Classical Analog of Quantum Schwarzschild Black Holes and Mystery of $\log 3$

Victor Berezin ${ }^{1}$

${ }^{1}$ Institute for Nuclear Research, RAS, Moscow

Classical Black Holes

- Event Horizon [S.W.Hawking R.Penrose]

What is a black hole? = event horizon. Global feature \rightarrow one should know the whole history, both past and future.
Classically, nothing can be gone out.

- General Black Hole

Schwarzschild-Kerr-Newman solution.
Depends on only few parameters: mass m, electric charge(s) e and angular momentum J.

- "No-Hair"-Property [J.A.Wheeler D.Cristodoulou R.Ruffini + ...]
Resembles thermal equilibrium.
Reversible and irreversible processes while extracting energy out of black holes. $\rightarrow d A \geq 0, A$ - horizon area
- Quasi-normal frequencies
[T.Regge J.A.Wheeler H.-P.Nollert L.Motl A.Neitzke S.Hod R.Schiappa W.H.Press S.Chandrasekhar + ... + ...]

Process of becoming bald - global feature.
Behavior of perturbations - falling into inside and radiating away. Decaying modes of complex frequencies.
For Schwarzschild black holes

$$
\begin{equation*}
G m w_{n}=0.0437123-\frac{i}{4}\left(n+\frac{1}{2}\right)+O\left[(n+1)^{-1 / 2}\right] \tag{1}
\end{equation*}
$$

- decreasing relaxation times and asymptotically constant value for Re wn. The very existence of quasi-normal modes resembles pure dying tones of a ringing bell. These resonances are the characteristic sound of the black hole itself.

$$
\begin{equation*}
R e w=0.0437123=\frac{\log 3}{8 \pi G m} \tag{2}
\end{equation*}
$$

In what follows - units $\hbar=c=\kappa=1$. Gravitational constant G is the only dimensional quantity. $m_{P I}=\sqrt{\frac{\hbar c}{G}}, I_{P I}=\sqrt{\frac{\hbar G}{c^{3}}}$.

Quasi-classical Picture

- Black hole thermodynamics
[J.Bekenstein J.M.Bardeen B.Carter S.W.Hawking]
Four laws:

$$
\begin{equation*}
d m=\frac{\varkappa_{H}}{8 \pi G} d A+\Phi_{H} d e+\Omega_{H} d J \tag{3}
\end{equation*}
$$

A-horizon area, e - electric charge, J - angular momentum extensive parameters, and $\varkappa_{H}, \Phi_{H}, \Omega_{H}$ - surface gravity, Coulomb potential and angular velocity - intensive parameters at the event horizon.
$\varkappa_{H}=$ const - zero law, $d A \geq 0$-second law

$$
\begin{equation*}
\frac{\varkappa}{8 \pi G} d A \longrightarrow T d S \tag{4}
\end{equation*}
$$

T - temperature, S - entropy.
S.Hawking - temperature is real. Schwarzschild:

$$
\begin{equation*}
T_{H}=\frac{1}{8 \pi G m}=\frac{\varkappa_{H}}{2 \pi} \rightarrow S=\frac{A}{4 G} \tag{5}
\end{equation*}
$$

Both temperature and entropy are global entities. Black hole has no volume - only horizon area. The origin of entropy quantum: we need to count the number(!) of possible microstates. Hawking temperature is also of quantum nature: black holes evaporate quantum mechanically, not classically!

- Rindler Space-Time. Unruh Temperature

2 - dim locally flat, metric

$$
\begin{align*}
d s_{2}^{2} & =d t^{2}-d x^{2}=e^{2 a \xi}\left(d \eta^{2}-d \xi^{2}\right)=a^{2} \rho^{2} d \eta^{2}-d \rho^{2}, \\
t & =\frac{1}{a} e^{a \xi} \sinh a \eta, x= \pm \frac{1}{a} e^{a \xi} \cosh a \eta ; \quad \rho=\frac{1}{a} e^{a \xi} \tag{6}
\end{align*}
$$

