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3 keys points Outlook

Quark-gluon plasma (QGP) 14’th Ginzburg’s
problem,
Holography RN, 2002

Heavy-ions collisions (HIC)

New formula for multiplicity
« New phase transition
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In 1999 the author published a paper "What problems of physics and astrophysics seem now to be especially important and interesting
(thirty vears later, already on the verge of XXI century?’ [1]. By its very nature and intention, the content of this paper should be
modified on a continuous basis to keep up with advances in science. In the last three years important results of a fundamental nature
have been obtained which the author finds appropriate to summarize briefly in this article  not least because of the great readers’
interest generated by Ref. [1].

PACS numbers: 01.55.+b, 01.90.+ ¢
Bibliography 69 references Received 16 January 2002

Ginzburg V L About Science, Myself, and Others

214 BEJI. FTHH3EVEPT [ EH 2002
12. Paseprl, Tpaseprl, CoepXMOIHLIE A3 PLI. oTEe MeTamicE [12]. B 3Tol CEAZM 0cODEHHO HHTEpPEeCHEL
13. CoepxTaomennle WIEMEHTE] . IKIOTHHEC KHE SOPa. Pesy¥IETATEI [13], omyDIMKOE aHHEI® E CamOM KOHLE 2{H} T,

14. HEl. KCBAHTOBAY YPOMOOHHAMIKAZ. M OBRITE MOMET CEHISTEMRCTEYEOIIIME O TOM, YTO B EYIPaTax
B apR-TNEOGHHAS TUIATAA. TyIeMeHTapHEIE EOsOoeHH ", epeHOCHIITHS TOK H TEIn,

15. EnuHas Teopis cnafore e TPOMATHHTHOTG Blanione fernis. W - OOEOMEHO CYURCTESHHD OTIHYHE! OT MEKTPOHOE H ORITPOK.
¥ 2 f0a0mnl. JIemToHs. Mue, 0gHaKD, OCTAMACE HEACHOH POITE MPHCY TS TEYEOLITETO E
16. CTAHMAPTHAR MOMeME. Bemifoe ofhenimese. Cynepodbenimese.  ITHY SKOMSPHMEHTAY CHIBHODD MATHMTHODO ImMOad. Hecon-
Pacnian mpoTona. Macea Hefirpimo. W artuTHTle MOHOTOM. HEHHO, ONEITEL [13] O0MHHED OLITE (H OYOyT!) DOETOPEHE! H




Quark-Gluon Plasma (QGP): a new state of matter

T

Asymptotic freedom

T increases, or nuclear Deconfinded
density increases matter phase
A The QGP is macroscopic matter
T formed from quarks and gluons
RHIC Cr?tical
point
LHC 1—st order

transition
Quark gluon plasma

Hadrinic matter

Color
superconductor
. >
Nuclei Neutron stars ““
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Heavy lons collisions

:

Experiments

. started in the 1990's at the Brookhaven Alternating S = 475GeV

Gradient Synchrotron (AGS), Sy =17.2GeV
. the CERN Super Proton Synchrotron (SPS) o = 200Gev
. the Brookhaven Relativistic Heavy-lon Collider (RHIC) o =2.76Tev

. the LHC collider at CERN.

Theory (macroscopic: thermodynamics, hydrodynamics, ...

microscopic - QCD, holographic)

Landau(1953); Fermi(1950); Pomeranchuk; Rozental, Cernavskij (UFN,1954);

Landau, Bilenkij (UFN,1955); Cernavskij, Feiberg (1972);

Cooper,...(1975); Bjorken(1983);

Kolb, Heinz (2003); Janik, Peschansky (2006); Shuryak(2009); Peigne, Smilga (UFN, 2009)
Dremin, Leonidov (UFN, 2010); Muller, Schafer(2011),....
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pp collisions vs heavy lons collisions

F

let
Pb
Pb
P — . L
(uud) ofud)



