A Triplectic Bi-Darboux Theorem and Para-Hypercomplex Geometry

Klaus Bering

Collaborator: Igor Batalin

イロト 不得 トイヨト イヨト

1/45

May 28, 2012

Table of Contents

Work inspired by: Grigoriev & Semikhatov 1997 & 1998

- 🚺 Poincaré Lemma
 - Poincaré Lemma
 - Cartan's Magic Formulas
- 2 Bi-Poincaré Lemma
 - Bi-Poincaré Lemma
 - Algebra of Forms
- 3 Hodge Theory
- 4 Bi-Poisson Structures
 - One Poisson Bracket
 - Bi-Poisson Structures
 - Para-Hypercomplex Structure
 - Bi-Darboux Theorem

(日)、

 $\exists \rightarrow$

Poincaré Lemma Cartan's Magic Formulas

A Triplectic Bi-Darboux Theorem and Para-Hypercomplex Geometry

- 2 Bi-Poincaré Lemma
- 3 Hodge Theory
- 4 Bi-Poisson Structures

Poincaré Lemma Cartan's Magic Formulas

Poincaré Lemma

Coordinates

$$x = (x^1, ..., x^n)$$
 $c = (c^1, ..., c^n)$

x's and c's have opposite Grassmann parity

$$\varepsilon(c^i) = \varepsilon(x^i) + 1$$

Forms

$$\omega = \omega(x,c)$$

A form ω can be viewed as a superfunction of x's and c's

Exterior derivative

$$d = c^i \frac{\partial}{\partial x^i}$$

Poincaré Lemma Cartan's Magic Formulas

Poincaré Lemma

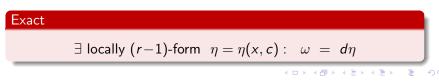
Closed

$$d\omega = 0$$

NB! 0-forms are non-trivial cohomology. No 0-forms allowed.

$$\deg(\omega) \geq 1 \qquad \omega = \underbrace{\omega^{(0)}}_{=0} \oplus \omega^{(1)} \oplus \omega^{(2)} \oplus \dots$$

 \downarrow



Poincaré Lemma Cartan's Magic Formulas

Fine print

- Our proof technique works in the category of (real) analytic superfcts rather than the category of smooth C^{∞} superfcts.
- Considers an arbitrary fixed point $x_{(0)}$.
- Restricts to a sufficiently small neighborhood around $x_{(0)}$ if necessarily.
- Assume by change of coordinates that the fixed point x₍₀₎ = 0 is zero.

Poincaré Lemma Cartan's Magic Formulas

Exterior Derivative

Exterior Derivative

$$d = c^i \frac{\partial}{\partial x^i}$$

Fermionic1st order
$$\varepsilon(d) = 1$$
 $\operatorname{order}(d) = 1$

Nilpotent

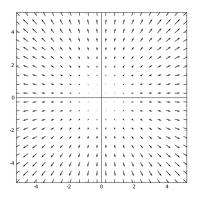
$$2d^2 = [d,d] = 0$$

 $[A, B] = AB - (-1)^{\varepsilon_A \varepsilon_B} BA$ denotes the supercommutator.

Poincaré Lemma

Bi-Poincaré Lemma Hodge Theory Bi-Poisson Structures Poincaré Lemma Cartan's Magic Formulas

Euler Vector Field



Euler vector field

$$X = X^{i} \frac{\partial}{\partial x^{i}} \qquad X^{i} = x^{i}$$

Poincaré Lemma Cartan's Magic Formulas

Contraction

Contraction

$$X_{\perp} = i_X = i = x^i \frac{\partial}{\partial c^i}$$

Fermionic1st order $\varepsilon(i) = 1$ $\operatorname{order}(i) = 1$

Nilpotent

$$2i^2 = [i, i] = 0$$

Poincaré Lemma Cartan's Magic Formulas

Lie Derivative

Lie derivative

$$\mathcal{L}_X = \mathcal{L} = [d, i] = x^i \frac{\partial}{\partial x^i} + c^i \frac{\partial}{\partial c^i} = N_x + N_c$$

Lie derivative

$$\mathcal{L} = [d, i] = [d, x^{i} \frac{\partial}{\partial c^{i}}]$$

$$= [d, x^{i}] \frac{\partial}{\partial c^{i}} + x^{i}[d, \frac{\partial}{\partial c^{i}}]$$

$$= [d, x^{i}] \frac{\partial}{\partial c^{i}} + x^{i}[\frac{\partial}{\partial c^{i}}, d] \qquad d = c^{i} \frac{\partial}{\partial x^{i}}$$

$$= c^{i} \frac{\partial}{\partial c^{i}} + x^{i} \frac{\partial}{\partial x^{i}} \qquad \text{Super Euler vector field}$$