Event horizons: $t-x^{2}=0 \rightarrow \xi=$ const, $t= \pm \infty$.
Rindler observers - uniform acceleration $\varkappa=a$.
W.Unruh - quantum field theory on Rindler manifold \rightarrow temperature

$$
\begin{equation*}
T_{U}=\frac{a}{2 \pi}=\frac{\varkappa}{2 \pi} \tag{7}
\end{equation*}
$$

Chain of physical features:
Event horizon \rightarrow Hidden information \rightarrow Entropy \rightarrow
Thermodynamics \rightarrow Temperature
Temperature is not an invariant but the temporal component of a heat flow 4 -vector. T_{U} is measured by observer for whom $g_{00}=1$ (or who is using its own proper time). Local temperature $T_{l o c}=T_{U} / \sqrt{g_{00}}$. Thermal equilibrium condition $T_{l o c}=$ const.
Einstein equivalence principle \rightarrow :
Rindler observers are uniformly accelerated \rightarrow Schwarzschild observers at constant radius undergo constant acceleration

$$
\begin{equation*}
\varkappa=a \rightarrow \varkappa=\frac{1}{4 G m} \tag{8}
\end{equation*}
$$

Unruh temperature at the horizon $=$ Hawking temperature .

- Topological Temperature

Simple way to calculate Unruh and Hawking temperature Transformation to the imaginary time (Whick rotation):
$\eta \rightarrow i \tau \longrightarrow d s^{2} \rightarrow d l^{2}=d \rho^{2}+a^{2} \rho^{2} d \tau^{2}$. In general, conical singularity.
Minkowski time: $i t=\rho \sin a \tau \rightarrow \tau$-cyclic coordinate with period $\Theta=2 \pi / a \rightarrow$ conical singularity disappears.
Temperature = inverse of imaginary time period. Black hole of general type: one should consider 2 - dim metric in the vicinity of event horizon.

- Entropy Quantization. $\log 2$ vs $\log 3$ [J.Bekenstein T.Damour R.Ruffini V.F.Mukhanov G.Gour S.Hod A.Strominger C.Vafa K.Krasnov A.Ashtekar + ...]

Horizon area - classical adiabatic invariant + minimal increase
$\Delta A_{\text {min }} \approx 4 L_{P \mid}^{2}$ while capturing neutral or electrically charged particles + Ehrenfest principle \longrightarrow equidistant discrete spectrum for horizon area A and, thus, the entropy

$$
\begin{equation*}
S_{B H}=\gamma N, \quad N=1,2,1 \ldots \tag{9}
\end{equation*}
$$

Statistical physics argument \longrightarrow

$$
\begin{equation*}
\gamma=\log k, \quad k=2,3, \ldots \tag{10}
\end{equation*}
$$

Information theory + "lt from Bit" claim by J.A.Wheeler \longrightarrow

$$
\begin{equation*}
\gamma=\log 2 \tag{11}
\end{equation*}
$$

Loop quantum gravity $\rightarrow S_{B H}=N \log \left(2 j_{\text {min }}+1\right), j_{\text {min }}{ }^{-}$ minimal (nonzero) spin value depending on underlying symmetry group. $S U(2) \rightarrow j_{\text {min }}=\frac{1}{2} \rightarrow \gamma=\log 2$.
Quasi-normal frequencies + Bohr's correspondence principle

$$
\begin{align*}
& \Delta m_{\min }= R e w_{Q N} \tag{12}\\
&=T \Delta S_{\min }=\frac{\gamma}{8 \pi G} \tag{13}\\
& \longrightarrow \gamma=\log 3
\end{align*}
$$

Mystery!

Quantum Shells

- Wheeler-DeWitt Equation [V.A.Berezin A.M.Boyarsky A.Yu.Neronov]
Spherically symmetric self-gravitating thin dust shell
- simplest generalization of a point particle
1)has the dynamical degree of freedom - shell radius - only one
,

