, one can perform the contractions in indices u, ux or v, ux, k=1,...,s,

in (4.2), or calculate the derivative by 6%3. As a result of cumbersome calculations
one obtains

1 -]
(P, (21)0(22) T (23)) = {Az\f.:m#, (3m2)X5* (z172) + B = > (90
k=1

X (Z13)A5) . e (T3T2) — traces in p; - --p._,]}

(zlz) I+d—u— D(;!:l‘3 I—d—a4D (323) dta— IiD

(4.7)
where
1 D-2
A=A(Z,s)=5[(D—1)[!—d)+s]A1—s (D—1+d+s)Az,
1 2 (44)
B=B(l,s) = _5A1 + (Z—d— —5)A2+(s— 1) (! —d—s— D+ 2)As.
The expression (4.7) contains factors
(@3)F (@), e=l-d-s, (49)
singular in the limit
e—0.
Setting
A; = D(D —2)A;, Az = DA; (4.10)
we get

A(‘a 3)'5—)0 o B(I, s)ls—bﬂ ~E.

If the condition (4.10) is satisfied, the r.h.s. contains the ambiguity 0 x oo,
D+s
e(213) -5 (x33)" 77,

which is revealed to produce quasilocal terms. Though each term of the sum (4.2)
has poles

1‘85;_4+,G S e (z1z2z3) #0,

their combination

D(D - 2)0’11-"! s T Dc’hv‘m e T 0’3#%#1 “Ha (4.11)
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is finite. Indeed, up to the terms ~ ¢ the latter may be put into a form of the
function explicitly regular at the points (4.6):

(Pd+’($1) ( ) .I:.W(IB)>mg
= (PF*+e (1 )p(22) Ty (23))
= g0{(@3s)™ " R (0%)[(ads) T AL, (B522)] 4+ O(e) }aTy) M T

B pha
(4.12)
where g% is a constant,
) B thy 5 e tog D Ca
Ruw(0%)= |0 40 v—p5=5(0 u8 v+ 8 .08 ,)—trace|,
(4.13)
I — —
8 n= 3 T 3 B
Let us define the Green functions (4.1) as the limit of the expression (4.12):
(P (21)¢(22)T s (23)) = Bm (P (21)p(22) Tw (25)) reg - (4.14)

To resolve ambiguities 0 X co due to terms ~ O(e) is performed in the same manner
as for the Green functions of the current in Ref. 10. Thus, for the Green function
(4.1) we get

(P @r)olen) T e2) = 93(h) 5 { @) 27 8,57

2 +T3 T3 +—T3 —T3
__D—2(a“ 8, +8, 0, )—trace]

x (a2) 2N ($3$2)}(¢($1)‘P($2)) s, PED

where g4 is the coupling constant, and the dots stand for quasilocal terms. In
general, these terms depend on two parameters; see Ref. 10. For s = 1 they read

1= [ - (a“-'s +2D ("‘2)") 8(z13) — trace in p, v] (@2) %+ (o v).

T12
The Green functions (4.15) satisfy the Ward identities

82 (Pate ., (21)p(22) T (23)) = H] (87, 8(213), 07 ) (p(z1)p(22)) . (4.16)

Due to the complexity of the operator H;f, we present its explicit form only for
s =1 (and for s = 2 in Ref. 10):

D-2

D 6‘“3335(.‘313) + ‘S.um Oz,6(z13)

T
Hi,~

D 2
— = | 030(213)8" + B, 85°6(213)55" — Ba;sa(zm)a;;] . (417)
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The secondary fields PT have anomalous commutators with the energy-
momentum tensor,

8(z° — ¥°)[Top, Pa (v)] = 6P (z — y)0uPu(y) + -+ (4.18)
where the dots stand for contributions of fields
P, (z), s=0,1,...,5—1; (4.19)

see Ref. 2 for more details. Correspondingly, the Green functions of the fields P,

G,f;,m---p, (21, s Tm) = (T (2) Ps(21)02(22) - - - Pm (Tm)) (4.20)

also satisfy anomalous Ward identities:

OG22 - 2m) = —| 3 8e — 2035 — 3 eozi(a — aa)
k=1

BV ot
+ HE:O(aE! 5(2: . I]_), azl)jl <P5(31)W(32) - ‘Pm(zm»

