Flying of vector particles from a parity breaking (Chern-Simons) medium to vacuum and back

Alexander A. Andrianov in collaboration with S.S.Kolevatov and R.Soldati

Institut de Ciències del Cosmos, University of Barcelona \& Saint-Petersburg State University
A.A., S.Kolevatov, R.Soldati, JHEP 11 (2011) 007

Outline

- Maxwell-Chern-Simons Electrodynamics: possible manifestation
a. Large-scale universe or galaxies: Carroll-Field-Jackiw model (1990) and cosmic birefringence. Spontaneous generation of MCS Electrodynamics by axion condensation, A.A., R.Soldati (1995).
b. Parity breaking (PB) in a finite volume: fireballs in heavy ion collisions with a non-zero topological charge and/or neutral pion condensate, chiral magnetic effect, D.Kharzeev, L. McLerran, A Zhitnitsky, K.Fukushima, H.J.Warringa et al; photons and vector mesons in Chern-Simons constant background; A.A., D.Espriu, V.A.Andrianov et al.
c. Compact dense star filled by axions?
- Finite volume effects: passing through and reflecting from a boundary A.A., S.S.Kolevatov, R.Soldati (2011)
- Quantization: Bogoliubov transformation from vacuum to parity breaking medium and back.

Massive MCS electrodynamics (CFJ model)

$$
\mathcal{L}_{M C S}=-\frac{1}{4} F^{\alpha \beta}(x) F_{\alpha \beta}(x)+\frac{1}{2} m^{2} A_{\nu}(x) A^{\nu}(x)+\frac{1}{2} \zeta_{\mu} A_{\nu}(x) \tilde{F}^{\mu \nu}(x)+\text { g.f. }
$$

In momentum space wave Eqs.

$$
\left\{\begin{array}{c}
{\left[g^{\lambda \nu}\left(k^{2}-m^{2}\right)-k^{\lambda} k^{\nu}+i \varepsilon^{\lambda \nu \alpha \beta} \zeta_{\alpha} k_{\beta}\right] \mathbf{a}_{\lambda}(k)=0} \\
k^{\lambda} \mathbf{a}_{\lambda}(k)=0
\end{array}\right.
$$

Projection onto different polarizations with the help of

$$
S_{\lambda}^{\nu}=\delta_{\lambda}^{\nu} \mathrm{D}+k^{\nu} k_{\lambda} \zeta^{2}+\zeta^{\nu} \zeta_{\lambda} k^{2}-\zeta \cdot k\left(\zeta_{\lambda} k^{\nu}+\zeta^{\nu} k_{\lambda}\right) ; \quad \mathrm{D} \equiv(\zeta \cdot k)^{2}-\zeta^{2} k^{2}
$$

Transversal polarizations,

$$
\pi_{ \pm}^{\mu \nu} \equiv \frac{S^{\mu \nu}}{2 \mathrm{D}} \pm \frac{i}{2} \varepsilon^{\mu \nu \alpha \beta} \zeta_{\alpha} k_{\beta} \mathrm{D}^{-\frac{1}{2}} ; \quad \varepsilon_{ \pm}^{\mu}(k)=\pi_{ \pm}^{\mu \lambda} \epsilon_{\lambda}^{(0)}
$$

Scalar and longitudinal polarizations,

$$
\varepsilon_{S}^{\mu}(k) \equiv \frac{k^{\mu}}{\sqrt{k^{2}}}, \quad \varepsilon_{L}^{\mu}(k) \equiv\left(\mathrm{D} k^{2}\right)^{-\frac{1}{2}}\left(k^{2} \zeta^{\mu}-k^{\mu} \zeta \cdot k\right)
$$