2) allows full account for back reaction of the matter source on the space-time metric.
Stationary Schroedinger-like equation in finite differences
$\Psi\left(m, m_{i n}, S+i \zeta\right)+\Psi\left(m, m_{\text {in }}, S-i \zeta\right)=\frac{F_{\text {in }}+F_{\text {out }}-\frac{M^{2}}{4 m^{2} S}}{\sqrt{F_{\text {in }}} \sqrt{F_{\text {out }}}} \Psi\left(m, m_{\text {in }}, S\right)$,
$m=m_{\text {out }}=m_{\text {tot }}$ - the total mass of the system, $m_{\text {in }}$ - the
Schwarzschild mass inside, M is the bare mass of the shell,
$S=\frac{R^{2}}{4 G^{2} m^{2}} \quad R$ - radius, $F=1-\frac{2 G m}{R}, \zeta=\frac{m_{P I}^{2}}{2 m^{2}}$.
$(F)^{1 / 2}$-analytical function with branching at the horizons
($F=0$), at zero radius singularities and at both infinities. This reflects nontrivial causal structure of complete Schwarzschild space-time.
Wave function Ψ "lives" in both asymptotically flat regions
\rightarrow two boundary conditions at two infinities.

- Discrete Spectrum

Compare asymptotical behavior of solutions at branching points \rightarrow two quantization conditions:

$$
\begin{align*}
\frac{2(\Delta m)^{2}-M^{2}}{\sqrt{M^{2}-(\Delta m)^{2}}} & =\frac{2 m_{P I}^{2}}{\Delta m+m_{i n}} n \\
M^{2}-(\Delta m)^{2} & =2(1+2 p) m_{P l}^{2} \tag{15}
\end{align*}
$$

$\Delta m=m_{\text {out }}-m_{\text {in }}, \quad n$ and $p \geq 0$ are integers.

Two quantum numbers (n, p) - two parameters $(\Delta m, M)$ for fixed $m_{i n} \rightarrow$ shell does not collapse (gravitational hydrogen atom).
After switching on radiation - collapse starts with production (necessarily) of new particles (shells) $\rightarrow m_{i n}$ increases. Such a process can proceed in many different ways - the origin of entropy.
When could quantum collapse be stopped?
Natural limit - crossing Einstein-Rosen bridge - transition to semi-closed world requires insertion of an infinite volume - zero probability.
This occurs exactly at $n=0$!

- "No-Memory"
$n=0$ - special point in the spectrum.
The shell in this state does no "feel" what is going on onside \rightarrow it "feels" only itself!
Like the "no-hair"-property of classical black holes.
Finally, when all shells (both primary one and newly born) are in corresponding states $n_{i}=0$, the whole system does not "remember" its own history.
It is this "no-memory" state that can be called "the quantum black hole".
The total Δm_{i} and bare M_{i} masses of all the shells obey the relation

$$
\begin{equation*}
\Delta m_{i}=\frac{1}{\sqrt{2}} M_{i} \tag{16}
\end{equation*}
$$

Subsequent quantum Hawking radiation can proceed via some collective excitations.

Classical Analog

- Einstein Equations

Number of shells $N \gg 1 \rightarrow$ quasi-classics \rightarrow "almost" classical description.
Wave function $\Psi(x) \longrightarrow$

$$
\begin{equation*}
\Psi^{\star}(x) \Psi(x) \quad \longrightarrow \quad \rho(x) \tag{17}
\end{equation*}
$$

- number density or mass density.

Back reaction on space-time geometry \rightarrow Einstein equations Spherical symmetry
Quantum stationary states \rightarrow static matter distribution \rightarrow non-zero effective pressure.
Static metric

$$
\begin{equation*}
d s^{2}=e^{\nu} d t^{2}-e^{\lambda} d r^{2}-r^{2}\left(d \vartheta^{2}+\sin ^{2} \vartheta d \varphi^{2}\right) \tag{18}
\end{equation*}
$$

Here r is the radius of a sphere with the area

$$
A=4 \pi r^{2}, \nu=\nu(r), \lambda=\lambda(r)
$$

Energy-momentum tensor T_{μ}^{ν} : no preferred direction for local observers inside distribution \rightarrow isotropy

$$
\begin{equation*}
T_{\mu}^{\nu}=\operatorname{diag}(\varepsilon,-p,-p,-p) \tag{19}
\end{equation*}
$$

