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1. Formulation of the Method and Some General Relations

At present there is a wide variety of methods to calculate the macroscopic
quantities of systems of many strongly interacting particles in thermodynamic
equilibrium. Not all of them, however, are equal in their capacities and effi-
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ciencies. More essentially a number of them encounter actual difficulties as
applied to systems (e.g. to a system with strong interaction or in the inter-
mediate density regime) where the usual small parameters are absent for some
reason. It is just this sort of problems that is dealt with more and more fre-
quently now in applications. As a rule these are systems of many strongly
interacting particles with anomalous behaviour of specific heat, susceptibility,
or other thermodynamie quantities what in turn indicates various phase tran-
sitions to occur in these systems. Therefore, there is great interest to develop
methods going beyond the scope of ordinary perturbation theory since only
those provide hope to involve correctly the various anomalities in the thermo-
dynamic behaviour of the above systems.

Some results of such investigations are well known. For example, the possi-
bility of decoupling the set of coupled equations of motion suggested by Bogo-
lyubov and Tyablikov [1] and also a variety of approximate methods for han-
dling the closed set of equations for the Green functions and the diagram tech-
nique [2] are being discussed for a long time. The method of functional integra-
tion whose fundamental ideas as applied to statistical physics have been devel-
oped by Fradkin [3] and Schwinger and Martin [4] also allows to get solutions
not obtainable within the scope of ordinary perturbation calculation. Further-
more, Bogolyubov’s variational method (cf. [5]) and Wentzel’s principle of ther-
modynamical equivalence [6] are frequently used. There also exist somewhat
more heuristic methods, e.g. the linear canonical transformation [7] or the
method of mean field [8]. All the above-mentioned methods were and are repeat-
edly used to investigate various problems of statistical physics, and rather
essential results have been obtained with their aid in a number of cases. Great
difficulties still remain when there is no actual small parameter, since either the
calculations are too complicated or the ways for further improvement of any
special approximation are not sufficiently clear. Further investigations are
therefore desired in this field.

The spectral density method [9] described below meets to a considerable
extent the requirements mentioned above. It is sufficiently simple and effective
and can also be successfully applied to systems showing a phase transition. In
the framework of this method, the approximations are done on the basis of
speectral decompositions of the corresponding spectral densities.

Such a method for calculating the approximations is very convenient since
we can always confine ourselves to a few first terms of the corresponding spec-
tral decomposition, irrespective either to the interaction strength or to any
other characteristic inherent to the system of interacting particles. The more
terms in the spectral decomposition are exactly taken into account, the more
correct the approximate solution will be. One fails, however, to indicate exactly
the error involved in every specific approximation. This fact is due to the lack
of a small parameter in the interacting particle system under consideration
and should be regarded as a natural disadvantage of any method of self-con-
sistent calculations when applied to systems like those. The efficiency of a given
approximation is to be estimated either via the character of the final results or
by comparing it with the next-higher approximation. The latter should only
quantitatively affect the physical features of the system found in an initial
approximation that has been chosen correctly.

The corresponding spectral densities are defined as a grand-canonical ensemble
average of a non-equal-time commutator or anticommutator (5 = 1) of some
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operators 4 and B:

n<[A; B(1)],pe = [ dvexp (i @ 7) (K[4; B(r)]), (LD

and are determined by the exact set of integral relations

d 1
[om s Banoa =5 {<[[H[H [ 4.3 B] )+
k14 2 Bl o ’
m times =
+<‘A;[---lB;H]_---ﬂ]_HJ-J>} (1.2)
m times "
that are a direct consequence of the equation of motion for the operator B(7),
4 1)

i o B(®) = [B(o); H@)., 13)

and of the peculiarities of the statistical averaging. The various correlation
functions and the macroscopic quantities of the system can be related to the
spectral density (1.1) by use of the spectral decompositions of (1.1). As to the
spectral decomposition it can be easily derived under the assumption that the
Hamiltonian of the system under consideration has a complete orthonormal
set of eigenfunctions, H|n) = Eu|n); (n|n) = 1; 3 |n) (n| = 1, and has the fol-
lowing well-known form: "

W[4; B(@)lpo = Z7' 5 (m| 4 |n) (n| B |m) X

mn

X278 (w — By + Ep) e PEn (1 4 5 efo), (l'_4)

where Z = Tr [exp (—f H)] is the grand partition function') of the interacting
particle system; (m| 4 |n) and (n| B |m) are the exact matrix elements of the
operators A and B taken with the eigenfunctions of the Hamiltonian. Now
using the spectral decompositions (1.4), one can easily obtain a simple known
expression for the statistical average of the corresponding operators:

d A,B m
(A By — 0 (—n) <A) {B) :‘[22%;(;&}11)"

(1.5)

In a somewhat more complicated way implying the use of the equations of
motion (1.3), analogous formulae can also be obtained for some higher-order
correlation functions. Thus most attention should be payed to the accurate
calculation of the corresponding spectral density within the set of relations (1.2),
since once the explicit form of the spectral density is found, it is:no longer diffi-
cult to calculate the macroscopic quantities of the system under investigation.

However, this problem can be solved exactly in exceptional cases only. In
the majority of cases, one has to look for an approximate representation of the
spectral density within only several first moments. The problem thus outlined
becomes naturally non-unique, and one has to determine the spectral density
on a class of beforehand chosen functions in order to achieve a unique solution.
The class of admittable functions is to be chosen in accordance with the spectral

1) The chemical potential is supposed to be incorporated into H.



12 0. K. Karasunigov and E. S. FRADRIN

decomposition (1.4) and turns immediately the finite set of relations into a set
of equations determining the unknown functional parameters of the spectral
density. As a simplest example, the corresponding spectral density is usually
approximated by one or a set of 3-functions, the functional parameters con-
nected with the spectral density being then uniquely determined by solving
one or a set of non-linear integral equations. For example, the simplest approx-
imation of the one-particle spectral density '

Ap-,a(m) —_ <[a;y; &?y(rl]-{»}w (1.6)
for a Fermi system with pair forces by means of one 3-function,
Ay (w) =278 (0 — T,,), (1.7)

together with the use of the two first moments immediately results in-the fol-
lowing non-linear integral equation:

g v(p — k)

T?? - Ei"/ + gv{o) n V %‘ exp (ﬁ Tk?) + 1 (1'8)
for the elementary excitation spectrum 7',,. Equation (1.8) thus obtained is
equivalent to the well-known self-consistent equation in the Hartree-Fock
approximation. In more complicated cases, a number of important results can
also be easily obtained if one uses more complicated approximations for the spec-
tral density and a larger number of the first moments to determine the unknown
functional parameters. ;

On the whole, the method suggested here is simple and useful for practical
calculations and enables us to obtain easily significant results also for systems
having no effective small parameter. In the subsequent sections we shall show
how the method works by solving several special models of statistical physics
(see also [10]). A solution of the same problem given from a more formal mathe-
matical point of view can be found in recent papers of other authors [11].

2. Two-Particle Interaction — Normal and Anomalous Fermi Systems

2.1 Specification of a model — Connection of the one-particle speetral
density Ap,(w) with the macroscopic quantities of the system

We shall consider a system of N interacting fermions enclosed in a large but
finite volume V. In the final results N and V are supposed to become infinite,
the particle density » = N|V being left constant. The particles are assumed
to interact via pair forces depending on the interparticle distance only. The
dynamic behaviour of such a system is given by a Hamiltonian H = H(a,,; a,,)
which can be easily reduced to the following form in the second quantization
representation:

H = H, + Hyy; Hy= 3 Epy a';y Apy s (2.1)
Py
g +
Hiﬁt = 9 ‘V E z 6?1‘]'?::?’:""33- L4 (pﬂ = P:l] a;l ot a‘?: Vs a?’:?x aﬁt 17
PrevcPatr¥s

where a;, and a,, are the Fermion creation and annihilation operators, &,, is
the dispersion law of the free particles with u involved into it, v (p, — p3) =
= v (|py — P4|) is the Fourier transform of the interaction potential, g is a coup-
ling constant.
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The thermodynamic and kinetic properties of such a system can be conve-
niently investigated by means of a one-particle spectral density

Ap (@) = {[@5,; p,(T)]sDw » (2.2)

which is a real and positive function according to its definition. One can easily
verify this by analysing the corresponding spectral decomposition of the function
2.2),
Apy(@) = Z71 3 (@5 )mal> 278 (0 + Ep — Eq) e=858~ (1 +72), (2.3)
mn

obtained under the only assumption that the Hamiltonian of the system of
particles considered has a complete orthonormal set of eigenfunctions. Due to
the spectral decomposition (2.3), the formulae connecting the one-particle spec-
tral density with the macroscopic quantities of the system can be also readily
derived. For example, after a not complicated transformation of (2.3) one can
easily express the average occupation numbers in terms of the spectral density
by means of the very simple formula

o s (o Ay (w)
fpy = {Apy Apy) _f2—n ~r (g’a) 1 (2.4)

with the aid of which both the equation for determining the chemical potential
u of the system can be easily obtained and the magnetization, the susceptibility,
and some other macroscopic quantities can be investigated. In a somewhat
more complicated way, by using the equation of motion for the one-particle
spectral density,

(6!} - EP y) Ai’?((’o} i %{<[[H1nl- ;a’;?‘]— 3 a’? V{T)1+>fn + <[a;y ; [aw(-r) ;Hlut(T}]—]+>m} »
' (2.5)

and calculating the equal-time commutators, it is possible to derive another
important formula that enables us to determine the average interaction energy

By  {(Hpny _ 1 do (0 —&y) Aypy(@) 2.6)
2z exp(fo) +1 ' '