£ HT (0, 6(e — 22),0%)(Pa-s (1)

k=1
X p2(22)  +* @m(Tm)) , (4.21)
where HT, are the differential operators, made up of the terms

(8) 1T 8(z — 2,)(8™ )", r=0,1,...,k. (4.22)

The explicit form of these operators can be found, analyzing Ward identities for the
Green functions

(Tyo (z)Pes(z1)Py(z2)), 8 =0,1,...,58—1, (4.23)

in a similar way as was done for the functions (4.1) and their Ward identities. The
expression for H’f 1 is given by (4.17). In the general case these expressions have
very cumbersome, until the proper variables and notations are found.

Let us return to the discussion of conformal partial wave expansions (3.1). As
already mentioned before, the fields P_,T correspond to the poles of one of the terms,
while the other term cannot have any physical poles. The reason lies in the prop-
erties of the functions CY,, and C7,,. General expressions for both functions have
the forms (4.2). There are three different linearly independent superpositions of the
type (4.2). In the limit I = d + s each function (4.3)—(4.5) is nonintegrable. We
have shown that there exists a definite superposition which is regular in this limit.
Choose for the function CF,, a superposition (4.2) coincident (up to a factor) in
the limit | = d + s with the function (4.15):

Jm 7, (212225) = No(Py' (21)(22) T (33)) - (4.24)
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For the function CY,, one can choose another independent superposition, for
example

Cly(z12223) = B1(0)CY}, (212223) + Ba(0)Cyy,, (T12223) (4.25)

where B;(c) and Bs(o) are arbitrary functions of the variables [, s. Finally, for the
third independent superposition one can choose the transversal function C;“;;"’:

Cl’ = AT (0)CH, + A7 (0)Ca, + AF (0)Ch (4.26)
where A (o), i = 1,2, 3, are the functions satisfying the equations [see (4.8)]
1 D-2
LD -1)-d)+31450) - 220 - 1+ d+ ) 45(0) =0,
. " (4.27)
- 5A‘f(u) - (I —d— 53) A¥(o)+(s—1)(l—d—s—D+2)A¥(0) =0.

The function (4.26) enters the third term (3.2) prohibited by Eqgs. (2.44) and has
nothing to do with the expansion (3.1). Note that at the points | = d + s it differs
from the function C3,, by quasilocal terms.

Note that the function C7,, is singular at points | = d + s, so the first term

under the sign }°_ in (3.1) has poles at o = 0,. However, the residues

T=0,s

res ]d‘y‘] dys Cfpy(mfly1)D;1(y12)G’f,(y2I2 e Tm)
do not correspond to any physical fields since

res C7,, (z1z223) = quasilocal terms. (4.28)

T=0,

The other poles, i.e. those different from ¢ = o,, cannot appear in the first term of
the expansion (3.1) either. Indeed, suppose that some field ®; = &} with lp # d+s;
has appeared from the second term. The Ward identity for the function (®;¢T).)
has the form

852 (@i(21)p(@2)Tyv (23)) = {—8(213)07* — 6(223)87* + - - - H®i(z1)p(22)) =0,
(4.29)
because the conformal fields satisfy the orthogonality condition

(@g(ﬂ?l)fp(:ﬂz)) =0, if lo#d, si=0.

Hence it follows that the Green function (®;¢T),,) either is transverse or vanishes.
However, the transversal functions cannot appear due to Eq. (2.44), and thus

(®; (x]_)(p(zg)Tﬂp (:.:3)} =0, if l;#d, s;#0. (4.30)
The fields PT constitute the exception to this rule, because their Green function

8
satisfies the anomalous Ward identities whose right hand sides contain the terms
~ (@(z1)p(z2)) instead of the “usual” terms taken into account in (4.29). The

latter is possible only for the fields of dimensions I; = d + s.
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So the integrand in the first term of (3.1) contains only kinematic poles of the
type (4.28), while the physical poles are exhausted by the fields PT.