ε - energy density, p - effective pressure.
Einstein equations ("prime" denotes differentiation in r):

$$
\begin{align*}
-e^{-\lambda}\left(\frac{1}{r^{2}}-\frac{\lambda^{\prime}}{r}\right)+\frac{1}{r^{2}} & =8 \pi G \varepsilon \\
-e^{-\lambda}\left(\frac{1}{r^{2}}+\frac{\nu^{\prime}}{r}\right)+\frac{1}{r^{2}} & =-8 \pi G p \\
-\frac{1}{2}\left(\nu^{\prime \prime}+\frac{\nu^{\prime 2}}{2}+\frac{\nu^{\prime}-\lambda^{\prime}}{r}-\frac{\nu^{\prime} \lambda^{\prime}}{2}\right) & =-8 \pi G p \tag{20}
\end{align*}
$$

Integrating the first equation \rightarrow

$$
\begin{equation*}
e^{-\lambda}=1-\frac{2 G m(r)}{r} \tag{21}
\end{equation*}
$$

Here

$$
\begin{equation*}
m(r)=4 \pi \int_{0}^{r} \varepsilon r^{\prime} 2 d r^{\prime} \tag{22}
\end{equation*}
$$

is "running" total mass that must be identified with $m_{i n}$. Bare mass function

$$
\begin{equation*}
M(r)=\int \varepsilon d V=4 \pi \int_{0}^{r} \varepsilon e^{\frac{\lambda}{2}} r^{\prime 2} d r^{\prime} \tag{23}
\end{equation*}
$$

- "No-Memory" Condition

$$
\begin{align*}
m(r) & =a r, \quad a=\mathrm{const} \\
e^{-\lambda} & =1-2 G a=\mathrm{const} \tag{24}
\end{align*}
$$

None of the local observers has a privilege.
Resembles thermal equilibrium.
Energy density

$$
\begin{equation*}
\varepsilon=\frac{a}{4 \pi G r^{2}} \tag{25}
\end{equation*}
$$

(Zeldovich machine > 40 years ago)
Bare mass function

$$
\begin{equation*}
M(r)=\frac{a r}{\sqrt{1-2 G a}} \tag{26}
\end{equation*}
$$

Pressure

$$
\begin{align*}
p(r) & =\frac{b}{4 \pi r^{2}} \\
b & =\frac{1}{G}(1-3 G a-\sqrt{1-2 G a} \sqrt{1-4 G a}) \\
a & \leq \frac{1}{4 G} \rightarrow b \leq a \rightarrow v_{\text {sound }} \leq c \tag{27}
\end{align*}
$$

Finally,

$$
\begin{equation*}
e^{\nu}=C_{0} r^{\frac{4 b}{a+b}}=C_{0} r^{2 G \frac{a+b}{1-2 G a}} \tag{28}
\end{equation*}
$$

- Boundary Condition

Curvature singularity for $b \leq a$. But, for $a=b=\frac{1}{4 G}$ this singularity happily disappears, and we have

$$
\begin{align*}
g_{00} & =e^{\nu}=C_{0}^{2} r^{2} \\
g_{11} & =-e^{\lambda}=-\sqrt{2}, \\
\varepsilon & =p=\frac{1}{16 \pi G r^{2}} \tag{29}
\end{align*}
$$

stiffest possible equation of state.
To ensure statics we must include into our model some surface tension Σ (\rightarrow liquid). It plays the role of a potential barrier for tunneling processes.

Constant of integration C_{0} - from matching at $r=r_{0}$.

$$
\begin{align*}
e^{-\lambda}\left(r_{0}\right) & =e^{\nu}\left(r_{0}\right)=1-\frac{2 G m_{0}}{r_{0}} \rightarrow \\
C_{0}^{2} & =\frac{1}{2 r_{0}^{2}} ; \quad \Delta p=\frac{2 \Sigma}{\sqrt{2} r_{0}} \\
e^{\nu} & =\frac{1}{2}\left(\frac{r}{r_{0}}\right)^{2} ; \quad p_{0}=\varepsilon_{0}=\frac{1}{16 \pi G r_{0}^{2}} \\
m & =m_{0}=\frac{r_{0}}{4 G} \tag{30}
\end{align*}
$$

$r_{0}=2 r_{g}$ - twice the gravitational radius.
Bare mass $M=\sqrt{2} m$ - the same relation as for quantum shells in the "no-memory" state $n=0$!.