$$= N_{c} + N_{x}$$

Bosonic $\varepsilon(\mathcal{L}) = 0$ order $(\mathcal{L}) = 1$

10/45

Poincaré Lemma Cartan's Magic Formulas

Lie Derivative

Lie Derivative as Super Euler vector field

$$\mathcal{L}\omega(x,c) = (N_x + N_c)\omega(x,c)$$

Contraction/Homotopy Op

•

$$\mathcal{L}^{-1}\omega(x,c) = \frac{1}{N_x + N_c}\omega(x,c) = \int_0^1 \frac{dt}{t}\omega(tx,tc)$$

$$\int_0^1 dt \ t^n = \frac{1}{n+1} \qquad \qquad \int_0^1 \frac{dt}{t} \ t^n = \frac{1}{n+1}$$

<ロ> <昂> < 言> < 言> < 言> と言う こののの 11/45

Poincaré Lemma Cartan's Magic Formulas

Poincaré Lemma

Closed

$$\omega = \omega(x,c) \qquad d\omega = 0$$

No 0-form allowed

$$\deg(\omega) \geq 1 \qquad \omega = \underbrace{\omega^{(0)}}_{=0} \oplus \omega^{(1)} \oplus \omega^{(2)} \oplus \dots$$

def
$$\eta = i\mathcal{L}^{-1}\omega = \mathcal{L}^{-1}i\omega$$

Proof

$d\eta = d\mathcal{L}^{-1}i\omega = \mathcal{L}^{-1}di\omega = \mathcal{L}^{-1}[d,i]\omega = \mathcal{L}^{-1}\mathcal{L}\omega = \omega$ exact

० **०** (२ 12/45

Bi-Poincaré Lemma Algebra of Forms

A Triplectic Bi-Darboux Theorem and Para-Hypercomplex Geometry

- 2 Bi-Poincaré Lemma
- 3 Hodge Theory
- 4 Bi-Poisson Structures

Bi-Poincaré Lemma Algebra of Forms

Coordinates

Triple

$$x = (x^1,...,x^n)$$
 $y = (y^1,...,y^n)$ $c = (c^1,...,c^n)$

c's have opposite Grassmann parity of the x's and y's

$$\varepsilon(x^i) = \varepsilon(y^i) = \varepsilon(c^i) + 1$$

To not clog slides with Grassmann sign factors, let us simplify:

Bosonic	Bosonic	Fermionic
$\varepsilon(x^i) = 0$	$\varepsilon(y^i) = 0$	$arepsilon(c^i) = 1$

The theory works more generally in a superized formalism.

Bi-Poincaré Lemma Algebra of Forms

Two Exterior Derivatices

Exterior Derivatives

$$d^1 = c^i \frac{\partial}{\partial x^i}$$
 $d^2 = c^i \frac{\partial}{\partial y^i}$ $d = d^1 d^2$ 2nd order

Fermionic
$$\varepsilon(d^1) = 1 = \varepsilon(d^2)$$
 $\varepsilon(d) = 0$ Bosonic

Supercommute

$$(d^1)^2 = 0$$
 $(d^2)^2 = 0$ $d^1d^2 + d^2d^1 = 0$
 $[d^a, d^b] = 0$ $a, b \in \{1, 2\}$

Bi-Poincaré Lemma Algebra of Forms

Closedness Relations

$$f = \frac{1}{2} f_{ij}(x, y) c^{i} c^{j} \qquad 2 \text{-form} \qquad f_{ji} = -f_{ij}$$

closed $d^{1}f = 0 \iff \sum_{\text{cycl. } i,j,k} \frac{\partial f_{jk}(x, y)}{\partial x^{i}} = 0$
closed $d^{2}f = 0 \iff \sum_{\text{cycl. } i,j,k} \frac{\partial f_{jk}(x, y)}{\partial y^{i}} = 0$

What is the most general solution to f locally?

$$\exists \text{ loc. 0-form } g = g(x,y): f = dg \text{ exact } \Leftrightarrow f_{ij} = \frac{\partial^2 g(x,y)}{\partial x^i \partial y^j} - (i \leftrightarrow j)$$

Bi-Poincaré Lemma Algebra of Forms

Bi-Poincaré Lemma

$$\omega = \omega(x, y, c) \qquad \qquad d = d^1 d^2$$

Closed

$$d^1\omega ~=~ 0 ~=~ d^2\omega$$

Exact

$$\exists$$
 locally form $\eta = \eta(x, y, c)$: $\omega = d\eta$ exact

 $\mathsf{NB}!$ 0- and 1-forms are non-trivial cohomology. No 0- and 1-forms allowed.

$$\deg(\omega) \geq 2 \qquad \omega = \underbrace{\omega^{(0)}}_{=0} \oplus \underbrace{\omega^{(1)}}_{=0} \oplus \omega^{(2)} \oplus \dots$$