14 v 2V
and the thermodynamic potential

1
Q= — Fln Tr [exp (—f8 H)] , (2.7)

if we use the usual procedure of differentiating over the coupling constant:
F

i(g 1B 29 %(_1_2 fi“’_(‘_”__gﬂ_r)"lﬂ’)) (2.8)
89 V)_g Vv’ V] ¢ \2V5 ) 2a exp(Bo)+1 /7

There also exists a sufficiently simple formula for the ground state energy:

E (Hy 1 do (© + &p,) Ay, (o)
Cr PN o AL S X0 T oael Sennt 2.9
7 A= "5"=372 | 35 oxp(Bo) + 1 (i)
which is a direct consequence of (2.4) and (2.6).
Thus, if the one-particle spectral density A,,(w) is known, the investigation
of the thermodynamic and kinetic properties of the system on the basis of the
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formulae obtained above does not present any difficulties. Therefore, in what
follows we shall confine ourselves to the methods for calculating the correspond-
ing spectral densities. :

2.2 A set of closed relations — Spectral decomposition for Ap(w)
and its simplest approximation

Using the equation of motion for the field operator aj,(z), we can easily
write down an infinite set of moments for the one-particle spectral density
Ay (w):

d
f—22w’” AP?(w) = ;_ {<I:[H’ [H . [H; a;y.]— -t ']—; aP?J+>+

m times
+<[a;y: [+ [ap,; H)_- -~ H]_ H'I_]+>}, (2.10)
m times

which, if the Hamiltonian of the system is known and the right-hand side of
(2.10) can be calculated in an explicit form, enables us to obtain in a certain
way an explicit form of A, (w). For example, in the trivial case of free fermions
which are deseribed by the Hamiltonian (2.1) at g = 0, the set (2.10) is easily
calculated : .

dw dw
.[2“11”{0)} =1 fg—n(w — g, Ap(w)=0; m=12 ..., (2.11)
and its solution has the very simple form
Ay (0) =273 (0 —¢p,) . (2.12)

In more complicated cases, however, it is extremely difficult to solve this prob-
lem exactly. Therefore, in most cases the corresponding spectral density is
obtained approximately within the set of the few first moments. Naturally, in
the general form this problem has no single-values solution. The latter can be
achieved only if the functional form of the one-particle spectral density is
postulated beforehand in correspondence with its spectral decomposition. For
normal Fermi systems a corresponding spectral decomposition can be taken in
the following equivalent form:

tytor D@D @s..;@ 2w)

in which the first graph corresponds to the pole approximation, i.e. to the non-
scattered propagation of a quasi-particle, the other graphs including scattering
processes. The spectral decomposition of 4,,(w), equation (2.13), permits to
develop step-by-step approximations for the one-particle spectral density,
which already in a simple approximation lead to plausible results irrespective
either of the strength of interaction or of any other specific characteristics of the
investigated system of interacting particles.

For example, the simplest approximation for 4,,(w) corresponds to keeping
only the first graph in the spectral decomposition (2.13),

Ay fw) = | T2 2a8 (@ — T),) (2.14)
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and to determining the corresponding functional parameters |7,|* and T,
within the set of the first two momenta,

d da
IZ“;AP?@F fﬁt — 3,) dpyfe) =

— E { <{[Hillt ; a’;’i—y.] ! a;ﬂ y]+> + <[a';y ; [ap ¥ ; Hil‘li}—]+> } —

= g0 n—3-Zv(p—q) 7y, - (2.15)
q

In this case, we find after a simple algebra that |72 = 1, and the one-particle
elementary excitation spectrum 7',, is determined as a solution of the well-
known self-consistent integral equation

g v(p—9
Tp, =, +9v(0)n v ‘qzexp BTy ,)+1" (2.16)
which is derived by a direct calculation of the first momentum of 4, (w), (2.14)
and (2.4) being included.

In spite of its simplicity, this approximation leads to phase transitions, i.e.
it is far from being trivial. We shall explain this by considering the example of
a magnetic ordering in a system of interacting fermions, i.e., we shall investigate
the possibility of spontanecus magnetization B = (ny — n,)/n in this system
at sufficiently low temperatures. The starting point for obtaining the self-
consistent equation determining R can be the expression for the average occu-
pation numbers,

Ny, = {expﬁ[(aw + g%(0) n) — %2" (» _q}ﬁw‘, =+ 1}_1- (2.17)
g _

which is easily obtained with the aid of (2.4), (2.14), and (2 16). If we now
express the average occupation numbers 7, in terms of the spm dcnsxty Sp. and
the particle density #, by means of the formulae n, }- s, = n,+ and 7, — 5, =
= 7,4, and assume that g,, = &,, we easily obtain after some simple algebra
the following self-consistent equation:

R 1
n2 239’ 8p =
sinh ﬁvg-z:v (P — q) 3,
— 0 ; : (2.18)
coshﬁ[(ep +g(0)n) — g, Zvip—9 Eq] + cosh —;2 v(p—a)5,
7 . q

which determines the possibility for a spontaneous magnetization R to appear
in the system. Equation (2.18) is a complicated non-linear integral equation
which, apart from the trivial solution s, = 0, has, generally speaking, a solution
different from zero. A full analysis of this equation (see, for example, [12]) is
beyond the scope of this review and, therefore, we shall only schematically
outline its trend. The non-trivial solution of (2.18) arises in the vicinity of
a bifurcation point which can be determined by linearization of the original
equation. Since the linearization leads to a homogeneous Fredholm equation
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of the second kind, the question of existence of a non-trivial solution becomes
thus equivalent to that for the linearized equation, and can be easily answered
within the standard theory of integral equations. Thus, under certain condi-
tions, (2.18) has a non-trivial solution, i.e., the system undergoes a phase tran-
sition. As it can be easily shown, the latter is a second-order transition which
results in a non-zero spontaneous magnetization and in a finite discontinuity in
the specific heat.

In conclusion of what has been said above, we may state that the choice of
the spectral density A,,(w) in the form (2.14), which is an attempt to replace
the true spectrum of elementary excitations by the undamped effective one-
particle spectrum, leads to reasonable and non-trivial results and may always
be recommended for calculations as the simplest approximation for A, (w).
A more complicated approximation for 4,.(w) taking account of quasi-particle
scattering is considered below.,

2.3 An improved approximation for Ay, (o) —
Account of quasi-particle scatiering

The need to improve the simplest approximation for the one-particle spectral
density is not only due to the desire to obtain better results in concrete calcula-
tions, but also to physical considerations, since in actual systems quasi-particles,
though slowly, do damp in time.

Quasi-particle damping is explained by the scattering which has not been
taken into account in the simplest approximation since all the terms in the spec-
tral decomposition (2.13) responsible for such processes were omitted. The
scattering would be taken into account by keeping the terms with more com-
plicated intermediate states in the spectral decomposition (2.13), the simplest
of which contains two quasi-particles and one quasi-hole in the intermediate
state and can be represented (account taken of the spin structure) by the fol-
lowing two graphs:

kyy kiy

In this approximation, i.e. if one omits all the subsequent terms of the spec-
tral decomposition (2.13) except the pole term and that written down above,
the one-particle spectral density is represented as

1
) = 253 28 @ = Tp) 4 py 3 Spansana VLS X
101 2

2a8 (@ — Toy — Toy + Thy) -
(T 3 T ‘1?’ Tk - 7'_ Tpk): Vi 21 51"}'3. i+ uUE; ;:qpiis x
1? ¥

Qe kygaqy

hy
273 (w____ T'h_ e T']’l?' + Tkl_}')}

(Tﬂl_? + T@':}’ - Tkl_}’ - Tﬁ}’)g '

where Z,, is the function responsible for the normalization of A4, ,(w), T,, is
the real effective one-particle spectrum of elementary excitations,

(2.20)

k.r py |
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is a reduced matrix element squared permitting the following parametrization:

[URVSIE = |TETRT QA — gy) (L — T, ) Ty + gy By (1 — Ty} - (2:21)

kyyipy

However, we should not restrict ourselves to this representation of the one-
particle spectral density since the possibility of repeated scattering into the
same intermediate states is not properly taken into account. The latter can
approximately be accounted for by summing the function (2.20) into the expo-
nential form

A.'P?(r) = Z;:’ exp {_ i: T.'p?‘ T + 2 a}":'kl;ﬂ':"'?l [U%}I}; q;;iz

exp [— ¢ (Tqy + Tgy — Thr — Tp,) 7]
{Tfhr .3 Tfh? - Thv - Tiﬂy}g

1 s exp[—i(Ty -, + Ty — Thoey — Tpy) 7]
S LRt g, U‘h }‘:9’..}"2 o Lk - i ]
=+ Ve h%‘q,ap R I ky :v,w| (Tqr,—y + Tm_ — T,‘)__? - fl"g,i,,}2

(2.22)

after which the funetional form of A, (w) is regarded as given while the unknown
functional parameters are determined from the set of the few first moments.
So within the zero and first moments one can determine the unknown functions
Zi it

Z:_,},—exp {~'72 Z 6Prku‘h|‘h

K1y ds

1y lay
Uhhl”)’

{Tmf + Tfm' Tk;? - Tpr)_2 i i

h—yidey
Ul'_.r‘ Py

+ Ve 2 633 TR+ S{Tm—y " Th? - Th"y - w)ﬁz}' (2.23)

ki1 gs

and the effective one-particle spectrum of elementary excitations:

1

1 173 7s -
Tyy = M“ e k%‘q Opit;ata |U kl};:;gz(TLv + Ty — Ty — L) —
1 -
- Ve k‘gsq ap-l-kl; 01+ |U§i. ;E;':: 0 (Tm—r + TE’:Y - Ti‘:—y - m}_l » (2.24)

and, after the second-order semi-invariant being calculated:

g
(2) = [Mgzj (M;l;)r)g] Q(E) = 3 Optria+a? (P — @) X

w ki1 Qs
X {{]' - :ﬂ:ﬂ‘x_?) (1 = E'a‘:‘.l‘)?_]'-l'l_?’ +ﬁ¥1—?ﬁh}” (1 - —}‘)} T 2 Vg 2 d Ptk G+ X
K1 g1 4y