Energy spectrum and birefringence

Transversal polarizations,

$$
\begin{aligned}
K_{\nu}^{\mu} \varepsilon_{ \pm}^{\nu}(k) & =\left(k^{2}-m^{2} \pm \sqrt{\mathrm{D}}\right) \varepsilon_{ \pm}^{\mu}(k) ; \\
\omega_{\mathbf{k}, \pm} & =\left\{\begin{array}{cc}
\sqrt{\mathbf{k}^{2}+m^{2} \pm \zeta_{0}|\mathbf{k}| ;} & \zeta_{\mu}=\left(\zeta_{0}, 0,0,0\right) \\
\sqrt{\mathbf{k}^{2}+m^{2}+\frac{1}{2} \zeta_{x}^{2} \pm \zeta_{x} \sqrt{k_{1}^{2}+m^{2}+\frac{1}{4} \zeta_{x}^{2}}} & \zeta_{\mu}=\left(0,-\zeta_{x}, 0,0\right)
\end{array}\right.
\end{aligned}
$$

CFJ model - massless photons: in observations of very remote radio galaxies left-handed and right-handed circular e.m. waves propagate with different velocities. Birefringence!
Polarizations of linearly polarized radio waves could be rotated with distance L!

$$
\zeta_{0} \ll \left\lvert\, \mathbf{k} \quad k_{ \pm} \simeq \omega_{\mathbf{k}} \mp \frac{1}{2} \zeta_{0}\right. ; \quad \Delta \phi_{\text {rotation }}=\frac{1}{2}\left(\phi_{L}-\phi_{R}\right)=\frac{1}{2} \zeta L .
$$

Distances are of order the Hubble scale $\sim 10^{10}$ I.y. and from the analysis of 160 galaxies with linearly polarized radio waves $\Rightarrow|\zeta|<10^{-33} \mathrm{eV} \sim 1 / R_{\text {Universe }}$ Large-scale Universe is not birefringent! (at low energies)

Motivation of local PB

Parity: well established global symmetry of strong interactions. Reasons to believe it may be broken in a finite volume?!

- quantum fluctuations of θ parameter (P-odd bubbles [T. D. Lee and G. C. Wick ...]: their manifestation in Chiral Magnetic Effect (CME))[D. E. Kharzeev, L. D. McLerran, A.Zhitnitsky, K.Fukushima, H. J. Warringa]

Motivation of local PB

Parity: well established global symmetry of strong interactions. Reasons to believe it may be broken in a finite volume?!

- quantum fluctuations of θ parameter (P-odd bubbles [T. D. Lee and G. C. Wick ...]: their manifestation in Chiral Magnetic Effect (CME))[D. E. Kharzeev, L. D. McLerran, A.Zhitnitsky, K.Fukushima, H. J. Warringa]
- New QCD phase characterized by a spontaneous parity breaking due to formation of neutral pion-like background [A.A.Anselm ... A. A. Andrianov, V. A. Andrianov \& D. Espriu]

Motivation of local PB

Parity: well established global symmetry of strong interactions. Reasons to believe it may be broken in a finite volume?!

- quantum fluctuations of θ parameter (P-odd bubbles [T. D. Lee and G. C. Wick ...]: their manifestation in Chiral Magnetic Effect (CME))[D. E. Kharzeev, L. D. McLerran, A.Zhitnitsky, K.Fukushima, H. J. Warringa]
- New QCD phase characterized by a spontaneous parity breaking due to formation of neutral pion-like background [A.A.Anselm ... A. A. Andrianov, V. A. Andrianov \& D. Espriu]
- Axion background in dense stars and/or as the dark matter [E.W. Mielke, P. Sikivie et al; A. A., D.Espriu, F.Mescia et al]

Motivation of local PB

Parity: well established global symmetry of strong interactions. Reasons to believe it may be broken in a finite volume?!

- quantum fluctuations of θ parameter (P-odd bubbles [T. D. Lee and G. C. Wick ...]: their manifestation in Chiral Magnetic Effect (CME))[D. E. Kharzeev, L. D. McLerran, A.Zhitnitsky, K.Fukushima, H. J. Warringa]
- New QCD phase characterized by a spontaneous parity breaking due to formation of neutral pion-like background [A.A.Anselm ... A. A. Andrianov, V. A. Andrianov \& D. Espriu]
- Axion background in dense stars and/or as the dark matter [E.W. Mielke, P. Sikivie et al; A. A., D.Espriu, F.Mescia et al]
- Our special interest:

PB background inside a hot dense nuclear fireball in HIC !?