- Horizon. Temperature

Surface $r=0$?
Not a trivial singularity:

$$
\begin{equation*}
d s^{2}(r=0)=0 \tag{31}
\end{equation*}
$$

Looks like an event horizon.
($t-r$)-part of the metric

$$
\begin{equation*}
d s_{2}^{2}=\frac{1}{2}\left(\frac{r}{r_{0}}\right)^{2} d t^{2}-2 d r^{2} \tag{32}
\end{equation*}
$$

- locally flat Rindler space-time with $a=\varkappa=\frac{1}{2 r_{0}}$.

Unruh temperature

$$
\begin{equation*}
T_{U}=\frac{1}{4 \pi r_{0}}=\text { const } \rightarrow \tag{33}
\end{equation*}
$$

thermal equilibrium. This temperature is exactly one half of Hawking temperature

$$
\begin{equation*}
T_{U}=\frac{1}{16 \pi G m}=\frac{1}{2} T_{H} \tag{34}
\end{equation*}
$$

- Global \longrightarrow Local

By definition, the surface $r=0$ cannot be crossed. Thus, the event horizon in our model becomes local.
The temperature is also local, $T_{l o c}=T_{U} e^{-\frac{\nu}{2}}=\frac{1}{2 \sqrt{2} \pi r}$, and does not depend on the boundary value r_{0}. Important feature: if one removes some outer layer, nothing would be changed inside. The quantum nature of radiation and the fact that the entropy has a discrete equidistant spectrum suggest that our distribution consists, actually, of some number of quasi-particles which can be called "gravitational phonons". Thus, having at hand local intensive parameters: effective pressure $p(r)$, temperature $T_{\text {loc }}(r)$, chemical potential $\mu(r)$, and extensive parameters: Bare mass M, volume V, entropy S and "particle" number N, we are now ready to construct the local thermodynamics.

- Thermodynamics

First law

$$
\begin{equation*}
d M=\varepsilon d V=T_{l o c} d S-p d V+\mu d N . \tag{35}
\end{equation*}
$$

Local form

$$
\begin{equation*}
\varepsilon(r)=T_{l o c}(r) \boldsymbol{s}(r)-p(r)+\mu(r) n(r), \tag{36}
\end{equation*}
$$

$s(r)$ and $n(r)$ - entropy and particle densities.
$s(r)-? S_{\text {tot }}=4 \pi G m^{2}=\frac{\pi r_{0}^{2}}{4 G} \rightarrow$

$$
\begin{align*}
s(r) & =\frac{1}{8 \sqrt{2} G r} \\
T_{l o c}(r) s(r) & =\frac{1}{32 \pi G r}=\frac{1}{2} \varepsilon \\
\mu(r) n(r) & =\frac{3}{2} \varepsilon . \tag{37}
\end{align*}
$$

Free energy

$$
\begin{align*}
f(r) & =T_{l o c}(r) s(r)=\frac{1}{2} \varepsilon(r) \\
F(r) & =\frac{1}{2} M=2 T_{l o c}\left(r_{0}\right) S_{t o t} \tag{38}
\end{align*}
$$

as measured by local observer. Distant observe at infinity measures the total mass $m=\frac{1}{\sqrt{2}} M$ and the Hawking temperature $T_{H}=2 T_{U}=\frac{2}{\sqrt{2}} T_{l o c}\left(r_{0}\right) ; \longrightarrow$

$$
\begin{equation*}
F_{\infty}=m-T_{H} S_{t o t}=\frac{1}{2} m \tag{39}
\end{equation*}
$$

This guarantees the usual Schwarzschild black hole thermodynamic relation $d m=T_{H} d S$.