5. Solution of Ward Identities in Two-Dimensional Field Theory

Two-dimensional space is specific by the property that both the current and the
energy—-momentum tensor are irreducible fields. When D = 2, there is no problem
in the decoupling of Euclidean transversal field T}, (x), just because this field is
zero. Gravitational interaction in this case is trivial and has no influence on the
dynamics of matter fields. The representation of conformal group,® given by the
transformation law

Ty (z) = Tl (2) = 2)2 373 9up (Z)9vo (2)Tpe (R2) , (5.1)

is irreducible. The energy—momentum tensor, being the traceless symmetric tensor,
has two independent components:

T +T»=0, T2 =Tan. (5-2)

The transversality condition
0T, (z) =0

is equivalent to a pair of equations on these components, having the unique solution
Tt (z) = 0. (5.3)

The projection operator introduced in Sec. 2 to utilize the decoupling of the subspace
M also vanishes for D = 2, while the longitudinal projector Py, po *"%(Z ) is unity:

r 0 one [ O
()t () otem won oo

Thus any traceless symmetric tensor T, (z) is longitudinal,

To(a) = P (55 ) Tonle) = TG,

and may be represented in the form

T (@) = 8,T.(2) + 8,Tu(2) — 8T (2), (5.5)
- 0, 1
T, = Il w (T) = ETp(z) ) (5.6)

where T,(z) = 8,T,.(z) is the conformal vector of scale dimension D + 1. Thus
the irreducible representation, given by the transformation law (5.1), is the analog
of the representation Q7, which corresponds for D > 2 to the models where the
gravitation is neglected.

©The six-parameter conformal group is assumed.
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From the above it is clear that the Green functions

(T_mf (3)901 (ml) T Pm (mm)) 3 <Tpv (3)Tpa (y)‘Pl (xl) rPm (zm)) (57)

are uniquely determined by Ward identities. For the case of D > 2 this property
is proved for the conformal theories satisfying the condition (2.44), which fixes the
realization of the representation Qp and simultaneously drops the gravitational
interaction. We have already mentioned the similarity between such theories and
two-dimensional models. In the following sections we expand this analogy to a
greater extent. For this reason, in the present section we keep the component form
of Ward identities (though the complex variables are more useful).

The conformally invariant solution to Ward identities is given by Egs. (5.5) and
(5.6). Consider the Ward identities (2.2) for the Green functions (5.7) for D = 2:

O (T (T)p1(71) * - P (Tm)) = — ZJ (z — zx)0%* — *8‘ Zd;.,&(m —zx)

(sol(ml) “Pm(Tm)) (5.8)

where dj are scale dimensions of the scalar fields g, k = 1,...,m. The r.h.s. rep-
resents the Green functions for the vector T),(z):

(Tu(z)pr(z1) - Pm(Tm)) -
Using Egs. (5.5) and (5.6), and the relation

1 1 2
—Dwé(:c) = —E Inz“, (59)
we find that

(T u(I)(Pl (Il) r Som(zm))

2”{ 2 =) (&~ 2R)ud" + (2 = 2a)uO5* = (@ — 24)205"]

Z(x I)zgw(w Ik)}(sol 1) Pm(Tm)) - (5.10)

The anomalous Ward identity considered in Ref. 1 takes the form for D = 2
O (T (1) Tpo (z2) (T3 )p(24))
d
“{5(5613)353 +8(214)05* + 6(212)07% — 567 [6(z13) + 5(2'14)]}

X (Tpo (z2)p(z3)(4)) + 85 6(212)(Tuo (z2)(23)p(24))
+ 05 6(212)(Tup(22)p(73) P(4)) — 8po 05 6(212)(Tua(22)p(w3) (1))

1 1
- 5i0{or (oo - 00 o)

160003 + 8,005 = 8,0 0)0n3(ara) Plolaalelaa)) . (511
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where C is the central charge. Its solution may also be easily written using
Egs. (5.5), (5.6) and (5.9).

For the sake of convenience in juxtaposition of some of the D-dimensional theory
results with those of known two-dimensional models, let us list several formulas
concerning the transition to complex variables for D = 2:

z* =z +iz?, ai=%{31:|:i82).

Any traceless symmetric tensor in two-dimensional space has two independent com-
ponents. Define the complex components of the tensor V..., by the relations

Ve=2"2 Vitea FiVipqof - (5.12)
a a=1

The contraction of a pair of traceless symmetric tensors VV and W has the form
2 Vs Wy oo, = VAW + VoW, (5.13)

In particular, we will use complex components of the tensor fields P,, with dimen-
sions d + s:

P{(z)=F,,..,.,(2).

