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Summary

The set of completely renormalized equations which is free of difficulties connected
with the treating of the so-called overlapping divergencies is obtained in the gauge
field theory with fermions. The asymptotically strict solution at this set is found
in the region of the large transferred momentum. The ultraviolet asymptotic
behaviour of all the Green and vertex functions is obtained and the connection
between the bare and the experimental charge is discussed.

1. Introduetion

Investigations of the last few years [1] have shown that there exists
a definite class of quantum field theories without the known “zero-
charge’”’ difficulty [2]. Among these theories we would like to point out
first of all Yang-Mills gauge field theory and that in which Yang-Mills
fields interact with fermions. The latter theory is of particular interest,
perhaps this is just the theory to be the basis of an asymptotically free
theory of strong interactions. Here we bear in mind gluon models developed
rather intensively in recent years by many authors [3]. Meanwhile a
theory for such models has not yet been formulated at a due theoretical-
field level. In particular, the mathematical technique of the Green func-
tions has not yet been fully used here and all the known results have been
obtained as a rule within perturbation theory only. At the same time
the theory of ghion model is an example of a mathematically consistent
and physically interesting theory. In this connection it would be natural
to obtain for such a theory a set of exact equations for the Green functions
and to carry out the renormalization program in a general form within.
The next step is to investigate the qualitative features of the renormalized
set of equations thus obtained beyond the scope of the perturbation
theory.
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The present paper is devoted to this problem. We shall proceed from
the set of the dynamical equations describing this class of theories and
reformulate them into the set of unrenormalized equations for the Green
functions. The set of completely renormalized equations which is free
of the known difficulty of treating the overlapping divergencies is then
obtained following the method of one of the authors [4]. This set of
equations is exact and closed and does not contain any divergencies
and uncertainties. Therefore when solving these equations by perturba-
tions as well as beyond the scope of the perturbation method no regulariza-
tions are needed. Here this set of equation is solved within the “three-
gamma’ approximation what provides an asymptotically precise result
for all the Green and vertex functions in the limit of large momenta.
The connection between the “‘bare” and experimental chargesis established
and the absence of the ““zero charge” difficulty for this class of theories
is discussed.

There is also another reason why we think it important to carry out
the above mentioned program within dynamical equations. The point
is that in our opinion a number of problems in this theory (such as the
possibility that the quarks may form bound states when interacting
through the Yang-Mills fields, as well as temperature and many-particle
effects) can be solved consistently only when the closed set of renormalized
dynamical equations is employed. In this connection the set of completely
renormalized equations for the Green functions obtained in the present
paper may turn out to be useful for a number of other applications, as
well.

2. A Set of Unrenormalized Equations for the Green Fanetions

We shall proceed from the well known expression for the generating
functional of the Yang-Mills field theory [5] extended by switching
on the interaction of the Yang-Mills fields with fermions

r = f@r. ..] exp(sS),
S[...] = — 36,,°G,,* + Co(I7,%3,)C? +- % (3,W,9)2

+ P yu(0u0*7 + gty W, %) + mod*7]g”

+ [Conz® + 7c°C] + [¥n;* + 7y "]

+ Wl Jwli (2.1)
In Eq. (2.1) #,% are matrices of the representation with which y-fields
are transformated; # and J are sources of the external fields. The other
notations are usual. The summation or integration over the repeated
labels is meant here.

The expression for S in Eq. (2.1) is reformulated in the next step

identically to the following form:
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S[...] = — W) [Dwalo '1; 2)W(2)

’gu I’Wa“”{] 2; 3)W(1)YW(2)W(3)

+ @i—of) Ty (1;2;3; ) W(L)W(2)W (3) W (4)

C(l}rGCC]D_'{l- 2)C(2) + igul’ccwml(l; 2|3)C(1)C(2)W(3)
— $(1)[G,716 " (1; 2)(2) + igol w15 23)(1)(2) W (3)
+ [C()mz (1) + Fe(1)CA)] + [(L)nz (1) + (L)1)
+ W()Jw(l). (2.2)

Here we simplified the tensor structure of the initial expression (2.1)
and used the usual form for the zero Green functions