Topological charge

$$
T_{5}(t)=\frac{1}{8 \pi^{2}} \int_{\text {vol. }} d^{3} x \varepsilon_{j k l} \operatorname{Tr}\left(G^{j} \partial^{k} G^{\prime}-i \frac{2}{3} G^{j} G^{k} G^{\prime}\right)
$$

in a finite volume it may arise from quantum fluctuations in hot QCD medium
(due to sphaleron transitions!? [Manton, Rubakov, Shaposhnikov, McLerran]) and survive for a sizeable lifetime in a heavy-ion fireball,

$$
\left\langle\Delta T_{5}\right\rangle \neq 0 \quad \text { for } \quad \Delta t \simeq \tau_{\text {fireball }} \simeq 5-10 \mathrm{fm},
$$

For this period one can control the value of $\left\langle\Delta T_{5}\right\rangle$ introducing into the QCD Lagrangian a topological chemical potential

$$
\Delta L=\mu_{\theta} \Delta T_{5}, \quad \Delta T_{5}=T_{5}\left(t_{f}\right)-T_{5}(0)=\frac{1}{8 \pi^{2}} \int_{0}^{t_{f}} \int_{\text {vol. }} d^{3} \times \operatorname{Tr}\left(G^{\mu \nu} \widetilde{G}_{\mu \nu}\right)
$$

in a gauge invariant way.

Axial baryon charge

Partial conservation of isosinglet axial current broken by gluon anomaly (consider the light quarks only),

$$
\partial_{\mu} J_{5}^{\mu}-2 i m_{q} J_{5}=\frac{N_{f}}{8 \pi^{2}} \operatorname{Tr}\left(G^{\mu \nu} \widetilde{G}_{\mu \nu}\right)
$$

predicts the induced chiral (axial) charge

$$
\frac{d}{d t}\left(Q_{5}^{q}-2 N_{f} T_{5}\right) \simeq 0, \quad m_{q} \simeq 0, \quad Q_{5}^{q}=\int_{\text {vol. }} d^{3} \times \bar{q} \gamma_{0} \gamma_{5} q=\left\langle\underline{N_{L}-N_{R}}\right\rangle
$$

to be conserved $\dot{Q}_{5}^{q} \simeq 0$ (in the chiral limit $\left.m_{q} \simeq 0\right)$ during $\tau_{\text {fireball }}$.

Axial chemical potential

Axial chemical potential can be associated with approximately conserved Q_{5}^{q} (for u, d quarks!)

$$
\Delta L_{q}=\mu_{5}^{q} Q_{5}^{q},
$$

to reproduce a corresponding

$$
\left\langle\Delta T_{5}\right\rangle \simeq \frac{1}{2 N_{f}}\left\langle Q_{5}^{q}\right\rangle, \Longleftrightarrow \mu_{5}^{q} \simeq \frac{1}{2 N_{f}} \mu_{\theta}
$$

LPB to be investigated in e.m. interactions of leptons and photons with hot/dense nuclear matter via heavy ion collisions.

- e.m. interaction implies

$$
Q_{5}^{q} \rightarrow \tilde{Q}_{5}=Q_{5}^{q}-T_{5}^{\mathrm{em}}, \quad T_{5}^{\mathrm{em}}=\frac{1}{16 \pi^{2}} \int_{\text {vol. }} d^{3} x \varepsilon_{j k l} A^{j} \partial^{k} A^{\prime}
$$