X[ @—aq) —v(@— @P{(1 —n,) (1 — 7,y M, + N,y ng,, (1 — 7,,)}
; (2.25)

it is easy to find the corresponding expressions for the vertex functions:

| F B 0ay|2

2
B = a8 (p —g,); [TETILIR = —[v('p—ql)—v{p—qz)]*- (2.26)

2 physica (b) 59/1
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Thus, after all the transformations are carried out, the one-particle spectral
density is approximated here by the following simple expression:

Apy(7) = exp { — i MB e +

2
+(1V) 2v(p—k)[y (p — k) - 5}4;“7" (k —q)] F’Eqn (1 — ﬁk}' - ?_E'P""x'_}"’) +

kgo
exp [_i(Tj}—'-q—i',a_!_ Tky - Tga_ pr) t]_l—l—
{Tpiﬂ—k,a o Ti:y =T 2,g"::r_ Tg);;)g

"I‘ El:y np—'—q— k,s]l (

+T
+ , )} 2.27)
Tyta-tio + Ty — Tqo — Ty, {

and satisfies exactly the set of the first three moments, provided that the two-
particle correlation functions determining the second moment (see also formula
(2.25)) are calculated in the self-consistent approximation

{@py Gio Opir—g,0 05> = (04,5 — Or;q Oy;0) Mo Ty - (228

It should be noted for comparison that the simplest approximation for the one-
particle spectral density by one 3-function does not satisfy the second moment
with any reasonable coupling of the two-particle correlation functions.

As to the elementary excitation spectrum and damping of quasi-particles,
the one-particle spectral density in the region of large 7 (i.e. after all scattering
processes have happened) is responsible for them. Transition into the asympto-
tic region is guided by the formula
i S o [ PR e 300) + i (p ) = i36)). @20

T+4 0o 4 £ 2

& £

which is easily verified in the sense of generalized functions. With (2.27) this
transition leads to the following result:

A;O? (T— + o) = exp [(M})’ ﬂ))) ., J X
a=ZIpy

dw

X exp {—- i (M) + Re Z(py; Ty} T—

., S y:
— It [Im Sy 1,,) + Fw(weia{f”’-—“’l) ] ]} ,(2.30)
w=Ipy

where by definition the new functions Re 5| (py; w) and Tm X(p ¥; w) are equal,
respectively, to the following expressions:

5 : g\ v —Kk)[v(p—k) —0,.v(k—q)
RCZ 3 == P - . : — X
('P'y (-'J) (V) g%:n w + iqu_ Tl‘--y - Tp-l—q—k,n

X [ﬁ“ = }"-ky - ﬁrﬂ—k.c) < ﬁ-‘:1» Eﬁ-i-k—q,aJ H

Im £(py; @) —m(%)z v —B) [ (@ — k) — b,;0 (b — @)] X

qko

(2.31)

X [fgo(l — Mgy — Rpgi, o) + Ny Np kg, o] X
XS (w — Tp+q—1‘-,c + jjqﬂ - Tl:y) -




Speetral Density Method Applied to Systems Showing Phase Transitions 19

In the derivation, a small term of the type (0 Im Zp y; 0)[0w), - 1,, is omitted
as usual. Comparing now the expression (2.30) with the standard form of the
one-particle spectral density in the asymptotic region,

Ay, (v >+ 0)=Zg exp{— 4 Ty, v — Iy, |2l}, (2.32)
we immediately obtain the corresponding expressions both for the spectrum

of quasi-particles and for their damping:
Ty, = Mgll-:} + Re Z(py; Tzw)_’

B = Im2Apy;i Toy) | (2.33)
- (8 Re .Z'_[p_y; w)) .
dw @=Tpy

The quasi-particles thus obtained are interpreted further as the effective one-
particle excitations of the considered system of particles.

The self-consistent equation (2.33) for the determination of the elementary
excitation spectrum is the generalization of results obtained by a number of
authors [13] and corresponds to a rather complicated summation of graphs
within the ordinary perturbation theory. Moreover, the expression obtained
here for the damping of quasi-particles, due to a more accurate account of the
elementary excitation spectrum, has & correct behaviour on the Fermi surface
which is not always guaranteed by approximate calculations within the other
methods.

Thus, within the spectral density method, it is easy to make the simplest
approximation for the corresponding spectral density and to improve it step
by step as well. For each approximation we shall obtain a new self-consistent
equation to determine the effective spectrum of elementary excitations, but
not the corrections to the results of the previous approximation, this feature
being particularly important for the investigation of thermodynamic and kinetic
properties of a system of interacting particles subject to a phase transition.

2.4 Anomalous coupling of quasi-particles —
Generalized Hartree-Foclk: approximation

Though the above approximations of the one-particle spectral density lead to
far not trivial results for normal Fermi systems, they are of little use to describe
the thermodynamic and kinetic properties of the so-called anomalous Fermi
systems. Since at low temperatures the latter have a qualitatively different
behaviour of the spectrum of elementary excitations, a more careful choice of
the functional form of the one-particle spectral density is required.

Below the simplest approximation of the one-particle spectral density for
anomalous Fermi systems with superconducting coupling is considered. Since
in this case an effective attraction of two quasi-particles with opposite momenta
near the Fermi surface is responsible for the formation of bound states, it is
convenient to make use of the matrix technique to determine in an appropriate
way the new matrix operators:

a +
Yoy = (a:—f,y ) 5= @hasyy), (2:34
—P=7

o
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and to calculate in terms of them the one-particle spectral density

835 8y (D)o ey, 0" (D]
(Ja_p pi apy(TH+>m (a—p—y; aip—-y{r}]+>m

Alpy; w) = ( ) (2.35)

defined in the usual way. For this spectral density there is an infinite set of
matrix relations analogous to (2.10) on the basis of which we can carry out cal-
culations restricting ourselves to some set of first moments and assuming the
corresponding functional form of A(p y; w).

For example, consider in more detail the simplest approximation of the one-
particle spectral density by means of one matrix 3-function:

. Alpy;w)=27a38 (0 — T(»y)), (2.36)

provided that 7,, = 7_,_,. In this case, to determine the unknown matrix
F(p ), it is sufficient to know the set of the two first moments which are easily
calculated and have the following simple form:

d d _
f%n{m};w} =1, fz—(;(w — &p, 63) Mpy; w) =MU(py); (2.37)
1 0
"":(0 —-])’
91— L Svp— ey L Ive— 9@, at)
q q

MO y) =
ISy —a<a—gyary  —gO)n 5 I ()7,
q L4

The solution of the set (2.37) involving (2.36) is uniquely determined:

T(py) = &, 05 + MV(py), (2.38)

thus solving in principle the formulated problem. To obtain a more explicit
form of the solution, however, some further transformations of purely mathe-
matical origin are needed connected with special realization of the function of
the matrix. Nevertheless these transformations are elementary in this case and
we are immediately led from the theory of superconductivity to the well-known
representation for the one-particle spectral density in the following form:

T?J? AP?
T '2. 2—:_ T'z_
Alpy, o)== V45, + Thy V43, + Thy §(w— Y43, +T:,) +
ey 1—_ . =pr
V43, + Tpy Va3, + T3,
—_ T?’? —A;D?__
e T YN )
n Va3, + T3, V43, + T3, 23 (0 + V25, +T5,)
_ '_A?? 1 Tr?_

— = + — —
V43, + T3, Va3, + Tay
(2.39)

where by definition 7', and A4, , are respectively equal to the following expres-
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sions:
g =
T, = (E:p-z —}—gv(O}n) i 2v(p—a9)ng,,
q

Ay =5 Z7 (B — D @gmy O

(2.40)

and the necessary self-consistent equations

T Ay, + T
ﬂyq-(%q+aﬂmn)zﬁ,gvtp—gﬂl—f?mnhﬁV*E*‘*WL}

VA;? '}' T;V
g v(p—q) By4a;, + Ty,
A = —— — —_t.a.nh —_—
PRV VR, VI, :
(2.41)

are easily obtained from (2.40) if the operator averages involved are expressed
through the above explicit expression for the one-particle spectral density by
the ordinary formulae.

Thus, within the Hamiltonian of two-particle interaction (2.1), approximat-
ing the one-particle spectral density by one matrix 3-function, it is possible to
obtain at once all the results of the usual theory of superconductivity [14] based
on the exact solution of the Bardeen-Cooper-Schrieffer model. Assuming
a more complicated form of A(py; w), this solution can be consistently improved.
The ealculations, however, are not traced in this review.

2.5 Collective modes of the interacting Fermi system —
Plasma oscillation and spin wave specira

Tt is well known that though the calculation of the one-particle spectral den-
sity A,,(w) provides exhaustive information of the macroscopic properties of
a many-particle system, it does not solve a sum of problems arising in the study
of some special physical problems. In many cases, therefore, it is necessary to
calculate higher-order spectral densities whose singularities provide information
not only about one-particle excitations of the system, but on collective modes
as well. The latter are particularly important for the interpretation of various
experimental results, since most physical experiments, such as scattering of
fast electrons and slow neutrons in solids, scattering of neutrons in liquid helium,
ete., are sources of information about the collective modes in such systems.
Collective modes also play a determining role in the theory of phase transitions
since they stabilize the systems below the point of phase transition and, what
is most probable, determine the character of singularities of the corresponding
thermodynamic gquantities.