((Dwalo Ninlw; ¥) = 8(x — )%= 8,00 + (1 + 0)2,3,],

(Gezlo )®(x; ) = 8(x — %)6%(— ),

([Gy3la ™ (% ) = 8(x — 9)8(— y,9, — my), (2.3)
and the vertex functions

(Tws @)l 55 2)

- i{abﬂ{aw [— 28(x — 2) ( az 8y — x)) + 8(x — ) (-5:_ ax — z))]

G a,,,[_ 28(x — ) (% Bz — z)) 3 Al — 3 (% Bz — y))]

+ 8,4 [6(3: —z) (Ez— oy — x}) + d(x — y) (% o(x — z))]} ,

(Leaw'™)®lulx; y]2) = — ifeve (% 8z — y)) d(x — 2),

(L aslu(x; ¥l2) = — 8(x — 2)8(z — 9) * [Vulas * tar’,
(Do) osolz1 225 28 2)
= 0(z; — z3)8(z1 — 23)8(21 — 24) * {(FP°2f7°%) * [85,8ys — 8,40y
+ (f7befrad) - [8,50,y — 8y60,,]}- ' (2.4)

The exact Green function

) . OlnZ )
Pwlli2) = =5 mer,®
. ®hnZ . ®nZ
Gl =—tg o WA= i ma,m @

it
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and the exact vertex function of the theory under consideration

D215 2
I'ws(1;2;3) = — m@i’@);;
82D, 1(1:2
I'ya(1;2;3;4) = — (,-go)za(l;(:a)()é(il’(‘i});
] 6Gz7Y(1;2)
Toowlli2B) = — (o N acwi@)y
Fyapltizy) = — 2o =
wgwits (t80)0(W(3))

are defined here in a usual way. Expression for S in the form (2.2} is
convenient for treatment because the choice of the definite representa-
tion for the interacting fields can be made after all calculations. Thus
the expressions to be obtained take place for every representation which
offers the possibility to obtain here a number of general statements
concerning the theory under consideration.

The set of functional equations is derived by a usual method and,
according to (2.2), has the following simple form

[Dwaly {1 2CW @) — & Ta®(1;2:3) [Dm(z; 3) — - (WEXWE) ]

0Dyw2(2;3) 1 '
W TG <W(2}>DWI(3, 4)

— (W EDm(2:4) —  (WO)Dal233)

Y 2
5 —(’i“) Tya®(1;2;3; 4) [

= (W(ﬁ})(W{3))(W(4)>|

+ 8T ®012:3) [ 6,202 — L e

+ 8oy @012 3) [ 6,5 8:2) — - NI [ = Twld),
Gzl (1: 2CE)

[6(C2) 1

:
12| 55 — 7 COXW@) | =7 1),

&l oy

(G,31571(15 2)((2))

— el 002022 L enwen |- mm. @)

0Jw(3)
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The set of unrenormalized equations for the corresponding Green
functions is then obtained from (2.7) by differentiation of the latter
with respect to the external sources. After some simple algebra it may
be easily put into the form of the Schwinger-Dyson-type equations:

[(Dwa]7(1; 2) = [Dyaly(1; 2) — (1g0) I'ws"0(1; 2; 3)XW(3))

_ ('gg_o}“ Tywa®(1;2;3; 4)(W(3) )W (4))

— ya(1;2);
[Gea1™(1;2) = (Gl H(1:2) — Zpz(1:2);
[Gyg171152) = [G,5151(1: 2) — 2,5 (1;2). (2.8)

The sources of the C-field are switched off here and the self-energy
operators are defined by the following integral representation:

2
WpallsT) = _% Tyd®(1;2; 3; T)Dya(2; 3)
2 e
- % Tyys'®(1; 2: 3)Dyya(2; 3) Tps(3; 2; T) Dya(Z; 3)
3 — s
— & Tyd®(1;2; 3; (W (2))Dya(4; 3) Ts(3; 2; 1) Dya(2:3)
4
= 52"— Tpd®(1;2; 8; 4)Dya(2; 4) Ts(d; 5, 6)
* Dya(5; 2)'5(3; 2; T)Dyya(3; 4) Dyya(6; 3)
4 s
e ‘%" Tye®(1;2;3; 4)Dya(2; 2 4@ 3; 2; T)
2 o =
+ 801, £ 0(112:3)6, £ (3; 85 B: 262 (23 2)

2 o -
+ 80 1 5 O012:3)G, 5 (3315, 3: 216, 5 (3 2);

2 _ o _
Z 1T = — gT?PCEW“”(l 218Gz (2; 210z (312 1) Dya(3; 3);

- 2 — —
Z,;(T) = — B 1o 00152036, 5 (2, 2) Ty, B1%: I Dwa(3; 3).

