◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A New Road to Massive Gravity?

Eric Bergshoeff

Groningen University

based on a collaboration with

Marija Kovacevic, Jose Juan Fernandez-Melgarejo, Jan Rosseel, Paul Townsend and Yihao Yin

Moscow, May 30 2012

General Procedure

3D New Massive Gravity

Four Dimensions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusions

Introduction

3D New Massive Gravity

Four Dimensions

Conclusions

Introduction

General Procedure

3D New Massive Gravity

Four Dimensions

Conclusions

Introduction

General Procedure

3D New Massive Gravity

3D New Massive Gravity

Four Dimensions

Conclusions

Introduction

General Procedure

3D New Massive Gravity

Four Dimensions?

3D New Massive Gravity

Four Dimensions

Conclusions

Introduction

General Procedure

3D New Massive Gravity

Four Dimensions?

Conclusions

3D New Massive Gravity

Four Dimensions

Conclusions

Introduction

General Procedure

3D New Massive Gravity

Four Dimensions?

Conclusions

|▲□▶ ▲□▶ ▲三▶ ▲三▶ | 三|| のへの

Why Higher-Derivative Gravity?

Einstein Gravity is the unique field theory of interacting massless spin-2 particles around a given spacetime background that mediates the gravitational force

Problem: Gravity is perturbative non-renormalizable

$$\mathcal{L} \sim \mathbf{R} + a \left(R_{\mu\nu}{}^{ab}
ight)^2 + b \left(R_{\mu\nu}
ight)^2 + c \ \mathbf{R}^2 \; :$$

renormalizable but not unitary

Stelle (1977)

massless spin 2 and massive spin 2 have opposite sign !

Special Case

- In three dimensions there is no massless spin 2!
 - ⇒ "New Massive Gravity"

Hohm, Townsend + E.B. (2009)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Can this be extended to four dimensions?

Comparison to Massive Gravity

see talk by Deffayet

• Massive Gravity is an IR modification of Einstein gravity that describes a massive spin-2 particle via an explicit mass term

modified gravitational force

$$V(r) \sim \frac{1}{r} \quad \rightarrow \quad V(r) \sim \frac{e^{-mr}}{r}$$

• characteristic length scale $r = \frac{1}{m}$

Cosmological Constant Problem

General Procedure

3D New Massive Gravity

Four Dimensions

Conclusions

Introduction

General Procedure

3D New Massive Gravity

Four Dimensions?

Conclusions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

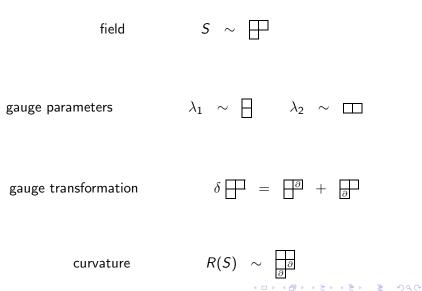
Underlying Trick

• Higher-Derivative Gravity theories can be constructed starting from Second-Order Derivative FP equations and solving for differential subsidiary conditions

• This requires fields with zero massless degrees of freedom

Massless Degrees of Freedom

cp. to Henneaux, Kleinschmidt and Nicolai (2011)



3D New Massive Gravity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Zero Massless D.O.F.

Requirement : $G(S) \sim \square \Rightarrow E.O.M. : G(S) = 0$

two columns : p + q = D - 1

Example :
$$p = q = 1, D = 3, \qquad S \sim \square$$

"Boosting Up the Derivatives"

Second-Order Derivative Generalized FP Curtright (1980)

$$\left(\Box-m^2\right)\,S=0\,,\qquad\qquad S^{\mathrm{tr}}=0\,,\quad\partial\cdot S=0$$

$$\partial \cdot S = 0 \quad \Rightarrow \quad S = G(T)$$

 $\left(\Box - m^2\right) G(T) = 0, \qquad \qquad G(T)^{\rm tr} = 0$

Higher-Derivative Gauge Theory

General Procedure

3D New Massive Gravity

Four Dimensions

Conclusions

Introduction

General Procedure

3D New Massive Gravity

Four Dimensions?