Within the spectral density method, the collective modes of the system should
be investigated with the aid of an appropriately determined higher-order spee-
tral density, the functional form of which is chosen subject to the corresponding
spectral decomposition. The unknown functional parameters are derived from
the set of a finite number of first moments. Below we shall present a detailed
investigation of the plasma oscillation spectrum in a many-fermion system
with Coulomb interaction, and in conclusion we shall briefly touch upon the
spin wave theory.
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Consider now the simplest approximation of the spectral density-density
funection:

1 _
Kiw) = —<[07; 04(?)]-V0; 00 =—-= 2 GloCtqg 0> (2.42)
P’ V ko

whose singularities in the case of the long-range interaction correspond to plasma
oscillations. For a non-interacting system of particles (see formula (2.1) for
g = 0), the spectral function (2.42) is easily calculated exactly:

1 = —
Kylo) = v AE (Mg — Miiq,0) 278 (0 — Ek4q, 0 + ko) « (2.43)

However, it does not contain an isolated singularity, but only has a cut along
the real axis w, corresponding to the propagation of a non-interacting particle-
hole pair. As soon as the interaction is switched on, the situation will change radi-
cally, since the interaction causes a coherent superposition of quasi-particle-quasi-
hole pairs which in turn must lead to isolated singularities in the spectral den-
sity (2.42). Of course, apart from the appearance of isolated singularities, the
regular part of K,(w) will be changed essentially. However if ¢ is small, con-
siderable simplifications are possible here since it is well known that many-pair
excitations and non-coherent excitations of quasi-particle-quasi-hole pairs
determining the regular term in K,(w) in the region of small momenta are
substantially suppressed, i.e., in a long-wave region K,(w) can be approximated
by isolated singularities only. Following the spectral decomposition of the
function (2.42),

Ky(w) = Z7 3 e A8 |(0g)mal® {3 (0 — @um) — 8 (0 + @am)}, (2.44)

and taking into account that K, (w) = —K,(—), we make sure that two iso-
lated singularities symmetric in w exist. In accordance with this, the simplest
approximation of the function K, (w) has the following form:

Kyw) =2my, {8 (0 —w,) — 3 (0 + @)} . (2.45)

where the unknown functional parameters g, and w, are assumed to depend
on the modulus ¢ only and to be determined from the set of the first four
moments:

dew
\[2_?_1 Kﬂ(w) — 0 )

da 2
f Lo K w) = nd

—
m

2m

r

Jgiwh&mn=o,  (2:46)
dow @l \ 3¢*1 (q-k)?_
i - By o B bR

fﬁ%nw K@) nm(2m) + m Vi, m? ey +

- k)2 i
@2 (ot sy 0r10> — <oi 03]

+%zﬂm
k

The latter represent a set of exact relations and are obtained after a direct cal-
culation of the equal-time commutator of the Fourier component of the density
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operator with the Hamiltonian of the system (2.1). We assume here that
&y, = P?/(2 m) — p. Substituting (2.45) into (2.46), it is easy to find both
functional parameters and the corresponding spectrum of collective modes:

P
'P!_nzwqm'
. (V3 s (1-FV
"’v—(zm +Wh(m ey + b (247)
+-™ 9 s o) (LY ot > — <ok o]
ngd 720 (T ) Keiveano — Cei ed],

which for the long-range Coulomb interaction potential (k) = 1/k* corresponds
to plasma oscillations.

Further transformations of the expression (2.47) are connected with the ap-
proximation of the correlation density-density function for which we use here
the simplest approximate expression

. 1 . _
Clegl® = dg,0 V1P + 7 X Tipray (1 —7py) (2.48)
ry

equivalent to the usual decoupling of higher correlation functions. Then with
(2.48) taken into account, the collective excitation spectrum (2.47) at small ¢
takes the form of the well-known spectrum of plasma oscillations:

gl B e W g k— PP By qaﬁw
T m T Vg m | g2V, 5, mEp—k|\" ok ap )’
(2.49)
which was obtained in [15] by more complicated calculations, whereas our cal-
culations are elementary. '

As for the spin waves, the calculations are essentially analogous. Consider
the higher spectral density in terms of the spin operators:

” 1
Folw) = =873 S7(0)]Dw; 8y = 7 ,,.Z @+ qt B » (2.50)
and with the aid of the explicit form of the Hamiltonian (2.1) of the system,
several first moments are calculated for this function. Adopting the simplest
approximation for F4(w) by one 3-function, it is sufficient to calculate the two
first moments
d
2£ Flw)=nR,
Y (2.51)

dw q*
0 o Filo) =1 »,
fznf” d®) =350

after which it is possible to restore unambiguously the well-known expression
for the spin wave spectrum (see, for example, [16]):

2
" 2mR’
being valid below the temperature of ferromagnetic ordering. 1f necessary, the
result of the simplest approximation may be improved consistently.

Fw) =2an B3 (0 — w,): @y (2.52)
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On the whole, without going into further details of calculations, there is
every reason to believe that the spectral density method may be successfully
applied not only to calculate the one-particle spectrum, but also to investigate
the spectrum of collective modes in the system of many strongly interacting
particles, the calculations being also simple and effective.

3. Interaction of Fermions Mediated by a Bose Field

3.1 Specification of the madel — Spectral decomposition
of one-particle spectral densities

Interaction of fermions mediated by a Bose field will be considered within

the generalized model
12

w
H= 3 esotsa, + S0+ Z0@)(55) Ghsaend b +35), @)
E q gko

where ¢;, is the dispersion law for free fermions, containing in the usual way
a chemical potential u, w, is the dispersion law for free phonons, and g(g) =
= ¢g(|q|) is the matrix element of the interaction between fermions and the
Bose field. The system is considered to be placed in a large but finite volume V,
with a subsequent transition to the thermodynamical limit in the final results.

Using the spectral density method, we shall consider in this section some ver-
sions of approximate calculations of the one-particle spectral functions of both
Fermi- and Bose-type which can help to investigate the thermodynamic and
kinetic properties of such a system.

The one-particle spectral density of Fermi-type is by definition analogous to
the function (2.2):

Ap (@) = <[, 8, (D] Do - (3.2)

However, it has a somewhat different spectral expansion:

Ay (@) =~O—-—i—~o—+4@)—+4® (3.3)

due to the change in the character of interaction. Furthermore, apart from the
function A, ,(w) it is necessary to determine the one-particle spectral density
of Bose-type
Ry(w) = —{[b7; by(T)] - (3.4)
whose spectral representation is easily found to be
Ryw) = 27 3 |(b))unl* 278 (0 + B, — Ep) e PBm (efo — 1);  (3.5)
mmn

and the corresponding spectral decomposition is

under the same assumptions adopted for the Hamiltonian of the system as in
the derivation of the spectral representation for A4, (o).
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The singularities of these functions provide exhaustive information about
the elementary excitation spectra of both Bose- and Fermi-type either of which
can be used to determine the average interaction energy:

Emt Z de (o — s??) AP?’(GJ)
27 exp(fow)+1 °’

mt fdm (0 —ay) &, (m}
‘2‘ 27 exp (B w) — 1’

3.7)

and, therefore, the thermodynamical potential of the system.

3.2 The simplest approximation for the Fermi spectral density Ay ,(w)

According to the general rules, the approximation for the one-particle spectral
density A, () is based on the spectral decomposition (3.3) with a subsequent
determination of the unknown functional parameters within a finite number
of first moments. For our purpose it is quite sufficient to have a set of the first
three moments which, under the asumption that {b_,b,> = (b; bL,> = 0,
take the following simple form:

dw
ﬂdpy(w) =1,

d
f% (@ — &,) Ay, (®) =0, (3.8)

d
f%( — &p, ) Aﬁ'y(w) Z g (9) (1 +27).

Analysing further the set of relations (3 8), we see that approx]ma.tmg Ay ()
only by the pole term in the spectral decomposition (3.3) yields a trivial result:

Ay (w) =278 (w — Tp,); Tp,=¢p,. (3.9)

Therefore we shall include at once the contribution of scattering processes, con-
fining ourselves to the first approximation. The latter means that besides the
pole term of the spectral decomposition (3.3), the term corresponding to the
simplest scattering process is also kept:

(j :i t) ._.,A ; .{A . 3.10
PJ’ P F.?’+P P PJ' ; }

whereas the remaining terms corresponding to more complicated scattering
processes are ignored. Therefore, if account is taken of the processes of repeated
scattering into the same intermediate states, the one-particle spectral density
A, ,(w) must be approximated by the following simple expression:

. 1 _ex T - T wy) T
A’P?(I):Z;;exp{—% TP?TFE_?Z p[{gv ( a2 i + ﬂ') J
q

ptdsy ‘PIH +€09}

B 1 oexp[—i(Tpigy — Tpy — @) 7] el (e
X|Up (=D + r‘_Z (Trigy — Ty — g [Upyl@)?g, (3.11)
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where |U,,(q)|* and | E’p,.{—gmz are the squares of the reduced matrix elements
with the following parametrization:

1Upo(@)* = 1T @ (1 — 7p1g,) Vg + Bpig, (1 + 7],
WUp(—@)1> = [T@P [ — 2pig,,) (L + ) + Tprg,, %]

The unknown functional parameters are determined by the relations (3.8) and
are equivalent to the following expressions:

} (3.12)

B

Zy, = exp {% > 1Up A~ (Tpra,, — Tpy + )™ +
5 3 1Up 0 Ty, = Ty — w3},

Tpy=tpy — % ) Uy =D (Tpigy — Tpy + 0t — % (3.13)
5 Z1Up @ (Tpaq, — Ty — )™,

T @) = g%a) %y

Using (3.13), the explicit form of the one-particle spectral density 4,.(w) may
be rewritten in a more convenient form:

. 1 exp [—i (T;c'-i-q.? — Tpy + @) 7] — 1
1,.(T) = exp1— T 4+ = . S ) SRR S
Ap,(7) P{ tEp, +V§( (Tptay — Tpy + w,)?
g e 1T + 3 3 Uyl X
Tpig o — Ty + wy p A1 ¥Ve pr\d
X (exp [=¢ Tptey — Tpy —wdT] =1 | sz )}
(TPH*,? - TP? - wq)s TF t@y Tpr - (g
(3.14)

Then going over to the asymptotic region, i.e. taking 7 to be infinite, we obtain
for the one-particle spectral demsity A,,(r) according to (2.29) the following
limiting expression:

Ay, (t — 4 00)=

= exp l(i%%y) ]exp {—i (em + Re X(py; T,,?,)) T —
w=Tpy

, [ReX :
— [ [Im Z(py; Tp,) + I,;.,( c_ag;_y_w)_) ]} (3.15)
w—=Tpyp

in the derivation of which a small term of the type (8 Im Z(py; )/8w)s-1,,
was omitted, and the new functions Re X(p y; w) and Im X(p y; w) are respec-
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tively equal to

; P wy [ 1 — 7y, + ¥ Npigy + ¥ ]
Rc)-, jw) == 2 _ﬂ'(_ P+ ¥ _Q_‘JI__ i 4 q )

Py; w) VQZQ(Q)Q w— Tpig, —wg @—Typg., + oy

d
an N oy i _ (3.16)
ImZ(py: ) = 17 2 92(9)?“1 — Rpygy T 7)) 8 (0—Tp g, — @)+
q
+ [ﬁpi-ﬂ,r + gq) 3 (0 — T}H—ﬁ’,? A we)] .