All the necessary vertex functions are to be found by direct differentiation
of (2.8) according to their definition (2.6).
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3. Renormalization of the Set of Equations for the Green Funetions

Although the set of Eqs. (2.8) is closed and consistent, explicit
calculations with the aid of it turn out to be extremely difficult. The
point is that all the quantities involved appear to be infinite due to
divergency of the corresponding integrals in the region of both small
and large momenta. The divergencies in the region of small momenta
are due to the masslessness of the Yang-Mills fields which introduce an
actual difficulty to the theory in question. On the contrary, the ultra-
violet divergencies are easily eliminated from the theory within a usual
renormalization program. The latter can be carried out in a general
form directly in the framework of the set of Eqs. (2.8).

For that purpose it is necessary first of all to introduce the Z-factors
to the Green and vertex functions

IR =21,
GER = Z;71: G; DE = Zg1- D (3.1)
and to go over in (2.8) to the renormalized quantities
[D2®1 715 2) = ZgW* - [Dypalg (15 2) — () 217"+ Ts (15 2; 3)(WH(3))

_ (ig)f c ZV' Ty (15 2; 3; 4)(WR3) )(WE(4))

— sz’(l 3 2):
[Gog®l~ (15 2) = Z,%0- [Gz)eM(1:2) — Z.5'(1;2);
[G,;17(1;2) = Zo*¥ - [G,5151(1;2) — Z,;5°(1;2) (3.2)

with the account taken of the exact Ward identity [6]
Z,W . [ZW] L = leci': ; [22051—1; ZW = [Z,W]2- [ZW]L;

ZW - (2] = 2, (29 (3.3)
as well as of the connection between the “bare” and experimental charges
g = go* [Z,W] - [Z3W]°. (3.4)

Then in view of the arbitrariness of the theory one can choose the Z-
factors so that all the ultraviolet divergencies of the theory be eliminated.
In particular, the Z, s-factors are determined from the requirement that
the corresponding divergencies in the Green functions be eliminated

. T (ko)
W — icinil ol it I 2
Zy 1+ hE
3 3 =" (ko) i 3z, - (ko)
oc cC _ Wi __ 1
Z?. =1 + 3k03 » ZZ 1 + akog (3'5)

while the Z,-factors serve for the elimination of ultraviolet divergencies
in the vertex functions. The renormalized Green functions retain the
structure of the Schwinger-Dyson-type equations
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[Dwa¥17Y(1; 2) = [Dywalg'(1; 2) — (1g) 2,7+ I'ys'®(1; 2; 3)(WE(3))

_@ZW*.P ©)(1:2-3-4)(WR R
SL 207 i (1; 2; 3; (W R(E))(WA(4))

e HWzR(l . 2) .
(G715 2) = Ga-;]D M1:2) — 2z 8(1; 2);
(G5 8171(1;2) = Guzlo(1;2) — 2 2 %(1;2), (3.6)
however, self—energy operators in these equations
3 7 oLy (k)
R{B2Y — Ry __ b2 »
Lys2(R2) = Iy’ (%) — k o
= o0 b cc (koa)
2oz MR = Loz (R — ok '
; ; aZ,; " (ke?)
- ‘ (27
2B R = 2,5 (k%) — R® hE (3.7)

do not contain now ultraviolet divergencies. Here k(2 is an arbitrary
point of renormalization; /I’ and £ are those parts of the self-energy
operators which are subject to renormalization. They have a tensor
structure similar to that of the corresponding lowest order Green function.