Conclusions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusions

3D Einstein-Hilbert Gravity

Deser, Jackiw, 't Hooft (1984)

There are no massless gravitons: "trivial" gravity

Adding higher-derivative terms leads to "massive gravitons"

3D New Massive Gravity

Free Fierz-Pauli

•
$$\left(\Box - m^2\right) \tilde{h}_{\mu\nu} = 0$$
, $\eta^{\mu\nu} \tilde{h}_{\mu\nu} = 0$, $\partial^{\mu} \tilde{h}_{\mu\nu} = 0$

•
$$\mathcal{L}_{\mathsf{FP}} = \frac{1}{2} \tilde{h}^{\mu\nu} G^{\mathrm{lin}}_{\mu\nu}(\tilde{h}) + \frac{1}{2} m^2 \left(\tilde{h}^{\mu\nu} \tilde{h}_{\mu\nu} - \tilde{h}^2 \right) , \quad \tilde{h} \equiv \eta^{\mu\nu} \tilde{h}_{\mu\nu}$$

no obvious non-linear extension !

number of propagating modes is
$$\frac{1}{2}D(D+1) - 1 - D = \begin{cases} 5 & \text{for } 4D \\ 2 & \text{for } 3D \end{cases}$$

Note: the numbers become 2 (4D) and 0 (3D) for m = 0

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Higher-Derivative Extension in 3D

$$\partial^{\mu} \tilde{h}_{\mu
u} = 0 \quad \Rightarrow \quad \tilde{h}_{\mu
u} = \epsilon_{\mu}{}^{lphaeta} \epsilon_{
u}{}^{\gamma\delta} \partial_{lpha} \partial_{\gamma} h_{eta\delta} \equiv G_{\mu
u}(h)$$

$$\left(\Box - m^2\right) \ G_{\mu\nu}^{\rm lin}(h) = 0 \,, \qquad R^{\rm lin}(h) = 0 \,$$

Non-linear generalization : $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \Rightarrow$

$$\mathcal{L} = \sqrt{-g} \left[-R - \frac{1}{2m^2} \left(R^{\mu\nu} R_{\mu\nu} - \frac{3}{8} R^2 \right) \right]$$

"New Massive Gravity" : unitary !

Mode Analysis

- Take NMG with metric $g_{\mu\nu}$, cosmological constant Λ and coefficient $\sigma = \pm 1$ in front of R
- lower number of derivatives from 4 to 2 by introducing an auxiliary symmetric tensor $f_{\mu\nu}$
- after linearization and diagonalization the two fields describe a massless spin 2 with coefficient $\bar{\sigma} = \sigma \frac{\Lambda}{2m^2}$ and a massive spin 2 with mass $M^2 = -m^2\bar{\sigma}$
- special cases:
 - 3D NMG Hohm, Townsend + E.B. (2009)
 - $D \ge 3$ "critical gravity" for special value of Λ

Li, Song, Strominger (2008); Lü and Pope (2011)

General Procedure

3D New Massive Gravity

Four Dimensions?

Conclusions

Introduction

General Procedure

3D New Massive Gravity

Four Dimensions?

Conclusions

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What did we learn?

• two theories can be equivalent at the linearized level (FP and boosted FP) but only one of them allows for a unique non-linear extension i.e. interactions !

• we need massive spin 2 whose massless limit describes 0 d.o.f.

Example : _____ in 3D

• what about 4D?

Generalized spin-2 FP



describes
$$\begin{cases} 5 & \text{d.o.f.} & m \neq 0 \\ 2 & \text{d.o.f.} & m = 0 \end{cases}$$

describes
$$\begin{cases} 5 & \text{d.o.f.} & m \neq 0 \\ 0 & \text{d.o.f.} & m = 0 \\ & &$$

Connection-metric Duality

- Use first-order form with independent fields $e_{\mu}{}^{a}$ and $\omega_{\mu}{}^{ab}$
- linearize around Minkowski: $e_{\mu}{}^{a} = \delta_{\mu}{}^{a} + h_{\mu}{}^{a}$ and add a FP mass term $-m^{2}(h^{\mu\nu}h_{\nu\mu} - h^{2}) \rightarrow$

$$\mathcal{L} \sim "h \partial \omega + \omega^2" - m^2 (h^{\mu\nu} h_{\nu\mu} - h^2)$$