Heavy lons collisions
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QGP in Heavy lon Collision and Early Universe

 One of the fundamental questions in physics is: what happens to matter at
extreme densities and temperatures as may have existed in the first
microseconds after the Big Bang

« The aim of heavy-ion physics is to collide nuclei at very high energies and
create such a state of matter in the laboratory.
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QGP in heavy-ions collisions

T

There are strong experimental evidences that RHIC or LHC
have created some medium which behaves collectively:

Hadrons
suppression of back-to-back jet correlations \
(signals that some jets are “lost” going through the Pb e —— Pb
medium)
QGP
modification of particle spectra (compared to p+p) %u*\l
Elliptic flow é

Hydrodynamics simulations can give estimations for V2.
more pressure along the small axis



QGP and Relativistic Hydrodynamics

T

Hvdrodynamics appears as an effective description, valid on

length scales >>mean free path

Fermi,
L.D.Landau (1953),
Energy-Momentum tensor (perfect fluid) J.D.Bjorken (1982)
T = (e + p)ufu” —pn™ 5 wful = —1
Hydrodynamics
e o’ _ 2 g
T = HyWw _ uv
Fluid with viscosity (€+p)uu” —pn :
+P* PP[n(0,u, +0,U, —=g,,0-U)+¢Q,,0-U
1l -shear viscosity [7(0,Uy + 0y, =290y 0-U) +60,,0- U]

o P =g +u”u”
- - bulk viscosity



QCD as a strongly coupled fluid

A remarkable conclusion from the RHIC and LHC
experiments is that the QGP does not behave as a weakly
coupled gas of quarks and gluons, but rather as a
strongly coupled fluid. Shuryak, 04

This makes perturbative methods inapplicable

The lattice formulation of QCD does not work, since we have
to study real-time phenomena.

This has provided a strong motivation for understanding the
dynamics of strongly coupled QGP through the gauge/string
duality



Dual description of QGP (Quark Gluon Plasma,
as a part of Gauge/string duality

T

(Maldacena ’97):

The Gauge/Gravity duality gives an correspondence between the 4-dim
physical space where the gauge theory lives and the 5-dimensional space
where the supergravity (weak curvature) approximation of the 10-dimensional
string theory is valid.

Or in others words, the properties of the gauge theory in (physical) Minkowski
space in3+1 dimensions are in one-to-one relation with properties of the bulk
theory.

The best known example of such theories is N = 4 super Yang-Mills, a
superconformal field theory with matter in the adjoint representation of the
gauge group SU(Nc).



Dual description of QGP (Quark Gluon Plasma,
as a part of Gauge/string duality

T

However, thereis not yet exist a gravity dual construction for QCD.

Differences between N =4 SYM and QCD are less significant, when quarks
and gluons are in the deconfined phase (because of the conformal symmetry
at the quantum level N =4 SYM theory does not exhibit confinement.)

Lattice calculations show that QCD exhibits a quasi-conformal behavior at
temperatures T >300 MeV and the equation of state can be approximated by

€=3p (atraceless conformal energy-momentum tensor).

The above observations, have motivated to use the AdS/CFT
correspondence as atool to get non-perturbative dynamics of QGP.

There is the considerable success in description of the static quark-gluon
plasma, in particular in the evaluation of n/s [Policastro,Son, Starinec, 01]



The Gauge/Gravity Duality

N
SUGRA AdSs5xSs

N=4SYM

Relation between parameters:
g° = 4mg
R?

(2

.g ’ "?\rt " =



Dual description of QGP (Quark Gluon Plasma,
as a part of Gauge/string duality

T

In the phenomenological hydrodynamical (Landau or Bjorken models of QGP),

the plasma is characterized by a space-time profile of the energy-momentum tensor

T v =0,..3

nv
TW =< TW >

ADS/CFT: operators in the gauge theory correspond to fields in SUGRA

<D > & A,

o

If 7, then g,,

uv

In the case of the energy-momentum tensor, the corresponding field is the 5D metric.