At the next stage the “overlapping’ divergencies connected with
the resolution of the 0- co-type uncertainty should be eliminated from
the theory. This uncertainty arises when one solves the set of renormalized
Eqgs. (3.5) due to the presence in it of the Z-factors and “bare” vertices.
We shall apply here the same method as the one applied in paper [4] by
one of the present authors and after some easy transformations we shall
effectively eliminate the above mentioned difficulty. Thus a completely
renormalized set of equations for the Green functions in the Yang-Mills
field theory with fermion is obtained.

We begin with eliminating the (Z,"¢<¢. I',-z'®) combination. For
that purpose, instead of the four-point function W .-

0L 5" (1; 2]4)
(1) 6(WE(3)y
+ Loew®(1; 218)G oz #(2; I) T gy (T 2)4)
+ Iz ®(1; 2]33‘)1).,,,“(3 12 Mys®(2;3; 4), (3.8)
defining the renormalized I'-function
R(1;2)3) = Z,°0 - I 0(1;2(3)

W eaanlls 2(3;4) =

(,LI‘V
_&gcw.p o(1;23)G,.-*2; T
g 1 cCw J GG 1)

W

cewi(1:2[3; 4)DyaR(4; 3), (3.9)
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we introduce a new four-point function P z.(1; 2(3; 4)

P ey ctw

(1;2(3;4) = W zn(l;2]3;4) +3;W = +(1; 2[3; 4)Dyy22(4; 3)

Gz *@ TP gya(T; 2(3; 4) (3.10)
having used the block W g,.(1; 2(3; 4) as an irreducible part. Eq. (3.9)
defining the I-function is now equivalent to the following equation

Tz, "(1;2]8) = 2,5 - Tz, 9(1;2[3) — ga R(1;93)Gs B2 1)

(,OH"

P15 213; 4) Dypa®(4; 3) (3.11)

which expresses Z LCEW I'.z,,'” only in terms of renormalized quantities.
This is just the equation to be used for eliminating Z,6CW - I' &' from
all the other equations of the theory under consideration.

The procedure of eliminating Z,; Wb . Iy combination is quite
similar, The final expression takes the form of I‘.q. (3.11)

R(1;2[3) = Zl“"‘*_*-FNWW’(l;Eal:i)— R(1;2[3)G,; *(Z; T)

ww ww

P, 5n(T; 2[3; 4) DR (4; 3) (3.12)

where the block P, - .(1;2|3; 4) is defined now by the solution of the

i
following equation

2 __ _
Pyn(1;23;4) = W, 5(1;203:4) +iw¢;w,(1; 2[3; 4)DysR(4; 3)
S DP, 284, (3.13)
Here the block W ¢§W=(l 2]3 4) has rather a simple form
R(1;2]4)
l.HW
o1 28:8) = oy
+ T3, (1 23)G, 5 @ DT, 5, X(T; 2/4)

4 1,5, (15 23) D33 ) T (2;3;4) - (3.14)

and is defined by the initial equation for I' -, ® function
- 4 g2 iy .ol
T3 M(1:218) = Z997 - T3, 0013 208) — £ 29 - I, 01, 28)

G,; REDW

w15 2[3; 4) DypaR(4; 3) (3.15)

which after eliminating uncertainties coincides with Eq. (3.12).
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As to the elimination of Z;#* « I'ys'®- and Z;W* - I'y.(®-combinations,
all the calculations are also analogous in many respects to those performed
above. Here it is convenient, however, to unite equations for the cor-
responding vertex functions in the single matrix equation

[FyaB(1;2;8) Iyef(1;2;3;4)]
=[ZW Tw'9(1;2;38) Z,\W' I'pd9(1;2;3;4)]
—[Z,7* Tys'9(1;2;3) Z,7* Tpal®(1;2;3; 4)]
8K ywaw(2; 312) 02K y2(2; 3[2)
@)o(WFB))  (1g)2(WR(3))(WE4))
6K waw(2; 3;4[2) 02K waw(2; 3; 4/2)
() 0(WER))  (ig)*6(WR(3))o(Wr(4))
g [;?sz’(l 2) FMy(1;2) ] (3.16)
(1g)0{W(3))  (18)*0(W*(3))d(WF(4))
because this simplifies considerably the consequent calculations. The
new K ; M’'-functions in (3.16) are directly connected with the self-energy
operators introduced above,
' (1;T) = — Z;7" Ty (15 2; 3)Kwaw(3; 2(T)
— ZW Tpd®(1: 2; 3; ) Kysw(d; 3; 2|T) + Myp2'(1; 1).
(3.17)