- solve for $\omega \rightarrow \text{spin-2 FP}$ in terms of h and auxiliary $h_{\mu\nu}$
- solve for $h_{\mu\nu}$ and write $\omega_{\mu}{}^{ab} = \frac{1}{2} \epsilon^{abcd} \tilde{h}_{\mu cd} \rightarrow \text{generalized}$ spin-2 FP in terms of \tilde{h} after elimination of auxiliary $\tilde{h}_{[\mu cd]}$

Boosting up the Derivatives

• start with generalized spin-2 FP in terms of

and subsidiary conditions

$$ilde{h}_{\mu
u,
ho}\,\eta^{
u
ho}={\sf 0}\,,\qquad\qquad\qquad\partial^{
ho}\, ilde{h}_{
ho\mu,
u}={\sf 0}$$

• solve for
$$\partial^{
ho} \tilde{h}_{
ho\mu,\nu} = 0
ightarrow \tilde{h}_{\mu\nu,
ho} = \mathcal{G}_{\mu\nu,
ho}(h)
ightarrow$$
 "NMG in 4D" :

$$\mathcal{L}_{\text{NMG}} \sim -\frac{1}{2} h^{\mu\nu,\rho} G_{\mu\nu,\rho}(h) + \frac{1}{2m^2} \underbrace{h^{\mu\nu,\rho} C_{\mu\nu,\rho}(h)}_{\text{"conformal invariance"}}$$

• mode analysis \rightarrow

 $\mathcal{L}_{\rm NMG} \sim \text{massless spin 2 plus massive spin 2}$

3D New Massive Gravity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Interactions?

cp. to Bekaert, Boulanger, Cnockaert (2005)

• compare to Eddington-Schrödinger theory

$$\begin{aligned} \mathcal{L}_{\mathsf{ES}}' &= \sqrt{-\det g} \left[g^{\mu\nu} R_{\mu\nu}(\Gamma) - 2\Lambda \right] \; \Leftrightarrow \; \mathcal{L}_{\mathsf{ES}} &= \sqrt{|\det R_{(\mu\nu)}(\Gamma)|} \\ g_{\mu\nu} &= \frac{(D-2)}{2\Lambda} R_{(\mu\nu)}(\Gamma) \end{aligned}$$

4D "Trivial" Gravity

avoids no-go theorem !

• Chern-Simons formulation $\mathcal{L} \sim AdA + A^3$: $(e_{\mu}{}^a, \omega_{\mu}{}^a)$ Achúcarro and Townsend (1986); Witten (1988)

first-order formulation of 4D "trivial" gravity:

- $(T_{\mu\nu}{}^{a}, \Omega_{\mu}{}^{a})$ Zinoviev (2003); Alkalaev, Shaynkman and Vasiliev (2003)
 - interactions via CS formulation?

A Common Origin

Both 3D NMG and 4D Massive Gravity stem from a general class of bi-gravity models!

Bañados and Theisen (2009); Hassan and Rosen (2011); Paulos and Tolley (2012)

- 4D Massive Gravity: promote fixed reference metric to dynamical metric
- 3D NMG: exchange higher derivatives for auxiliary symmetric tensor

3D New Massive Gravity

Four Dimensions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusions

Can interactions be introduced by extending bi-gravity models to

• bi-metric models of different symmetry type?

General Procedure

3D New Massive Gravity

Four Dimensions

Conclusions

Outline

Introduction

General Procedure

3D New Massive Gravity

Four Dimensions?

Conclusions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Summary

• we discussed a general procedure for constructing Higher-Derivative Gravity Theories

• we investigated a new massive modification of 4D gravity

• Higher-Derivative gravity and Massive gravity have common origin as generalized bi-gravity models

General Procedure

3D New Massive Gravity

Four Dimensions?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Conclusions

Open Issues

• Interactions?

• Extension to Higher Spins?