Comparing the limiting expression obtained for A,,(r) with the standard func-
tional form of the one-particle spectral density in the asymptotic region, we
obtain the expression both for the elementary excitation spectrum of quasi-
particles and for their damping:

Tpy =&, + Re Z(py; Ty,),

_ Im X(py; Ty,) ]
ﬂ,,,—-l_ IR 2y 0) . (3.17)
dw 0=Tpy

Thus the problem is completely golved and the results obtained differ advan-
tageously from those known earlier (see, for example, [17]) by a more consistent
inclusion of the spectrum of elementary excitations 7', in the corresponding
self-consistent equations.

3.2 The simplest approximation for the Bose spectral density Ry(w)

As in the previous case, the simplest approximation for the spectral density
R, (w) must involve scattering processes, since the approximation by only one
pole term of the spectral decomposition (3.6) is trivial. Apart from the pole term,
one graph will be included which corresponds to the simplest scattering process
into an intermediate state with two quasi-particles:

(3.18)

All the rest, i.e., more complicated scattering processes, will be ignored. When
repeated scattering processes into the same intermediate states are taken into
account, the spectral density #,(w) in this approximation has the following
functional form:

. 1 exp[—t (Tprg, — T —w)z’]}

AR = 7 la _ | . ;P Pty ry q ,
o(T) q {‘xp{ 1 82,7 + V 5 1@y ()] (Tryiy — Ty — 0gF
(3.19)

where |@Q,,(¢)|? is a reduced square of the matrix element with the parametriza-
tion
1@p (D1 = 1T @ [(1 — Apig,) Mpy — pigy (1 — Rypy)l (3.20)
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Here |7 (g)|? is the same function as in (3.12). The determination of the un-
known functional parameters within the first three moments,

fg% cRn.((U) =1 » ]
dw
fﬁ (@ — wg) Ry(w) =0, (3.21)

dw 1 w, -
f 2 (@ — 00 Hu) = 3 0 G oy — Tiia)

leads to the following expressions:
1
Zg = exXp {'L—,- > |pr(q}|2 [Tp+g, y T?y - wﬂ—z}’
Py

1
-()q =Wy — = Z |pr(9'}|s [Tp-i—q,y == Z‘Py = mq]_-l ] (3‘22)
Vo

T @l = g*a) -

Thus, the one-particle spectral density in this approximation has the follow-
ing simple functional form:

1
Ry =rp {_s 0,7+ 5 5 Q@I X
Py

exp [—i (Lp1gy — Tpy —w)T]— 1 i T }
= + - . (3.23)
( (Tp+g,y — Tpy — wo)* Tprgy — Tpy — wa) :

and after having gone over to the asymptotic region 7 — + oo and determined
the new functions ’

P Wy Ry, — Nps
Re Il(q; w) = — 2g) 2 Ty — Tptey
q VPZyg(q) 2 w—Tyrg,+Tpy

and (3.24)
Im Il(g; w) = % 2 QE{Q)%WM - ﬁpﬂ,r] 8 (0 — Tz:ﬂ.v + Tp,y)
Py

one easily obtains the corresponding expressions both for the elementary exci-
tation spectrum of quasi-particles and for their damping:

Q, = w; + Re ll(q; w,) ,

L Im H(q; qu}
r,= 71 - 3 Re 11(q ;_fi — (3.25)
dw —

Thus the problem is completely solved.



Spectral Density Method Applied to Systems Showing Phase Transitions 29

4. Application of the Spectral Density Method
to Special Models of Statistical Physies

4.1 Heisenberg-Ising model — Spin wave specirum

The spin wave spectrum in magnetically ordered systems is at present under
intense theoretical and experimental investigation. The interest in this problem
increased considerably after the papers of Dyson [18] and other authors [19]
who showed that at low temperatures it is mainly the spin wave spectrum that
is responsible for all thermodynamic and kinetic properties of those systems.
Fundamental theoretical results in this field were obtained for ferromagnetics
in the classical works by Bloch [20], Holstein and Primakoff [21], and for anti-
ferromagnetics by Anderson [22] and Kubo [23]. For recent results, reference
ghould be made to the monographs of Tyablikov [5] and of Akhieser et al. [24].
Until recently these systems were treated on the basis of the Bose formalism sug-
gested by Dyson and Maleev [25], and only not long ago calculation methods
directly in terms of spin operators [26] appeared. However, these methods,
just like the usual decoupling of the equations of motion for the Green functions
in terms of spin operators (see, for example, [5]), in the general case are still
rather complicated and require further improvement. The main difficulty
hampering to obtain a simple and effective method of calculations in the frame-
work of magnetically ordered systems is due to the peculiarity of the commu-
tation relations of the spin operators. In view of this it would be particularly
interesting to apply the spectral density method to such systems where the above
mentioned difficulty has no principle meaning.

Below we shall restrict ourselves to consider the spin wave spectrum within
the anisotropic Heisenberg model

H= 5 In (e (5785 + 5 80+ 578} — b 58 (4.1)

for spin 1/2 in an external magnetic field. Calculations will be made for a model
with ferromagnetic ordering implying the nearest-neighbour interaction only.
The spin wave spectrum is to be determined as a singularity of the one-particle
spectral density,

Furl0) = —{[85: 8 ()] Dws (4.2)

expressed directly in terms of the spin operators S; = S 4 ¢ S}, which in the
simplest approximation, according to the general procedure of the spectral
density method, can be approximated by one 3-function term:

Fplw) = 9,278 (0 — ) . (4.3)

Provided the spectrum is found in a self-consistent way, this approximation is
interpolating for all temperatures and must lead to a correct temperature
dependence of the spin wave spectrum at rather low temperatures since in
this case the spin waves are practically undamped excitations. The unknown
functional parameters g, and @, are determined from the set of the two first
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moments,
da}
27 Fg) = B
dw [ 1(p)
f S (@ — 1) Fy(0) = (9 70— ¢) 37 3 1) 7 + s
I(p) 2%, -
+(e7 —9) 37 3 108
e = {8~ 8, R=2(85
and, according to (4.3), have the simple form
Yp = R,
B 1L Ip) |2 —
He=& g ( 10) ~ ) g WAt (4.5)

7(0)

Further calculations in the framework of (4.5) make use both of the spectral
representation for the function (4.2),

Fpl0) = 271 3 (S mnl? 278 (0 — B + Ep) e #En (efo — 1),  (4.6)

1/ 1 4
s ( () _ )ng(k}wzsm; B L

a direct consequence of which is the formula for the average magnon ocecupation

numbers,
= dw Fplw)
= | — , 4.7
" f2:rr expfo —1 (1)

and of the spectral representation for higher-order correlation functions anal-
ogous to (4.6). The latter representation makes it possible to convert the equa-
tion of motion for the one-particle spectral density ,.(w) and to obtain the
expression for the correlation function {8i Si) through Fy(w) without the usual
procedure of decoupling of higher correlatiou functions:

49 z gz z 2N de (0‘) — k) ‘7!((9} 2 =8
S 3 100 [CSESE — (S5 <51 = f e DR LLS
(4.8)

Equations (4.7) and (4.8) permit a self-consistent calculation of the spin wave
spectrum, which, after all the simple algebra within (4.5), is determined as
a solution of the rather complicated non-linear self-consistent equation

S—h +gI(p)

1 .
(1) 3 5 i ooth P22 4 R (0 10) — g 10) x
1+ (1 —2?) (l,’M % (I(k)/1(0)) coth (8 (9,;)}’2)2

. : ; =
I (B M 3 U®I0) coth Bogz T g (49
k

and considerably differs from the results of analogous calculations making use
of all other approximate methods except the variational method [27]. The cal-
culations of [27], however, are carried out only for the isotropic model and are,
therefore, of limited applicability.
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Fig. 1. Dependence of the ground state energy

on g for the one-dimensional Heisenberg-Ising

model (o = 1). (a) Method of spectral densities

(identical with the exact solution); (b) method

of linear canonical transformation; (¢c) Hartree-
Fock approximation

| a
b ;
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The renormalization of the spin wave spectrum obtained here is a direct
consequence of the more accurate handling with the higher correlation functions
inherent to the spectral density method and, compared with the results of the
method of the mean field, leads to a more correct temperature dependence both
for the spin wave of spectrum and the spontaneous magnetization.