The four-point function F is defined by the corresponding matrix from
Eq. (3.16)

[ Foaws(2: 32 3) Fyaps(2:3(2;3;4)
| Fyowa(2;3;4(2:3)  Fraws(2;3; 4[2;3; 4)

(@) 0(WEB))  (1g)*6(W=(3))a(Wr(4))
8K ywsw(2; 3;4/2) Kysw(Z; 3; 4[2)
[ Gg)aWE@))y  (ig)*0(WEE))YO(WE(E))
K yaw(2; 3 [2) K yaw(2;3[2)
(ig)0(WRE))  (ig)0(WAE))S(WH(4))
0Kwsw(®:3:4(2)  Kyow(®:3;4[3)
(Q)IWEB)) (€)W ER))(WR(E))
szw:(2;§|2} 3) Fw:ws{§;§|2l 3; 4)
. [ngwz (_‘2;5_;712; 3) szws(=2 ;?;iﬂ; 3;4)
and makes it possible, some easy transformations carried out, to obtain

a simple equation for eliminating Z;W* « I'y5®-and Z,W* - I'y4{®-combina-
tions from all the consequent calculations

(3.18)
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(LIws®(1;2;3) TI'ya?(1;2;3;4)]
=[Z,W" - T'ys'%(1;2;3) Z,™: I'pa9(1;2;3;4)]
— [ngﬂ(l;ﬁ;ﬁ) I'yi®(1;2;3;4))
Fyawa(Z; 3)2; 3)
- [Fwawz(gi 3;4]2;3) Fuaps(@:3;4)2;3; 4)]
oMy:'(1;9) My.'(1;2)
[(fgw(WR{E» (s‘g)*a<Wf*(§)>a<wn@>]

8(2;2)8(3;3) + Fyawa(2; 3(2; 3) Fyawa(Z;3]2;3; 4)

8(2;2)0(3; 3)0(4;4) + Frpapa(2;3;4/2;3;4)
(3.19)

Now the renormalization program may be considered to be over. The
“overlapping divergencies” being excluded with the aid of (3.10) and
(3.19), the self-energy operators (3.6) can now be subject for explicit
calculations. The factors Z; are eliminated from (3.10) and (3.19) by
usual methods (see for example [4]).

4. Asymptotic Behaviour of the Green Functions in the Region of Large
Transferred Momenta

Asymptotic behaviour of the Green functions and of the corresponding
vertex functions will be calculated in the framework of the above set
of exact renormalized equations. We shall restrict ourselves to the so-
called “‘three-gamma” approximation and carry out the investigation
following the method of one of the present authors [7]. Theresults obtained
will be nevertheless asymptotically exact since this approximation shows
that the theory discussed here is asymptotically free. The latter, in its
turn, is responsible for the small contribution of the higher corrections
and thus the leading terms in the asymptotic behaviour of the Green
functions and the corresponding vertex functions will be found here
exactly.

It is convenient to start calculations with the derivation of a simplified
set of equations for the Green functions and the corresponding vertex
functions. Here we shall consider the equations for the vertex function
ghosts only

Tp1;2;3) = Z,W . T s 0)(1;2;8) — 'ccwﬂ(l;iﬁ)ccc.ﬂ(z;n

*Pzpal(1;2(3; 4)Dy2R(4; 3) (4.1)

and the set of equations for the derivatives of the corresponding Green
functions

].
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dDysM Y | M)
7"

[Gog" ™M) _ | dZee™#)

T A

d[G, 5 () dZ, 3 ®(p?

0 L R (4.2)

We shall not need an equation for the I'ys and I, ;,, functions since

the latters can be determined with the aid of the exact Ward identities; the
I'ys function appears not to be connected with these calculations
because the corresponding part of the self-energy operator Il.% does
not contribute to the asymptotic region. The set of equations for the
derivatives of the corresponding Green functions is as exact as the initial
set of equations for the Green functions but enables us to avoid some
difficulties in calculations in the study of asymptotic behaviour of the
self-energy operators.