- μ_{5} is conjugated to (nearly) conserved \tilde{Q}_{5}

Axial chemical potential in hadron Lagrangians

Bosonization of Q_{5}^{q} following VMD prescription

$$
\begin{gathered}
\mathcal{L}_{\text {int }}=\bar{q} \gamma_{\mu} \hat{V}^{\mu} q ; \quad \hat{V}_{\mu} \equiv-e A_{\mu} Q+\frac{1}{2} g_{\omega} \omega_{\mu} \mathbb{I}+\frac{1}{2} g_{\rho} \rho_{\mu}^{0} \tau_{3}, \\
\left(V_{\mu, a}\right) \equiv\left(A_{\mu}, \omega_{\mu}, \rho_{\mu}^{0}, \phi_{\mu}\right), \quad g_{\omega} \simeq g_{\rho} \equiv g \simeq 6 \\
\mathcal{L}_{\text {kin }}=-\frac{1}{4}\left(F_{\mu \nu} F^{\mu \nu}+\omega_{\mu \nu} \omega^{\mu \nu}+\rho_{\mu \nu} \rho^{\mu \nu}+\phi_{\mu \nu} \phi^{\mu \nu}\right)+\frac{1}{2} V_{\mu, a}\left(\hat{m}^{2}\right)_{a, b} V_{b}^{\mu}
\end{gathered}
$$

P-odd interaction

$\mathcal{L}_{\text {mix }} \propto-\frac{1}{4} \varepsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left[\hat{\zeta}_{\mu} V_{\nu} V_{\rho \sigma}\right]=\frac{1}{2} \operatorname{Tr}\left(\hat{\zeta} \varepsilon_{j k l} \hat{V}_{j} \partial_{k} \hat{V}_{l}\right)=\frac{1}{2} \zeta \varepsilon_{j k l} V_{j, a} N_{a b} \partial_{k} V_{l, b}$
with $\hat{\zeta}_{\mu}=\hat{\zeta} \delta_{\mu 0}$, spatially homogeneous and isotropic background.

Resonance splitting in polarizations (corrected for PHENIX

 acceptance)

Finite volume: passing through boundary

A.A., S.Kolevatov, R.Soldati, JHEP 11 (2011) 007

Mean free paths for vector mesons:

- $L_{\rho} \sim 0.8 \mathrm{fm}$
$\ll L_{\text {fireball }} \sim 5-10 f m$
- $L_{\omega} \sim 16 \mathrm{fm} \gg L_{\text {fireball }}$ Why it is relevant in medium?
(PHENIX confirms!)
LPB "vacuum"
\neq empty vacuum
$=$ coherent state
of vacuum mesons

Thus to save energy-momentum conservation transmission must be accompanied by reflection back. Enhancement of in-medium decays of ω mesons!

Matching on $\zeta \cdot x=0$

MCS electrodynamics in a half space

A possible gauge-invariant choice,

$$
-\frac{1}{4} F^{\mu \nu}(x) \widetilde{F}_{\mu \nu}(x) \zeta_{\lambda} x^{\lambda} \theta(-\zeta \cdot x) \Rightarrow \frac{1}{2} \zeta_{\mu} A_{\nu}(x) \widetilde{F}^{\mu \nu}(x) \theta(-\zeta \cdot x)
$$

which however associates a space-like boundary with a space-like CS vector $\left(\zeta_{\mu}\right)(x)=\zeta(0, \vec{a}) \theta(-\vec{a} \cdot \vec{x}), \quad|\vec{a}|=1$.
Compact dense stars filled by axions with density degrading to their surface?!

Another choice: time-like CS vector and space-like boundary $\left(\zeta_{\mu}\right)(x)=\zeta\left(\theta(-\vec{a} \cdot \vec{x}),-\vec{a} x_{0} \delta(-\vec{a} \cdot \vec{x})\right)$ gauge invariance condition $\partial_{\nu} \zeta_{\mu}=\partial_{\mu} \zeta_{\nu}$. Singular interaction on a space-like boundary!
Axial chemical potential for a fireball

$$
\star \star \star \star \star \star
$$

Matching on the boundary $\zeta \cdot x=0$

$$
\delta(\zeta \cdot x)\left[A_{\mathrm{vacuum}}^{\mu}(x)-A_{\mathrm{MCS}}^{\mu}(x)\right]=0
$$