- Entropy Quantization. Partition Function

Since in thermal equilibrium

$$
\begin{equation*}
T_{l o c} \sqrt{g_{00}}=\text { const }, \quad \mu \sqrt{g_{00}}=\text { const } \tag{40}
\end{equation*}
$$

one automatically gets the equidistant entropy quantization

$$
\begin{align*}
\frac{T_{l o c}(r) s(r)}{\mu(r) n(r)} & =\frac{1}{\gamma} \frac{s(r)}{n(r)} \longrightarrow \\
S & =\gamma N, \quad N=1,2, \ldots \tag{41}
\end{align*}
$$

To calculate spacing coefficient γ we should know partition function $Z_{\text {tot }}=\left(Z_{1}\right)^{N}$, where Z_{1} is partition function for one quasi-particle ("phonon"). By definition

$$
\begin{equation*}
Z_{1}=\Sigma_{n} e^{-\frac{\varepsilon_{n}}{T}} . \tag{42}
\end{equation*}
$$

ε_{n} are energy levels and, since $\frac{\varepsilon_{n}}{T}$ is invariant under the change of time variable (clocks), we can use the proper time of local observers, so the temperature is just the Unruh temperature, $T=T_{U}=$ const.

Black holes are characterized by some inherent frequency ω. This follows from the very existence of quasi-normal modes. We assume the simplest ("phonon") equidistant spectrum

$$
\begin{align*}
& \varepsilon_{n}=\omega n, \quad n=1,2,3 \ldots \\
& Z_{1}=\frac{e^{-\frac{\omega}{T}}}{1-e^{-\frac{\omega}{T}}} \tag{43}
\end{align*}
$$

The total partition function equals $Z_{\text {tot }}=\left(Z_{1}\right)^{N}$. The partition function is an invariant. For any small part of our system one hasfd $V=-T_{\text {loc }} \log Z_{\text {small }}$

$$
\begin{equation*}
\int \frac{f}{T_{\text {loc }}} d V=-\Sigma \log Z_{\text {small }}=-\log Z_{\text {tot }} \tag{44}
\end{equation*}
$$

L.h.s. equals

$$
\begin{equation*}
\int \frac{f}{T_{l o c}} d V=\frac{1}{2} \int \frac{\varepsilon}{T_{l o c}} d V=2 \sqrt{2} \pi \int_{0}^{r_{0}} \frac{\varepsilon}{T_{l o c}} r^{2} d r=\frac{\pi r_{0}^{2}}{4 G}=\frac{\pi r_{g}^{2}}{G}=S_{\text {tot }} \tag{45}
\end{equation*}
$$

From this it follows

$$
\begin{align*}
& e^{-S}=Z_{\text {tot }}=\left(Z_{1}\right)^{N} \\
& \frac{e^{-\frac{\omega}{T}}}{1-e^{-\frac{\omega}{T}}}=e^{-\gamma} \longrightarrow e^{\gamma}=e^{\frac{\omega}{T}}-1 . \tag{46}
\end{align*}
$$

- Solving the "Mystery of $\log 3$ "

Irreversible process of converting the mass (energy) of the system into radiation. It takes place at the boundary $r=r_{0}$, and the thin shell with zero surface energy density and surface tension Σ serves as such a converter, supplying the radiation with extra energy and extra entropy, i.e., acts like a "brick wall". One can imaging that the near-boundary layer of thickness Δr_{0} is converting into radiation, thus decreasing the inner region boundary to $\left(r_{0}-\Delta r_{0}\right)$. Its energy equals $\Delta M=\varepsilon \Delta V$. But the radiated quantum receives, in addition, the energy released from the work done by surface tension due to its shift, which equals exactly $\Sigma d\left(4 \pi r_{0}^{2}\right)=p \Delta V=\varepsilon \Delta V=\Delta M$. Therefore, energy of quanta are doubled. Clearly, they have double frequency and exhibit double temperature \longrightarrow

$$
\begin{equation*}
\frac{R e w}{T_{H}}=\frac{\omega}{T_{U}}=\log 3 \tag{47}
\end{equation*}
$$

Substituting into partition function gives

$$
\begin{gather*}
e^{\gamma}=e^{\frac{\omega}{T}}-1=3-1=2 \longrightarrow \tag{48}\\
\gamma=\log 2 . \tag{49}
\end{gather*}
$$

AND THIS IS GOOD

Thank you all very much!

THE END