Further simplifications of the exact set of Eqgs. (4.1), (4.2) within the
““three-gamma’” approximation are first of all due to an approximate
change of Z,“ - I' (0, ZW¥W - T 2@ and Z,#" - I'ys¥ in (4.2). We
shall restrict ourselves here to the leading terms of Eqgs. (3.11), (3.12)
and (3.19) obtained above

AL Loow® = Tygw® 2157 Tegy® = Tegy”
Z W IN'ps'® — s, (4.3)
Besides, when solving Eq. (3.10) for the four-point function, one

also should restrict oneself to the leading terms and simplify the expression
for W z,» within the same accuracy. As a result, instead of the exact
Eq. (4.1) the vertex function of fictitious particles is to be determined
from still simpler equation

Leay®(1;2[3)

= Zy6W . Tz, 0(1;2]3)

2 S =
—g— LML 2B)G 2 B2 1) oz ™1 213) D35 2) [P (25 35 4)

.Dmﬂ(‘i;gJ_— Leaw®(1; 2|3)G :%2: 1) ccwR[T}§|4)GcER(§;T}
L™l 213)DW2R(4} 3). (4.4)

The latter equation together with Egs. (4.2) after the corresponding
replacement of Z,°6W . Loz AL Ty7'” and Z,W° - I'y5©® combi-
nations is the basis for our further calculations.
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Now within these equations we must first of all separate the tensor
structure. We shall deal with the Feynman gauge since it leads to the
simplest tensor structure of the corresponding Green functions

[Dw2Rln(p?) = 6% 3,, - DyaR($?),
[Gcaﬂ]ab(pﬂ) — é«b 5 Gcéﬂ(ﬁsJ; [Gw; R]ﬁ Ay aab i (_ *'?;.)u,s o pu . Glh_t R(PE).
(4.5)

As concerns the tensor structure of the vertex functions, it isapproximately
taken as coinciding with that of the bare vertices

Loz PP + k; plR) = fave- p,« Doz B(p + k; plR),
(Tors™oulp + ki D3 B) = 15+ [80(2p + B)u — B2k + £)s
- 6”(? - k)x] ) PWJR(P + k; P k}.
(L) g Daslul® + k3 DIR) = — tas®* (Pius- (4.6)

When substituted into the set of Eqs. (4.2), (4.4), the Green functions
and the corresponding vertex functions in this form reproduce their
tensor structure adopted in (4.6). Thus, the tensor structure is separated
and we deal further with a set of scalar equations, which simplifies the
problem.

The solution of the set thus obtained will be sought for, according to
[7], in the following form:

Dy:®(p%) = dwa(p?)[P*;
Geg™(P?) = hez (D)% Gy ;R (8% = b,y (B7)[P%
Dys®(p + k; p1 k) — Dwsl®);
Teew®(p + % BIR) ~ Logyle®)s Tyau™ (B + ki plR) = Tygyle®).  (47)
Here g2 is the largest 4-vector squared among the arguments of the
I'ys, I'cay and I, 5, functions. The functions dyw2(p%); kg (57); hy o (2%
I'ws(¢?); I'cgylq?) and T, 5, (¢%) are regarded to as rather slow functions
of their arguments, i.e. the derivative of these functions is close to zero.
With these designations the set of Egs. (4.2), (4.6) takes the form of a

set of rather simple integral equations
0

1, 1966 ¢

dwa(€) =4 4 3 lﬁﬂefd‘”-rwsz(z)dwzz(z)

£
[1]

Co(G) @
. 1(2) 1%32 f dz Tpg, 2(2)h, 22(2)
&
0

8T(R) g2
— %%ﬁfdzfdw”(‘z)k&f(z);
5
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1 CillG . ‘
hoz(&) 2& ) % f 2 Loz () z(2)dwa(2);

: [dz 22)h, = dya(2);
kwi(f) YW 1

Pt =1+ 289 £ f s T, o), 20l
EG
a2 NS (P19 S ) (REYRE YT
£

Iys(&)dwa(8) = ch(é)kcc{g) 1W3(E)dW2(E) = P*Sw’h’wg('f) (4.8)

where £ = In(p2/m?); Cy(G) is the Casimir invariant; T(R) is defined here
as Tr(t%®) = T(R)d%. The last one of the Egs. (4.8) is a direct consequence
of the Ward identity. Eqs. (4.8) are fully equivalent to the set of differen-
tial equations