Classical solutions

Spatial Chern-Simons vector $\zeta_{\mu}=\left(0,-\zeta_{x}, 0,0\right)$ and orthogonal planes $\hat{k}=\left(\omega, k_{2}, k_{3}\right), \hat{x}=\left(x_{0}, x_{2}, x_{3}\right)$
In the entire space,
$A_{1}=\int \frac{d^{3} \hat{k}}{(2 \pi)^{3}} \theta\left(\omega^{2}-k_{\perp}^{2}-m^{2}\right)\left(\tilde{u}_{1 \rightarrow}\left(\omega, k_{2}, k_{3}\right) e^{i k_{10} x_{1}}+\tilde{u}_{1 \leftarrow(}\left(\omega, k_{2}, k_{3}\right) e^{-i k_{10} x_{1}}\right) e^{i \hat{k} \hat{x}}$
where $\quad k_{10}^{2}=\omega^{2}-m^{2}-k_{\perp}^{2}, k_{\perp}^{2}=k_{2}^{2}+k_{3}^{2}$
Two solutions for other components in the different half-spaces taken both on entire axis.
For $x_{1}>0(\nu=0,2,3)$

$$
A_{\nu}=\int \frac{\mathrm{d}^{3} \hat{k}}{(2 \pi)^{3}} \theta\left(\omega^{2}-k_{\perp}^{2}-m^{2}\right)\left(\tilde{u}_{\nu \rightarrow}\left(\omega, k_{2}, k_{3}\right) e^{i k_{10} x_{1}}+\tilde{u}_{\nu \leftarrow}\left(\omega, k_{2}, k_{3}\right) e^{-i k_{10} x_{1}}\right) e^{i \hat{k} \hat{x}}
$$

Arrows \rightarrow, \leftarrow for directions of particle propagation.
For $x_{1}<0$ ($A=L, \pm$ eigenstates of suitable polarizations)

$$
\tilde{A}_{\nu}=\sum_{A}\left[\tilde{v}_{\nu A \rightarrow}\left(k_{2}, k_{3}, \omega\right) \delta\left(k_{1}-k_{1 A}\right)+\tilde{v}_{\nu A \leftarrow}\left(k_{2}, k_{3}, \omega\right) \delta\left(k_{1}+k_{1 A}\right)\right]
$$

MCS dispersion laws and polarizations

The MCS dispersion laws for different polarizations,

$$
\left\{\begin{array}{c}
k_{1 L}=k_{10}=\sqrt{\omega^{2}-m^{2}-k_{\perp}^{2}} \\
k_{1+}=\sqrt{\omega^{2}-m^{2}-k_{\perp}^{2}+\zeta_{\times} \sqrt{\omega^{2}-k_{\perp}^{2}}} \\
k_{1-}=\sqrt{\omega^{2}-m^{2}-k_{\perp}^{2}-\zeta_{x} \sqrt{\omega^{2}-k_{\perp}^{2}}}
\end{array}\right.
$$

Matching on boundary

Matching,

$$
\left\{\begin{array}{l}
-k_{10}^{2}\left(-\frac{\tilde{u}_{0 \rightarrow}-\tilde{u}_{0 \leftarrow}}{i k_{10}}+\sum_{A} \frac{\tilde{v}_{0 A \rightarrow}-\tilde{v}_{0 A \leftarrow}}{i k_{1 A}}\right)=i \zeta_{x}\left(k_{2} \sum_{A} \frac{\tilde{v}_{3 A \rightarrow}-\tilde{v}_{3 A \leftarrow}}{i k_{1 A}}-k_{3} \sum_{A} \frac{\tilde{v}_{2 A \rightarrow}-\tilde{v}_{2 A \leftarrow}}{i k_{1 A}}\right) \\
-k_{10}^{2}\left(-\frac{\tilde{u}_{2 \rightarrow}-\tilde{u}_{2 \leftarrow}}{i k_{10}}+\sum_{A} \frac{\tilde{v}_{2 A \rightarrow i}-\tilde{v}_{2 A \leftarrow}}{i k_{1 A}}\right)=-i \zeta_{x}\left(k_{3} \sum_{A} \frac{\tilde{v}_{0 A \rightarrow}-\tilde{v}_{0 A \leftarrow}}{i k_{1 A}}+\omega \sum_{A} \frac{\tilde{\tilde{z}}_{3 A \rightarrow}-\tilde{v}_{3 A \leftarrow}}{i k_{1 A}}\right) \\
-k_{10}^{2}\left(-\frac{\tilde{u}_{3 \rightarrow}-\tilde{u}_{3 \leftarrow}}{i k_{10}}+\sum_{A} \frac{\tilde{\tilde{l}}_{3 A \rightarrow}-\tilde{v}_{3 A \leftarrow}}{i k_{1 A}}\right)=i \zeta_{\times}\left(\omega \sum_{A} \frac{\tilde{v}_{2 A \rightarrow}-\tilde{v}_{2 A \leftarrow}}{i k_{1 A}}+k_{2} \sum_{A} \frac{\tilde{v}_{0 A \rightarrow}-\tilde{v}_{0 A \leftarrow}}{i k_{1 A}}\right)
\end{array}\right.
$$