Note that for the one-dimensional model, due to the possibility to replace the
spin operators exactly by Fermi operators, equation (4.1) takes the form

M —
H= —-f— > (ocosp+g)a;a,+ i,- 2 Op, +py: py+pe €OS (Pg — Pg) Ay, a5, 0y ap, .
P A pap,

(4.10)

The corresponding calculations are easily made also up to more complicated
approximations. For example, for the Hamiltonian (4.10) one succeeds to
develop in a rather simple way an approximation of the one-particle spectral
density by two 3-functions [9], what corresponds to antiferromagnetic ordering.
The numerical results obtained in this approximation were compared with those
of the other approximate methods. It was shown that the spectral density
method fits the exactly known ground state energy of this model better than
any other known method (see Fig. 1).

4.2 Bardeen-Cooper-Schrieffer model of superconductivily

We shall proceed from a rather simple and well-known model Hamiltonian
[28]

H:Z’skaiakﬁ—z—%-zV;ka;;ai,,aﬂka-t, (4.11)
k pk

which is the bagis of the Bardeen-Copper-Schrieffer theory of superconductivity
[14] and is developed by some other authors (see, for example, [29]). This model
can be solved exactly [30] and is of particular interest since it clears up the
possibilities of various approximate methods. The exact solution of this model
will be presented below in a rather simple way via the spectral density method,
thus demonstrating the efficiency of this method when applied to an essentially
non-trivial model of statistical physics.

As in Section 2.4 of the present review, the calculations will make use
of the matrix technique. The one-particle spectral density is defined in the
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form of a 2 X2 matrix:
Alh; ) — (([ai; a(t)]de [k aLi(t)]ido )
{Ja—x;a(D)]de {[a—p; oli(r)]

containing the normal and anomalous spectral functions and satisfying the
matrix system of the corresponding moments.

Let us find the solution of this model in the simplest approximation, i.e., ap-
proximating the one-particle spectral density by one matrix 3-function:

Ak; 0) =278 (0 — MD(E)) , (4.13)

and determining the unknown functional parameters within the set of the two
first moments:

fdm Alb; ) =T, g—ww Ak; w) = MO(E);

(4.12)

0 "i‘ — 2 Vi plap alp)
MO (k) = & ({1) _(1) V5

)+
+ %‘ 2 Vigpla—p ap) 0
?

It can be easily seen by comparison with the known results that the solution thus
obtained is exact. In fact, estimating the eigenvalues of the matrix M()(k),
we immediately obtain the well-known expression for the elementary excitation
spectrum:

Bo=VM teis M=+%3 Viapap), (4.14)
v

and representing the function of the matrix in an explicit form, we find the
known expression for both the normal and anomalous spectral densities:

e b
Alk;w) =n A'i/"‘ + e 1 Mi:’ %13 (0 — VAL + 1) +
7t + & i+ a
A
tm| VAEte VARt et | s (o 4 yaE +4) . (415)

Ay 1 -f-i
l’/1 + &k VAi + &t
The self-consistent equation determining the energy gap in the elementary
excitation spectrum is a direct consequence of the spectral properties of the
function (4.13) and has the usual form

2
VZ’;? ? tanh EH2 T By A" & SP (4.16)
+
One can convince oneself that this is an exact solution also by calculating
the subsequent moments for the one-particle spectral density and substituting
the above solution into them. In practice it is sufficient to prove that with
a reasonable decoupling of the higher correlation functions, several subsequent

Ay = — Z
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moments are satisfied. This is just the case for this model and, therefore, from
this point of view it may also be stated that this solution is in accord with the
exact one.

Thus we see that the exact solution of the Bardeen-Cooper-Schrieffer model
of superconductivity corresponds to the simplest approximation of the spectral
density method, whereas, for example, the usual perturbation treatment of this
model is quite helpless.

4.3 Eleclron correlations in narrow energy bands —
Inierpolating solution of the Hubbard model

Explanation of ferromagnetism (antiferromagnetism) and of the electron
behaviour in narrow energy bands has been a subject of investigation by a
number of authors [32]. The interest in these problems increased even more
after the metal-dielectric transition was discovered in some oxides of transition
metals (for example Ti,05, VO, V,0;, etc.) and qualitatively considered by
Mott [33]. Actually at low temperatures a substance exhibits the properties of
the antiferromagnet and dielectric (semiconductor), but as the temperature
increases, the magnetic ordering is broken at a certain point 7';. This oceurs
practically at the same point where the conductivity sharply increases, i.e., the
substance becomes a metal. This phenomenon cannot be explained by a simpli-
fied band theory since the oxides of the transition metals have their d-shells not
completely occupied and must be metals. In fact, however, for a substance
whose crystal lattice has a large distance between ions (narrow conductivity
bands), this generally takes place at high temperatures only. As the tempera-
ture decreases, a strong Coulomb repulsion leads to the electron localization in
the centres and the substance becomes a dielectric (semiconductor). Thus, the
electron correlations must be taken into account when describing the electron
behaviour in narrow energy bands, and a physical model to be comparable with
experiment therefore cannot be constructed without taking electron correla-
tions into account.

A realistic model involving electron correlations and being not too complicated
mathematically was recently suggested by Hubbard [34] and was further devel-
oped in a number of papers (see, for example, [35], [36], and [37]). In the second
quantization representation, the Hamiltonian of this model is easily reduced
to the following form:

g

H= 3¢p,az,a, +M 2 Opipiipetp Opyt gy Op, ) Gpy > (4.17)
7

Pr--Py

where ¢, is the dispersion law for free electrons in the energy band, summation

is everywhere carried out within the band, M is the number of centres in the

crystal lattice, g is the strength of the Coulomb interaction between two elec-

trons with opposite spins at the same centre. It is convenient to assume that

&p = @ Mp — u where y is the chemical potential of the system, g is a constant,
t

and 7, = 3 cos p{Y. Such a choice of the dispersion law is rather realistic in
i=1

most cases and, besides, it leads to considerable mathematical simplifications.

The aim of this section is to construct an interpolating solution for this model

with the aid of the spectral density method, and to compare it with the known

approximate results and in'some limiting cases with exact solutions. The most

attention is paid to take consistently into account all possible pair correlations,

3 physica (b) 59/1
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which are not small in this model and are mainly responsible for all the quanti-
tative results. We shall restrict ourselves below to consider the ferromagnetic
ordering or paramagnetic phase taking account only of one-particle excitations.
The solution obtained here is valid in the whole temperature range and for any
ratio of coupling constants as well as for any density » (z is the number of elec-
trons at a centre). Moreover, in the free electron limit ¢ = 0 and in the Heitler-
London limit ¢ = 0 this solution becomes exact. In all the intermediate region,
this solution gives a simplest interpolation approximation.

Exact solutions for both the limiting cases within this model are easily found,
and their simplest interpolation is the approximation of the one-particle spec-
tral density /4,,(w) through a set of two different 3-functions:

App(@) =7 (L + 1) 8 (@ — BSY) + 7 (L — ) 8 (0 + EFY),  (4.18)
with a subsequent determination of the functional parameters within the set of
the first four moments:

i (4.19)

fﬂ (0 — &p)* Apf(“’)-z gEn,,

daw
fﬂ(“’ — &) App(w) =¢*n, —2¢*n, (1 —n))oyp1 -

This set in the chosen class of the approximating functions is easily transformed
into a set of corresponding equations:

1,2) g
Eg,,, =Ep, £ Up,;

s ; —— _
E?T:‘l/[gw?f_g(l_‘2nl}:| +92n¢ (1_-?”} t] (420)
—(g/2) (1 —2n g

?331:9_%'” (EI;T - Q, Upf'}’Q'PP?:sp'}‘?s

connecting the elementary excitation spectrum with exact correlation functions.
The latter enter (4.20) through the parameter y,, which, after easy calculations,
using equal-time commutation relations and the explicit expression for the one-
particle spectral density, can be represented as

20y (L —my)ppr = 2my (1L —my) O + 0y 7y +

1 .
-l-Fz 2 Op, 9y ps-+24 Mpetp—pa <Op, 4 Up, ) Gp,y Op ) T
Pr---Pa

1 . i
+E 2 Op 90 patpe (Mpa p—pet st p—2) <““;.1‘ Up, | Ap, | Ap, 1) > (4.21)
Proey

where by definition 2 7, (1 —n,) Cs = £ [(1 — 2 n4) %, +2 24 (1 — n4) #,] and
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the new functions %, and #; have the following form:

1 _ F,
“+:m§’hﬂph By = tMZ rJE_;' (4.22)

7 1 sinh g By,
P+ ™9 cosh B U,, + coshp By,

The approximation of the one-particle spectral density thus obtained corre-
sponds, for the density of states, to the two-band approximation with sharp
boundaries and satisfies the qualitative picture of the phenomenon in this point.
The success of further calculations, however, crucially depends on an accurate
handling of the two-particle correlation functions determining the parametery,;.

These functions will be calculated here within the one-particle approach
which, though ignoring collective modes, takes consistently account of the cor-
responding one-particle excitations. The simple decoupling of the binary cor-
relation functions in (4.21) would be much worse in this respect.

In view of what has been said above, let us now define the three two-particle
spectral densities:

Ag;)v;: D 1-{(.0) ot 2 a?rh“a: D+ <[a’-;—l ¥ a’;’—n 4 a?’a i a‘?’l f(r)]+>a}:

PiiPa
A;E.)J-: nt(@) ij; Op,-+pai pato (95,1 5, 4 Op, 35 Up 4 (D)) s (4.23)
AR 2 (@) = 3 8ptp; oy ip [Tt Bt Bp0t5 B9 (D))

P Pa

after the estimation of which it is easy to find the parameter y,;. In accordance
with the choice made for A,:(w), the functional forms of all the three spectral
densities are the same:

AP o(0) = A ARG ko {1 + B8 20) 8 (0 — EEY) +
4+ =) (o + B2, (4.24)

as well as all the further calculations of the functional parameters C‘Rp l. ro and
bﬁ,’L; ko are. Therefore, we shall present here a detailed calculation of one of the
two-particle spectral densities (the most complicated), and for the remaining
two we shall give only the final results (see, for example, the appendix of [31]).