They read
Plw)=Pie)=2"2 [ piir, xipe | . (5.14)

- a=1

Denote the components of the tensor
A7 (z2z3) = L1, (T273)

as A7} (z223). One can show that

1 R 1 5 \’
A (zozs) = 5 DR (@22s))' = o5 ( =2 ) » (5.15)
28 20 Ti2Ti3
where i
e T
/\i" (32:1:3) = z\fl (17233) F K‘.Azl (m2$3) = —-'Ing . (516)
12713
The components (1/z?)g4 () of the tensor (1/z%)g,, () are
1 1 ; 1
ggi(m) = F[yu(l') Figra(z)] = —W . (5.17)

Let us rewrite the Ward identities using the complex variables. Introduce 7't com-
ponents of the energy—-momentum tensor:

Ti(z) = Tu(z) F iT12(z) . (5.18)
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The Ward identities have the forms
0% (Ti()p(z1) - m(Tm))
—{ 25(3 — )05 — %ﬁkildk&(z = zk)}(tpl(m) o m(Tm)), (5.19)
0F (T (1) T (w2)p(23)p(T4))
—{a(xls)ais +6(a10)03¢ — 362 [B(ars) + 6(1:14)]}
X (T (z2)p(x3)p(7a)) — [0(x12)0F — 205 6(x12)]
X (T (z2)p(z3)p(za)) — —3’ 10310 8(z12){p(za)p(2a)) - (5.20)
Equations (5.5) and (5.6) take the forms

Ti{x) B 4313_1:1:(9:) 5 Dfi(:c) = 6;,:Ti(z:) y

where
Ti(z) = —[Tl(a: ) F iTa(z)] .

The solution of the Ward identities (5.19) and (5.20) reads, in complex variables,

(T+($)(P1($1) *rPm 3m))

T or {Z (@* —zi)2 +Z }(sol(zl) - Pm(zm)), (5.21)

b=
(T (21)T(z2)p(z3)p(24))

1 4 d 2.1 s
) 5{ EIAE AN RO L } e
o (pla)plas)) (5.22)

8n2 (z5)4

6. The Fields Pl in Two-Dimensional Models

Let ¢(z) be the neutral scalar field of dimension d in two-dimensional space. Con-
sider the secondary fields PT. When D = 2, each of the latter fields has a pair of
independent components [see (5.14)]:

Pl (z) = Put(z) = PL"(z).

The operator expansion of the product T, (z1)¢(z2) may be written in the form

Tu(or)plen) = [l + 3 [Pes]. (61)
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The Euclidean averages of the fields P,

(Pni‘pT> 1 (Ps:‘c(Pl i <Pm\) ]

where 1 « - - o, are two-dimensional scalar fields with dimensions d,,, may be found
using the Ward identities for the Green functions

GLl(zz1- 2m) = (Te(2)p1(21) -+ - Pm(@m)) , (6.2)
GLi(z122237s) = (T (21)0(22) T (€3)(24)) - (6.3)

As in the previous sections, it is useful to apply partial wave expansions of the
Green functions (6.2) and (6.3). In the general case D > 2 each of these expansions
includes three terms (see Sec. 3 and Ref. 1), since the functions CJ, contain three
independent structures, (4.3)-(4.5). The D = 2 case is an exception. One can
show thatf

i i
G’ZF".H},"'#. ($1$2I3) = CFS#V‘#IH_#. (I]_Ig:!.'g) for D= 2, (6.4)

so that only a pair of arbitrary coefficients A;, Az survives out of three A;, Az, A3
entering Eq. (4.2). As a consequence, no transversal function (4.26) exists in
two-dimensional space. The r.h.s. of Eq. (4.7) is nonzero for any values of coef-
ficients A, Aa:

ij’C’! wpe(Z1Z223) #0 for D=2. (6.5)

By,
The latter is in an agreement with the structure of representation Qr for D = 2
discussed in Sec. 5. Correspondingly, a partial wave expansion for each of the Green
functions (6.2) and (6.3) has only a couple of terms:

(6.6)

(6.7)

fTo facilitate the proof of this statement, one can use the complex variables z = z; + iz2 and the
component (5.14).
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Here we use the graphical notation and the results of Ref. 1. The transversal term
in this case is absent, and the Ward identities determine the kernels of partial wave
expansions (6.6) and (6.7) uniquely. Equation (2.44), which expresses the absence
of gravitational interaction, also disappears for D = 2.