Dual description of QGP (Quark Gluon Plasma,
as a part of Gauge/string duality

T

: : Janik, 05
Static uniform plasma
3/z5 0 0 0
@ 0 1/ 0 0
Twh o = o o 174 0
0 0 0 1/z
_ (4)
GMN - Ag MN 1 uv |boundary guv
Solution: o (=22 o de?  d2’
ds” = (1—|—z4/z§)zgdt (l—l—z ,fz,j) - + 3
Performing a change of coordinates z = ‘
J142 —4'
The standard AdS 162 — 1= z4/ 58 It 4 da” 1 432
static black hole 5= 52 52 + 1 _ 54}/}53 32

with ZH’[:] = Zg/‘\/g.



Dual description of QGP (Quark Gluon Plasma,

—

I

“Quark gluon plasma” = black hole (in anti de-Sitter space)



Dual description of formation of QGP

T

CONJECTURE:

Black Hole formation in AdSs

= thermalization (formation of QGP) of 4-dim QCD



BH formation in AdS (or holographic thermalization)

T

Thermalization of some class of space-time geometries =
space-time geometries without an event horizon (EH) evolve to space-times with EH.

Take deformed AdS space-times (asymptotical AdS) and ask under which
: pace with a BH, or black branes.

conditions they evolve to the A
A N

e H schadsisan equilibrium "point"

e B Black branes AdS

e A AdSis stable under small
fluctuations and is unstable under
large nonlinear fluctuations

Bizon and Rostworowski, PRL, 2011;
Dias, Horowitz and Santos, 1109.1825

Circle A - large chaotic deformations

After a sufficiently long time, any finite excitation of AdS
eventually finds itself inside its Schw. radius and
collapses to a BH



Deformations of AdS metric

:

colliding gravitational shock waves
drop of a shell of matter with vanishing rest mass ("null

dUSt"), Balasubramanian at all, PRL “11
infalling shell geometry = Vaidya metric

sudden perturbations of the metric near the boundary
that propagate into the bulk Chesler, Yaffe, PRL “09



Single Nucleus in AdS/CFT

An ultrarelativistic nucleus is a

shock wave in 4d with the 4 X"
energy-momentum tensor
<T__> ~uo(X") \
The metric of a shock wave in AdS
corresponding to the ultrarelativistic
nucleus in 4d is
L2 27°
ds® =—=| —2dx"dx” += <T (X~ )>z dx % +dx? +dz®
z° N&

Janik, Peschanksi ‘05

C



Ultrarelativistic particle = shock wave

T

* Aichelburg-Sexl shock wave

ds? = —dUdV + dx2 + F (x')§(U) dU?,
C

K
12 (= x)? (O

U =X

F(x')=

Smooth coordinates: P.D’Eath coordinates,
Dray and ‘t Hooft



2 Ultrarelativistic particles = 2 shock waves

T

o 2 Aichelburg-Sexl shock waves

ds® = —dUdV +dX " + FE(X')6(U) dU* + F, (V)5 (V) dV?,

X 1) = _ S
r@( ) |Z (X _X®)2 (0-4)2

U V



BLACK HOLE FORMATION = 4 Trapped Surface(TS)

q

« Theorem (Penrose): BH Formation = 4 TS

e Theorem. 3 TS for two shock waves =
- solution to the following Dirichlet problem

oV ,>0,XeD, ¥,,=0, XedD
VW, ,=6""(X~-X,,) XeD,

the outer null normals have zero

oD

D convergence
o V¥, - V¥, =4, X edD
no 6 — function in convergence

Eardley, Giddings; Kang, Nastase,....