२ (~ 17/45

Bi-Poincaré Lemma Algebra of Forms

Two Contractions

Contractions

$$i_1 = x^i \frac{\partial}{\partial c^i}$$
 $i_2 = y^i \frac{\partial}{\partial c^i}$ $i = i_2 i_1$ 2nd order

Fermionic
$$\varepsilon(i_1) = 1 = \varepsilon(i_2)$$
 $\varepsilon(i) = 0$ Bosonic

Supercommute

$$(i_1)^2 = 0$$
 $(i_1)^2 = 0$ $i_1i_2 + i_2i_1 = 0$
 $[i_a, i_b] = 0$ $a, b \in \{1, 2\}$

Bi-Poincaré Lemma Algebra of Forms

Four Lie Derivatives

Lie derivatives

$$\mathcal{L}^{a}_{b} = [d^{a}, i_{b}] \qquad a, b \in \{1, 2\}$$

Bosonic $\varepsilon(\mathcal{L}_b^a) = 0$

$$\mathcal{L}_1^1 = N_x + N_c \qquad \mathcal{L}_2^2 = N_y + N_c \qquad \leftarrow \text{Diagonal}$$

$$N_x = x^i \frac{\partial}{\partial x^i}$$
 $N_y = y^i \frac{\partial}{\partial y^i}$ $N_c = c^i \frac{\partial}{\partial c^i}$

$$\mathcal{L}_1^2 = x^i \frac{\partial}{\partial y^i} = J_+ \qquad \mathcal{L}_2^1 = y^i \frac{\partial}{\partial x^i} = J_- \qquad \leftarrow \text{Not diagonal}$$

QM paradigm: Look for max. com. set of observables!

Bi-Poincaré Lemma Algebra of Forms

Lie Algebras

$$gl(2, \mathbb{C}) \text{ Lie alg}$$

$$[\mathcal{L}_{b}^{a}, \mathcal{L}_{d}^{c}] = \delta_{d}^{a}\mathcal{L}_{b}^{c} - \delta_{b}^{c}\mathcal{L}_{d}^{a}$$

$$gl(2, \mathbb{C}) = \underbrace{sl(2, \mathbb{C})}_{J_{\alpha}} \oplus \underbrace{\mathbb{C}}_{\mathcal{L}}$$

$$J_{1} = \frac{\mathcal{L}_{1}^{2} + \mathcal{L}_{2}^{1}}{2} \quad J_{2} = \frac{\mathcal{L}_{1}^{2} - \mathcal{L}_{2}^{1}}{2i} \quad J_{3} = \frac{\mathcal{L}_{1}^{1} - \mathcal{L}_{2}^{2}}{2} = \frac{N_{x} - N_{y}}{2}$$

$$sl(2, \mathbb{C}) \text{ Lie alg}$$

$$[J_{\alpha}, J_{\beta}] = i\varepsilon_{\alpha\beta\gamma}J_{\gamma} \quad \alpha, \beta, \gamma \in \{1, 2, 3\} \quad \varepsilon_{123} = 1$$

$$\mathcal{L} = \mathcal{L}_a^a = N_x + N_y + 2N_c$$

$$\mathcal{L} \text{ Casimir}$$

$$[\mathcal{L}, \mathcal{L}_b^a] = 0$$

Bi-Poincaré Lemma Algebra of Forms

Bi-Poincaré Lemma Strategy

$$d = d^{1}d^{2} \qquad i = i_{2}i_{1} \qquad \text{2nd order}$$
Def
3rd ord. $L = [d, i] = \ldots = \Lambda + (\ldots)_{b}d^{b}$

$$[L, \mathcal{L}_{b}^{a}] = 0 \qquad \text{Casimir}$$

$$[\Lambda, \mathcal{L}_{b}^{a}] = 0 \qquad \text{Casimir}$$

$$[\Lambda, \mathcal{L}_{b}^{a}] = 0 \qquad \text{Casimir}$$

$$Assumption$$
Assume Λ^{-1} exists
$$Closed \quad d^{a}\omega = 0 \quad a \in \{1, 2\} \qquad def \qquad \eta = i\Lambda^{-1}\omega$$
Proof

$$d\eta = di\Lambda^{-1}\omega = (L + id)\Lambda^{-1}\omega = \Lambda^{-1}L + id\Lambda^{-1}\omega$$

$$= \Lambda^{-1}(\Lambda + (\ldots)_{b}d^{b}) + i\Lambda'^{-1}d\omega = \omega \qquad \text{exact}$$

21/45

Bi-Poincaré Lemma Algebra of Forms

Algebra of Forms

$$\mathcal{A} = \mathcal{A}[[x, y, z]]] = \{ \omega = \omega(x, y, c) \}$$

=
$$\bigoplus_{n_x, n_y, n_c = 0}^{\infty} \mathcal{A}_{n_x, n_y, n_c} \quad \infty \text{ dim vector space}$$