Consider the independent functions (4.3) and (4.4). For the general case of
D > 2 these funm;ions are singular at the points [ = d+s. In two-dimensional space
the function C77,, is also singular at these points, but C’”hw is regular: it is easily
seen from (4.4). Therefore the Green functions (P,¢T') have the form

(P,(ﬂ?l)(ﬂ(xz)T#y(Ia) =9s C’g::,;.i]---p, (z1z223) +-- -, D =2. (6.8)

The dots stand for the quasilocal term proportional to the residue resj_gi,
C'{,(Z1Z223). As in Sec. 4, one can show that only the kernels G, and pj (o)
have the poles at | =d + s corresponding to the fields P7. The Green functions of
these fields are defined by Egs. (3.11) at D = 2:

(Pox(z1)p1(21) - - - om(Tm))

= A, res Ga(@1--am), (6.9)
(Pox(z1)p(z2)T1(23))
Ti
SOIO
l=d+s
- Ai"[ res /1 (a)} L+ (@y23za) + -+ | (6.10)

where the dots stand for quasilocal terms, while the functions BY have the form
= 1.4
BT (z122%3) = Buy py oo, (T12233) = Crop — 50’30 (z12273) . (6.11)
This function is derived from the function c":gw, [see (3.7), (3.8)] after one sets
&g = —1/2s.
In the general D > 2 case the function B has the form

By, (212223) ~ (Pr(@1)9” % (22) 0% (3))

2
= 8;° By (z1z223) + 87 By (T12223) — Bépyaszz(zlwgms) ,  (6.12)
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where
b (@) = BuFou () + Buho(@) — 5 BunBohy(a) (6.13)
B (212223) = (P} (21)p” *(22)hu(23)) - (6.14)
Equation (6.9) may be rewritten as

{Ps(z)ﬁal (Tl) v ‘Pm(zm))

AT o5 [ B, (ov11) T (02) 0 )es 1) - 9m(om)

=207 res [ P @)y

X (T (y2) (1 )1(71) - - - o (Tm)) - (6.15)

After that, to calculate the integral one uses the Ward identity, the way it was done
in Refs. 1 and 2.

In the two-dimensional case we shall act by analogy. Technical simplifications
characteristic of a two-dimensional space appear when one passes to complex vari-
ables (5.12)—(5.17). Each of the functions B, Ciw has four complex components,
two of them in u, v indices, and the other two in indices p -« u,. Only a pair of
them is independent, B, B_, BZ, = (B7_)*, B°_ = (B%,)*, and similarly
for the functions C7,, . Equation (6.13) takes the form

iuv-
hy(z) =40,k (z), h_(z)=40_h_(z).
Accordingly, the equation for each of the functions C‘::w is written in the form
C3 1 (212233) = 87 CY 4 (212273) - (6.16)
One can show that the function (6.11) has the only independent componentg
BY , (z1z223) =0, Bj _(z1za73) = Bfaﬁ'f__ (z1z273), (6.17)
0ne gets the following expressions for the functions C7:

s 1 - z
Cy, 4 (z1z2z3) = —C§++(zla:22:3) =872 CY  (z12233)

Ci,_(z12223) = 87 B _(z12223), CZ,_(z17273) =0,
where
§
1 zj’z ”;—a 9 \_l=d— -t‘ _l4d—s—4a 1+¢ s
Gl (z12933) = 2 Tt \ oot | @) (=13) T (33) .
"’13"’23 T12T13

To derive these expressions one uses the identity

zz zwppk(zla)hm it (z3z2) — traces] = 53 A7L ., (z3x2).
13 1
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where
BY_(z17923) ~ (PL(z1)9*%(z2)h—(23))

£2x + 8
ZB (T ) (o) () )

e—— T+
T13%23 \T12T13

(6.18)
In what follows we use the notation
Bl (z12273) = Bi;(ﬂflzzzs) = B'f,:,:;(n:cgzs) :
Let us rewrite Eq. (6.15) in the form

(Pox(z)p1(21) -+ * Pm(Tm))

=A