Specific calculations will be given for the function A;ﬂ; p.(@) within the set
of the first two moments which are easily calculated and have rather a simple
form:

dw

2 A(l'[‘ ‘Pll(w) = ﬂ'?l-lv - M Lo 6‘?::1’1;

do A7) k0(0)
2mexp (fo) +1° | 425)

dw (3) g (4)
Ao =t . Zij s s +
-[2:; (w Ei’a) Padi P '(&J) M i:,‘%.' é?l'f'kn-ka‘??’l kst ket

do o — g,
+fﬂ oxp Bw) +1 7@

g%
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This set of relations is however not closed and for the sake of self-consistency,
we have to consider one more two-particle spectral density:

4
A;.)T;w.t(w) = 3 Op, 490 ms+n (03,1 @y, Ap, 45 Fp t(T)] 0w » (4.26)
PP

which is also determined from the set of the first two moments,

dw
fﬁ A;?Ta Dy T(O") il 62],; s M n,,
(4.27)

de (4 g 743)
,[25'5 (0 — &) Ap t;pt(@) = gn, — Ek% Op, ks iyt Be Ly 45 Ba b »

according to (4.24).

Now the set of relations (4.25) and (4.27) is closed and after the auxiliary
spectral density ALy, pot(@) is eliminated, one can obtain a simple integral
equation for the unknown function L PP

Eﬁa +
1“2’: v

3 3 g - (8
zz(a.)h;v.& . Q;-)l;pd G dT M & 5p=+k=: Putky é-sf.)u ko (4.28)
ky ks
the exact solution of which is rather simple:

Eyy 9 dy g Fry

AR 1 = o k- (42
1;‘11,“1r Py Pt Q?:wl—;?nv]r + 1= “51. dl; M 1‘2 a?l‘i'kh Patks -Ek,{ kgt kad { 9]

3 K

The new functions 4 and QS’L; ., Were obtained in the solution procedure to be

dy = 9 s Fr

M 5 Epy
; E,, -
Qg:)i;pd = 0py;p, My (9 ny, dy — Fp L ”’m#)"‘ ¢ (4.30)
Pat
F Bon =
—gnydy +g*ny (1 —my) Em-f-Fp'* Ry, i My -
Prt Putd

If now the spectral properties of the function AD,. o (@) are taken into
account it is easy to derive the validity of the following expression:

1 3
== X Opy+225 s+ 20 MPa+P—P1 (a3, | ag, i Gp, 4 Cp, 1> = 355 2 Npoto—n Zs(la}l: Put s
M PP M PaPu (4 31)

which enables us to find a part of the function y, . in a self-consistent way (see
formula (4.31)). The function p, 4 can be completely calculated in a closed form
if the remaining two-particle spectral densities are dealt with in an analogous
way.

All the calculations being made, the function y,  turns out to be representable
as a sum of the two other functions, i.e. ¥p4 = Cpt 104 7, the function 64 being
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of the following simple form:

9“=l¥ By uy (nR +1;n)+

21 @ —a) \1 —dy " 1+d;
- oy 2wy
T =np ( T—ddy - “’4) "
ns (1 — n4) % 2% ﬁf) } 2
+n¢(1—n4)(1;-""1—d¢+1_—d? i -

When obtaining the solution (4.32), we need not impose any limitations on the
coupling constant g (g can be either positive or negative) and the temperature 7'.
This solution is valid under the only additional requirement ns (1 — n4) dy =
=, (1 — n,) d;, which is easily obtained by considering the simple operator
equality

1

- 3 + _
ﬂ,fz - Zp 6?1 + P2 Pat Py <ap|f a'.?’: + a’iﬂs 13 ai"a f> -
- Dy a

1
= M, Zp‘am-l-m; po+2. $Opy ) Opyt pyt O, 1) (4.33)
and expressing both its parts through the one-particle spectral density. The
self-consistent equations determining %, and #, are easily obtained with the
aid of (4.22) and the explicit form of the one-particle spectral density. However,
gince the thermodynamic properties of the system are not investigated in this
section, we shall not write down their explicit form.

Tt is of interest now to compare the above equation for the function 0; (see
equation (4.35)) with the analogous equation of [36] obtained within the limit
g — oo and under the assumption that electrons occupy the low levels which
it can most readily reach, in other words at.f — co. A complete agreement
between both self-consistent equations can be obtained if we take into account
the above assumptions and simplify (4.32) with the aid of the following approx-
imate expressions:

U
S
t 1—1‘34,

i

dy = :
t l—ﬂ*

3 [exp (—P BNy L 1rs,

1o (4.34)

e

but in E;zt) it is necessary to keep only the lower terms of the expansion in p/fg.
It should be noted, however, that the expression (4.34) is not a direct expansion
of the exact expressions, for example with respect to g/g or to 1/, though the
fact that these parameters are small is essential. The expression (4.34) rather
reflects a certain summation of this or that kind of diagrams in this limiting
case. Thus all the results of [36] are contained in the solution (4.32) found above
which, being more general, provides their consistent improvement.

Further the comparison is worth being discussed of the solution obtained
here with the exact solution in the one-dimensional case found by Lieb and
Wu [37]. Comparison of the corresponding expressions showed (see Fig. 2)
a rather good coincidence in the whole region of ¢ at p = 0 (p = —2) between
the exact expression for the energy of the ground state and the corresponding
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Fig. 2. Dependence of the ground state energy

on g for the one-dimensional Hubbard model

(e = —2). (a) Exact solution; (b) method of
spectral densities

/“ | | | | |

0 4 8 12 1 20
g

expression following from the above formulae at n = 1, 4 = ny, and T' = 0,

E g gtk /] _4E(k)_ 1
E_I"’W(I_E)KU‘} ak° T aTaaee O

where K(k) and E(k) are the complete elliptic integrals of the first and second
kind, respectively, and the parameter 6 is defined as a solution of the ¢-numerical
self-consistent equation

1 122\ gk _B(k)_ gk ,
B—E(”m)’ “2m0 B Y= F T Tene i) (430)

Thus, according to what has been said we can be sure that the solution obtain-
ed. here, at least in what concerns the macroscopie properties, corresponds to the
true situation, i.e. takes a rather effective account of binary correlations and,
therefore, can be recommended as a basis for further calculations.

As a whole, the method suggested here to construct interpolating solutions
within the spectral density method can be useful and effective when being
applied to concrete calculations.

4.4 Ising model — A set of equations for correlation functions

The Ising model is a rough attempt to deseribe the properties of a real physical
substance showing a tendency to magnetic ordering. Ising [39] was the first
to suggest this model to explain ferromagnetism, and to solve it exactly in the
one-dimensional case. Further, this model was developed by a large number of
authors. At present most fundamental results are obtained for various two-
dimensional Ising lattices in the absence of an external field [40], the simplest
of which was solved exactly by Onsager [41] after the paper of Kramers and
Wannier [42]. As to two-dimensional Ising lattices in an external field and three-
dimensional lattices even in the absence of an external field, there is no exact
solution for any of them. The point is that the main methods for investigating
(see, for example, [43]) this model are to a considerable extent heuristic and
only suited to solve various two-dimensional Ising lattices in the absence of an
external field. The application of more general methods of statistical physics
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to solve this model provides an easy obtaining of a number of approximate solu-
tions for any case. However, this method is less resultative in the limit of a
removed external field.

In this connection the application of the spectral density method to this
model is of particular interest now. On the one hand, being exactly solved in
many not-trivial cases, this model enables us to control the efficiency of approx-
imate solutions within the framework of the latter; on the other hand, since
this method is equally efficient in any case irrespective either of the dimensional-
ity of the model or of the presence of an external field, we may hope to extend
the known results by means of this method.

Below, irrespective of the dimensionality of the model, we shall obtain a num-
ber of exact results concerning the functional form of the corresponding spec-
tral densities and, as a straightforward consequence of these results, exact
finite difference equations for the correlation functions will be written. For the
one-dimensional Ising model in an external field one can easily obtain exact
expressions both for the partition function and for all correlation functions.

Our starting point is the well-known model Hamiltonian

H=—h38+9g23In, SE 8%, (4.37)
! m §

where & is the external field, g is the coupling constant, S7 is the z-component
of the spin operator located at the f-site. We restrict ourselves here only to
the cubic t-dimensional lattice with nearest-neighbour interaction:

. 1
I#' 2 gﬂaﬂl; - 9 (6.ﬂm;”m+1 + a}-"m"'l;'m) i am; i (4.38)

Besides it is convenient to replace the spin operators by the Fermi operators
1

S;=mn, — o5 By = Gy Gy, (4.39)
in terms of which the Hamiltonian (4.37) has the simple form
H=C‘+r2snf—|—g§lm,fnmnf; (4.40)

Nt
o= (p+ty) e=—tr1o,

and has been conveniently prepared for investigation with the aid of the spec-
tral density method.

The thermodynamic quantities of (4.40) are conveniently investigated with
the aid of the one-particle spectral density

A o) = {[a; au(1)] D0 s (4.41)

which can by esaily calculated in a closed form for this model since the particle
number density operators commute with the Hamiltonian of the system:

A (z) = <exp {—t’ (a +2g9 31, n,) 1:}) (4.42)

Using further the definition of I,, (cf. equation (4.38)), we can write down the
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infinite set of moments for /1 ,(w) in form of a single recurrence relation :

dw = :
[ﬂ (w—erdfw)=¢ Smd,)2; »=01,..; ()
Z m=0
2 (P . (P pt
d, |2t :,,%m(_l) +p (m) AT )y ; (m) = i (p —m)’

where IT2!(u) is the sum of all possible combinations of the particle number
density operators of the 2 ¢ nearest neighbours over p of the lattice point (u).
The spectral density satifying the whole infinite set of moments has the very
simple form

A (w) = i‘tdﬂlfn‘ 28 (w —e—myg) (4.44)

m=0

and solves the problem in principle if the coefficients d /2! can be calculated in
2 evi-

explicit form. In virtue of the translational invariance the quantities d,,

dently do not depend on the number of the lattice point (z) and if they are
known, the investigation of the thermodynamic properties of the system en-
counters no difficulties. For example, the average occupation numbers and the

thermodynamic potential for the system are respectively given by the simple
expressions

2t dﬁt
m

"= B +tmal 1

and
(4.45)

g
0 — 0, g 1 24 (m — 2¢t) d2
ol CRi . PO N B . Urm
Nt 4+2fdglm‘§g exp[f(e +mg)] +1"
0

where the thermodynamic potential of the system, Q,, for g§ = 0 usually can
be easily calculated.