Different profiles ----- different multiplicities

An arbitrary gravitational shock wave in AdSs
L2

ds® = ) ( do " dz™ + dZEJ_ + oz, )5(x+)da¢+2 + sz)
CE)(z, :L‘i) = £¢(z, .’IJL) (I:IH3 S )@(z,:@) = ——167rG5iJw(z,xi)
b4 L? L
 Point sourced shock waves Hotta,Tanaka, 93
Juw = E5(w)6(z — LY (xV)5(x?) D(z,x,) = cpp(q) q= X; +(z-L)°

471

The chordal coordinate

« Pointcharged shock waves

@ (2, 21) = () + D(9)O(q - gy, )

0,0

59~




Dual description of QGP (Quark Gluon Plasma,

QGP formation for heavy ions collisions in M4
In dual description:

BH formation in shock waves collisions in AdSs

Trapped surface area ------ multiplicity

BH charge ------- chemical potential



Multiplicity=Entropy=area of trapped surface

iy
Gubser, Pufu, Yarom, 0805.1551,

3
L ) (ZEL)Z/S Alvarez-Gaume, C. Gomez, Vera,

St:rapped =~ W(G

Tavanfar, Vazquez-Mozo, 0811.3969

5 IA, Bagrov, Guseva, 0905.1087
I° 16ET"
Lattice calculations ET% ~11 Hawking-Page relation = 5
G, 3
\ J
| E
G = 1.9
From a Woods-Saxon profile for the nuclear density
1
Au: L~43fm=43-5——: Pb: L~4.4fm
GeV
o~ 5 EL ~ 1.27 x 107
EL ;Au——Au, sNN=200GeV 4.3 %10 -, = :

JSNN )ZB. J

= =
[S S wapped 35000(200 Ay




Multiplicity: Experimental data,
Landau, AdS-estimation

q

Phenomenological estimation: total multiplicity and the number of charged particle

Stmpped S SAdS = SQGP ~ T.SNCh
M ) Strapped < Nch

1/3 1/4
oC
Strapped SNN SLandau €S

red line - TS estimation

blue line - Landau model

dotted green - the experimental
data

dashed line red line - TS estimation
with a chemical
potential




(AN, /cn)/(0.5(N )

Multiplicity: Experimental data

-t
o

q

® AA(0-5%)ALICE /. pp NSD ALICE
B AA(0-5 %) NASO © pp NSD CMS

A AA(05%)BRAHMS s+ pp NSD CDF

x AA(0-5%)PHENIX ¢ pp NSD UA5 oc ShIS
1 AA(0-5 %) STAR x pp NSD UA1

V AA(0-6 %) PHOBOS x pp NSD STAR

10? 10° \S—NN (G&V)



Phase diagram from dual approach

q

Formation of trapped surfaces is only possible
when Q<Qcr

Qpy frn /2
| RIIC Critical
_ point
6- . LHC 1-st order
e transition
A Quark gluon plasma
Hadrinic matter .
y Color
ol superconductor
0,001 0,002 }}:.f-*';‘ % ) >‘
Nuclei Neutron stars u
B
Red for smeared matter I.LA., A.Bagrov, Joukovskaya, 0909.1294

Blue for point-like l.LA., A.Bagrov, E.Pozdeeva, 1201.6542



Different profiles ----- different multiplicities

q

Goal: try to find a profile to fit experimental data

Cai, Ji, Soh, gr-qc/9801097

e Dilaton shock waves 1A, 0912.5481

Multiplicity very closed to LHC data

Kiritsis,Taliotis, 1111.1931



Further directions

:

Anysotropic thermalisation Janik, Witaszczyk, 08

|sotropisation time

(isotropisation due to instability
INn anisotropic plasma)

Tisotr - Ol fm

Mateos, Trancanelli, PRL, '11
PRL, '12

a conformal anomaly (T#) a’

(T#) =diag(e,P,,P,,P,)

5-dimensional axion-dilaton gravity

X =ax



Conclusion

Using conjecture that BH production in AdS5
gives QGP formation in 4-dim QCD we have got:

Multiplicity

New phase transition (T vs W)