Continuity of A,

$$
\begin{aligned}
& \tilde{u}_{\nu \rightarrow}^{(L)}+\tilde{u}_{\nu \leftarrow}^{(L)}=\tilde{v}_{\nu L \rightarrow+}+\tilde{v}_{\nu L \leftarrow} \\
& \tilde{u}_{\nu \rightarrow}^{(+)}+\tilde{u}_{\nu \leftarrow}^{(+)}=\tilde{v}_{\nu+\rightarrow+}+\tilde{v}_{\nu+\leftarrow} \\
& \tilde{u}_{\nu \rightarrow}^{(-)}+\tilde{u}_{\nu \leftarrow}^{(-)}=\tilde{v}_{\nu-\rightarrow}+\tilde{v}_{\nu-\leftarrow}
\end{aligned}
$$

Final relations

$$
\begin{gathered}
\tilde{u}_{\nu \rightarrow}^{(A)}=\frac{1}{2}\left(\tilde{v}_{\nu A \rightarrow}\left(\frac{k_{1 A}+k_{10}}{k_{10}}\right)-\tilde{v}_{\nu A \leftarrow}\left(\frac{k_{1 A}-k_{10}}{k_{10}}\right)\right) \\
\tilde{u}_{\nu \leftarrow}^{(A)}=\frac{1}{2}\left(-\tilde{v}_{\nu A \rightarrow}\left(\frac{k_{1 A}-k_{10}}{k_{10}}\right)+\tilde{v}_{\nu A \leftarrow}\left(\frac{k_{1 A}+k_{10}}{k_{10}}\right)\right)
\end{gathered}
$$

Reflection from boundary depending on effective mass: negative

 chirality

Dependence on effective mass for zero p_{T}, CS vector $\zeta=400$ MeV

Reflection from boundary: negative chirality, $p_{T} \neq 0$

Reflection from boundary: positive chirality, $p_{T} \neq 0$

Reflection from boundary: both chiralities, $p_{T} \neq 0$

Quantization of MCS in a half-space: Bogolyubov transformation

In vacuum,

$$
A_{\text {vacuum }}^{\mu}(x)=\int \mathrm{d}^{3} \hat{k} \theta\left(\omega^{2}-k_{\perp}^{2}-m^{2}\right) \sum_{r=1}^{3}\left[\mathbf{a}_{\hat{k}, r} u_{\hat{k}, r}^{\mu}(x)+\mathbf{a}_{\hat{k}, r}^{\dagger} u_{\hat{k}, r}^{\mu *}(x)\right]
$$

Canonical commutation relations [$\mathbf{a}_{\hat{k}, r}, \mathbf{a}_{\hat{k}^{\prime}, s}^{\dagger}$] $=\delta\left(\hat{k}-\hat{k}^{\prime}\right) \delta_{r s}$ In P-breaking medium $(A \in\{L,+,-\})$,

$$
A_{\mathrm{MCS}}^{\nu}(x)=\int \mathrm{d}^{3} \hat{k} \theta\left(\omega^{2}-k_{\perp}^{2}-m^{2}\right) \sum_{A}\left[c_{\hat{k}, A} v_{\hat{k} A}^{\nu}(x)+c_{\hat{k}, A}^{\dagger} v_{\hat{k} A}^{\nu *}(x)\right]
$$