For studying the correlation functions it is necessary to consider the u-par-
ticles spectral density

Aiy.i(@) = ([niy -+ - m, 085 05(0)] D0 (4.46)

where it is essential that i; == (¢, - - - %,). In analogy to A ,(w), the infinite system
of moments for the spectral density (4.46) can algso be written down in form
of a single recurrence relation:

2t
f e (0 — ey 4i, 4 (@) =g Z_nm" YD [ (4.47)

2x

and then we can directly verify that the solution of the set (4.47) is given by
a spectral density of the following form:

28 .
Aiy. (@)= 2 diy i3 278 (0 — —myg), (4.48)

m=0
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where d;,_ i [2! are the natural generalizations of expression (4.43):

\

2@
hpiltt = 3 (<107 (B iy LG (4)

Now, utilizing the spectral properties of the function (4.46), we define the u-par-
ticle correlation function:

do A, (0)

— 4.50
27 expfw +1° )

Wipoty = (Wi =+ Myp =
for which, using the explicit form of the spectral density (4.48), the simple set
of equations can be casily obtained:

2¢ d‘i i 21
Wisoto = 5 — Bty m ;
g m-o exp[f(e +mg)] +1
These equations form the basic set for determining the correlation functions
of the Ising model with an arbitrary number of dimensions. Here we restrict
ourselves to an exact solution of this set for the one-dimensional model with
the topology of a closed ring.
In this case the set (4.51) has a very simple form and after substituting in
accordance with (4.49), the explicit form of the coefficients d;, i[5

iyt = Wipoipin—toat1 + Wipeni, — (Wipigii—1 + Wig,641) 5
Aoyt = (Wipowtnivir + Wipann—1) — 2 Wyiii41,4-1 5 (4.52)

B, tlf = Wipoiun st 6-1s

(4.51)

reduces to the following equations:

. Wig...is )
Wi+ (Wopoyu-1 + Wip.inin+1) = ?P(Bﬁs) iy i P Wey. tuiibliti=10
(4.53)
where s and r are known functions:
g ( 1 1 )
“lex e) 1  ex ST I
p(Be) p B (e + 9] wsd)

1 2 1
"(exp(ﬁz) F1 exp B+l +1 " exp(Ble +29)] +1)'

We note that (4.53) is valid if 4, = (¢, - - - iy), and is the bagic equation for the
one-dimensional Ising model.

Tf the external field is switched off, we have r = 0, and the set of equations
(4.53) is decoupled into closed equations of a more simple form:

Wo|z',u...i.
exp (—f9) + 1

where s, is the value of s for » = 0. In what follows we denote the quantities
corresponding to a switched-off external field by the subscript zero. Further,
without loss of generality we can assume that ¢, > i,_1 > - - - > ¢, since the
particle number density operators (cf. equation (4.50)) commute; in what fol-
lows this condition will be essentially exploited. In virtue of translational in-
variance, the correlation function depends only on the differences between the

Woliy...iv + 8o (Wolig...s,—1 + Wolig...iy+1) = s (4.55)
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subscripts, i.e., Wyli,..i, = Wo(pu—1-++y), where y, = 43, — 4;, and one can
easily verify that the solution which has a correct behaviour for N — oc has
the following form:

WoYu—1++-71) = R o(yu—1) * - - 6o(31) 5 (4.56)

i.e., in the limit N — co the g-particle correlation function is represented in
a multiplicative form with the aid of the simple functions

ay) =5 |1+ (17 (tann EEJ ] w57)

Now we proceed to consider the case % == 0. In this case r == 0 and it is
necessary to solve the complete set of equations. If N — co, however, it can
be shown that the correlation functions retain as before their multiplicative
form (4.56), and so we obtain again a simple equation for o(y):

oly) +sloly +1) +a(y— 1] =[exp(fe) + 1] +ro(y —1)0(2), (4.58)

which must be solved in accordance with the boundary conditions for a(y):
a(0) = 1; a(p)|y+cc — const. Now, provided the solution of the equation (4.58)
is written down as follows:

oly) = bat +x, (4.59)

one can obtain the set of coupled non-linear equations for the three functions:

b+x=1, z+e+1)=r(ba+u), } (4.60)

#(l +2s) —rn(da®+x) =[exp(fe) + 1],
which are solved in the usual manner. For this it is needed to introduce the new

variables % = 1 (1 -}- B), b = + (1 — R), and to carry out a fractional-linear
transformation of the simple form

R — tanh (8 2/2)
R + tanh (8 £/2)

Then the first equation of the set (4.60) is reduced to a degenerate quadratic
equation which is easily solved:

(4.61)

_ sinh? (8 h/2)
sinh? (B 2/2) + exp (Bg)
By a direct substitution we verify now that the second equation of the set (4.60)
is satisfied identically and for x and R the following expressions hold:
__ cosh (B 4/2) — /sinh® (§ k[2) +exp (B ¢)

cosh (8 1/2) + Ysinh? (B k/2) +exp (Bg)
sinh (8 h/2)

" Ysinh? (BH2) +exp (Bg)

Thus, the function o(y) is completely determined, and then, according to (4.56)
we have an expression for all the correlation functions of the system for 2 == 0
and N — oo,

R? (4.62)

(4.63)
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Now we proceed to consider the thermodynamic quantities of this system.
According to the formulae (4.45), in order to determine all the thermodynamical
properties of the system it is sufficient to know the quantities d|%} which accord-
ing to (4.43) have the following form:

B=1+W2 —27,dd=2m— W?Q), d=W2), (4.64)

i.e., we see that all the thermodynamic quantities of the system are determined
by the single correlation function W(2).

First of all we calculate average occupation numbers for which in accordance
with (4.45) one can obtain the following expression:

_ 1 " r
(1 +2s)[exp(Be) +1] 1425
where 7 and s are the functions determined earlier (cf. equation (4.54)). Com-

paring this expression with the second expression of the set (4.60) and taking
into account that W (2) =% (b2® + %), we find that n =x = 5 (1 + B).
N

n

W), (4.65)

Further, defining the magnetization per unit spin by the expression (2/N) 3 (8%
i=1

we easily verify, utilizing (4.39), that the previously defined quantity R is the
magnetization of the system. In view of its importance we reproduce it explic-
itly once again:

sinh (8 k/2)

R = : —
Ysinh? (8 /2) + exp (B ¢)

Thus we see that when the external field is switched off, the magnetization of
the system vanishes, i.c., the one-dimensional Ising lattice does not exhibit
any spontaneous magnetization.

Further it is of interest to calculate the thermodynamic potential, which in
this case is merely the free energy. Using the formulae (4.45) and (4.46) we find
after straightforward transformations the following expression:

P L e Ao WE@)
f‘ exp (Be) +1 exp[f(e +¢)] +1

(4.66)

F—F,_9

N 4

) . (4.67)

]

which after simple calculations is reduced to an integral over the coupling con-
stant:

F — F, g
F_h_ o
7
_ {_ dg, exp (8 1) S .
J 2 Vsinh (8 #/2) + oxp (B g,) [cosh (B h/2) + Vsinh® (B #/2) + exp (B 1]

(4.68)

The integral (4.68) and F, (the free energy for g = 0) are evaluated in an ele-
mentary manner and we finally obtain the well known result [44]

F 1 b h
= i- o In [cosh ’3? EN V sinh? % + exp (8 g)J- (4.69)
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Thus we can see that the solution of the set of equations for the correlation
functions is efficient enough, for it enables wus to find not only the thermo-
dynamical potential, but also all the correlation functions of the system in view.
Unfortunately, the solution of the analogous equations for the two- and three-
dimensional Ising lattice encounter at present some difficulties of mathematical
origin,

5. Concluding Remarks

In this review article we confined ourselves to present the spectral density
method and to illustrate the efficiency of its lowest approximations as applied
to various problems and models of statistical physiecs. Particular attention was
paid throughout the paper to self-consistent calculations since it is only with
the help of them that one may expect to describe in an accurate and efficient
enough way the various anomalities in the macroscopic quantities of the systems
subject to phase transitions.

The procedures for the self-consistent calculations suggested here are all of
quasi-particle origin, i.e., the damping is considered to be small everywhere.
It would thus be meaningless to treat it in a self-consistent manner. It is the
elementary excitation spectrum that is found within the self-consistent scheme,
the damping being estimated after the corresponding self-consistent equations
have been solved.

Tt is worth noting that the sequence of approximations in the spectral density
method considerably differs from that of the ordinary methods insofar as every
new approximation implies new self-consistent equations and not corrections
to the previous solution. Such a feature makes it possible to examinate the
efficiency of the chosen approximation even for systems with no ordinary small
parameters. The sequence of approximations may be considered to be satis-
factory if every new approximation preserves the qualitative features of the
previous one,

In conclusion, we should point out some problems that are thought of as
being especially important for further development of the spectral density
method and its applications. Those are the presentation of the variational
method via the spectral densities, the search for scale-invariant solutions in
various models of statistical physics, and the further specification of the ap-
proximations given above to include efficiently the quasi-particle damping.
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