1 ¢ e _ 19 G5(6) g 27 3
Ay dg(d‘”) T 3 T6 LW
_ Gy(G) g 8T(R) g* oo

15 16721 cowtcc'dws +—g— jgpaluiwhyi i

1 gy Cy(6) &

_——— -2 2
Tegy d€ 8 16x 167 Lcow e dw
_ 3640 8 -
8 cCw cC’
L dhez  Gol6) & o ;
hog 46~ 2 16x 2 LcewPoedws
dh -
1 Pk = g I - 2h -2dy,
hy; dE T l6p2  wiw ed
I'yadyys = cewhee I'ysdw: = Fmvw i (4.9)
with the boundary conditions
dya(0) = hog = 5 = T, (0) = L.

The latter set of equations appears to be most convenient since it is
easily solved in explicit form
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FCEW = kc- = k P= I Az = it I‘nﬂ = =
Co6) & . _ % 4 T(R)
r'= [“‘ 2 16 25] Foe=3 "1/ *1°

Expressions (4.10) represent the final result of our calculations. Here «
is positive since T(R) < (11/4)Cy(G). The latter inequality follows from
the group identity »T(R) = d(R)C,(G) which relates T(R) to the Casimir
invariant Cy(G). Here 4(R) is the dimensionality of the representation
R and 7 is the dimensionality of the group G. The asymptotic behaviour
of the Green functions and of the corresponding vertex functions is thus
found in the explicit form.

The connection between the “bare” and experimental charges in this
theory takes the following form

2
gt = g (4.11)

1 + C2(G} é:zz ln{Azlmz)

which differs from the corrcspondmg expressions of the Abelian theories
by the opposite sign in the denominator. According to the expression
the bare charge formally tends to zero after the cut-off parameter A2
goes to infinity. Therefore at high energies the theory becomes asymp-
totically free. Expression (4.11) may be easily resolved with respect
to the experimental charge

& ;
T - 307. (4.12)
 g— Czéc) 80" 1n(A2fm?)

As is readily seen according to expression (4.12) this charge may
have in this theory any necessary magnitude if in the local limit p® =
/A? — o« the bare charge also tends to zero. This circumstance guarantees
the absence of the “zero charge” difficulty from the nonabelian gauge
theories and provides the smallness of the contribution coming from the
ultraviolet integration domain of the approximations including higher
number of vertices. Thus, the summation of all asymptotically essential
terms is carried out effectively in the approximation obtained.

5. Brief Discussion of the Results

The main result obtained here is an exact and closed set of com-
pletely renormalized equations for the Green functions in the theory of
Yang-Mills fields interacting with fermions. This set of equations as well
as in the case of simpler models (see [4] and [8]) is free of divergencies
and uncertainties and for its solution by perturbations or beyond the
scope of perturbation theory no regularization is needed.

Efficiency of our set of equations is demonstrated by obtaining
asymptotic behaviour of the Green and vertex functions at large trans-
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ferred momenta. The simplest approximation, known in the literature as
“three-gamma’” approximation, leads here to the correct asymptotic
behaviour of the Green and vertex functions. This approximation implies
expressing the higher Green functions involved into the set of equations
in terms of the exact two-point Green function and the simplest exact
vertex function in the self-consistent manner. The approximation thus
obtained is equivalent to summing up all the leading asymptotical terms
of perturbation series. The results of the “three-gamma’ approximation
applied to the invariant charge are equivalent to its calculations by the
renormalization group method in the so-called “one-loop” approximation.
However, as distinct from usual calculations by the renormalization
group method, we have obtained here not only the asymptotic behaviour
for the invariant charge but also that of all the Green and vertex func-
tions. The asymptotical behaviour obtained is exact since the theory
under consideration is asymptotically free and thus the contribution
from higher approximations into the asymptotical behaviour is negligibly
small.

Our investigations are readily extended to the case when an additional
interaction with a scalar field is present due to which vector particles
can become massive.
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