Canonical commutation relations, $\left[c_{\hat{k}, A}, c_{\hat{k}^{\prime}, A^{\prime}}^{\dagger}\right]=-g_{A A^{\prime}} \delta\left(\hat{k}-\hat{k}^{\prime}\right)$ Matching,

$$
v_{\hat{k}, A}^{\nu}(\hat{x})=\sum_{s=1}^{3}\left[\alpha_{s A}(\hat{k}) u_{\hat{k}, s}^{\nu}(\hat{x})-\beta_{s A}(\hat{k}) u_{\hat{k}, s}^{\nu *}(\hat{x})\right]
$$

Bogoliubov transformation

$$
\mathbf{a}_{\hat{k}, r}=\sum_{A= \pm, L}\left[\alpha_{r A}(\hat{k}) c_{\hat{k}, A}-\beta_{r A}^{*}(\hat{k}) c_{\hat{k}, A}^{\dagger}\right] \quad c_{\hat{k}, A}=\sum_{r=1}^{3}\left[\alpha_{A r}^{*}(\hat{k}) \mathbf{a}_{\hat{k}, r}+\beta_{A r}^{*}(\hat{k}) \mathbf{a}_{\hat{k}, r}^{\dagger}\right]
$$

Vacuums as coherent states

Two different Fock vacua

$$
\mathbf{a}_{\hat{k}, r}|0\rangle=0 \quad c_{\hat{k}, A}|\Omega\rangle=0
$$

From Bogoliubov tranformation,

$$
\begin{align*}
& |0\rangle=\mathcal{N} \exp \left[\int \mathrm{d}^{3} \hat{k} \theta\left(\omega^{2}-k_{\perp}^{2}-m^{2}\right) \times\right. \\
& \left.\times\left\{\frac{\beta_{r+}^{*}(\hat{k})}{2 \alpha_{r+}(\hat{k})}\left(c_{\hat{k},+}^{\dagger}\right)^{2}+\frac{\beta_{r-}^{*}(\hat{k})}{2 \alpha_{r-}(\hat{k})}\left(c_{\hat{k},-}^{\dagger}\right)^{2}+\frac{\beta_{r L}^{*}(\hat{k})}{2 \alpha_{r L}(\hat{k})}\left(c_{\hat{k}, L}^{\dagger}\right)^{2}\right\}\right]
\end{align*}
$$

and inversely

$$
\begin{align*}
& |\Omega\rangle=\tilde{\mathcal{N}} \exp \left[\int \mathrm{d}^{3} \hat{k} \theta\left(\omega^{2}-k_{\perp}^{2}-m^{2}\right) \times\right. \\
& \left.\left.\times\left\{\frac{-\beta_{A 1}^{*}(\hat{k})}{2 \alpha_{A 1}^{*}(\hat{k})}\left(\mathbf{a}_{\hat{k}, 1}^{\dagger}\right)^{2}+\frac{-\beta_{A 2}^{*}(\hat{k})}{2 \alpha_{A 2}^{*}(\hat{k})}\left(\mathbf{a}_{\hat{k}, 2}^{\dagger}\right)^{2}+\frac{-\beta_{A 3}^{*}(\hat{k})}{2 \alpha_{A 3}^{*}(\hat{k})}\left(\mathbf{a}_{\hat{k}, 3}^{\dagger}\right)^{2}\right]\right\}\right]
\end{align*}
$$

Conclusions

- Local (finite-volume) PB is not forbidden by any physical principle in QCD at finite temperature/density
- The effect leads to unexpected modifications of the in-medium properties of vector mesons and photons
- LPB seems to be capable of explaining in a natural way the PHENIX 'anomaly'
- Boundary enhancement of in-medium ω decays + LPB \rightarrow broadening of ω resonance in fireballs (observed on PHENIX!)
- Axion stars discovery from exotic photon spectra (boundary effects)??

Hint to LPB? [PHENIX Data Plot (id p1147) 2011]

STAR anomaly: abnormal $e^{+} e^{-}$excess in central HIC at low p_{t}

Hint to LPB?

Resonance splitting in polarizations (corrected for PHENIX

 acceptance)