Form

$$\omega = \bigoplus_{n_x, n_y, n_c=0}^{\infty} \omega^{(n_x, n_y, n_c)}$$

small letter=eigenvalues

$$\begin{array}{rcl} n_x &=& {\rm eigenvalue \ of \ } N_x &=& x^i \frac{\partial}{\partial x^i} \\ n_y &=& {\rm eigenvalue \ of \ } N_y &=& y^i \frac{\partial}{\partial y^i} \\ n_c &=& {\rm eigenvalue \ of \ } N_c &=& c^i \frac{\partial}{\partial c^i} \end{array}$$

Capital Letter=Operator

Bi-Poincaré Lemma Algebra of Forms

Algebra of Forms as $gl(2,\mathbb{C})$ Rep

 $\bullet \ \ \mathsf{Alg.} \ \ \mathsf{of forms} \qquad \leftrightarrow \qquad \mathsf{Hilbert \ space \ of \ states}$

$$\mathcal{A} = \mathcal{A}[[x, y, c]]$$

v

• Constant zero-form \leftrightarrow vacuum

xⁱ

$$1~=~|0\rangle~=~\Omega$$

Creation op

$$\frac{\partial}{\partial x^{i}} \qquad \frac{\partial}{\partial y^{j}}$$

• Generators
$$\mathcal{L}^{a}_{b}$$
 act on \mathcal{A}

 $\mathcal{A} \text{ is } \infty \text{-dim rep}$

 c^k

 $\frac{\partial}{\partial c^k}$

Bi-Poincaré Lemma Algebra of Forms

Good Quantum Numbers n_{xy} and n_c

$$\mathcal{A} = \bigoplus_{n_{xy}, n_c=0}^{\infty} \mathcal{A}_{n_{xy}, n_c}$$

 ∞ dim vector space

Form

$$\omega = \bigoplus_{n_{xy},n_c=0}^{\infty} \omega^{(n_{xy},n_c)}$$

$$n_{xy}$$
 = eigenvalue of $N_x + N_y$
 n_c = eigenvalue of N_c

 $[N_x + N_y, \mathcal{L}_b^a] = 0$ $[N_c, \mathcal{L}_b^a] = 0$ Casimirs

Let n_{xy} and n_c be fixed numbers.

Generators \mathcal{L}_b^a act on \mathcal{A}_{n_{xy},n_c} \mathcal{A}_{n_{xy},n_c} is finite-dim rep \mathbb{P} $\mathbb{P}_{24/45}$

Bi-Poincaré Lemma Algebra of Forms

Fixed
$$\mathcal{A}_{n_{xy},n_c}$$

$$n_{xy}$$
 = eigenvalue of $N_x + N_y$
 n_c = eigenvalue of N_c
 $n_{xy} + 2n_c$ = ℓ = eigenvalue of \mathcal{L}

$$\mathcal{L} = N_x + N_y + 2N_c$$

<ロ> (四) (四) (三) (三) (三)

25/45

$\overline{sl(2,\mathbb{C})}$ Representation Theory

Finite dim \Rightarrow completely reducible

$$\mathcal{A}_{n_{xy},n_c} = \bigoplus_{j \in \frac{1}{2} \mathbb{N}_0} \mu_j V_j$$

 $V_j = {\it sl}(2,\mathbb{C})$ irrep $\mu_j \in \mathbb{N}_0$ multiplicity

Bi-Poincaré Lemma Algebra of Forms

Strategy: Enough to study:

Alg. of forms

$$\mathcal{A} = \bigoplus_{n_{xy}, n_c = 0}^{\infty} \mathcal{A}_{n_{xy}, n_c} \quad \infty \text{ dim rep}$$

Fixed good quantum numbers n_{xy} , n_c , ℓ

$$\mathcal{A}_{n_{xy},n_c} = igoplus_{j\in rac{1}{2}\mathbb{N}_0} \mu_j V_j$$
 finite-dim rep

11

1

26/45

Bi-Poincaré Lemma Algebra of Forms

Fixed irrep V_i

$$m$$
 = eigenvalue of J_3 J_3 = $\frac{N_x - N_y}{2}$ $|m| \le \frac{n_{xy}}{2}$

$$j(j+1) =$$
 eigenvalue of J^2 $m \in \{-j, 1-j, \dots, j-1, j\}$ $j \leq \frac{n_{xy}}{2}$

$$\lambda~=~{
m eigenvalue}~{
m of}~{
m \Lambda}$$

$$\Lambda = rac{\mathcal{L}}{2}\left(rac{\mathcal{L}}{2}+1
ight)-J^2$$

n

Proof

$$\lambda = \frac{\ell}{2} \left(\frac{\ell}{2} + 1\right) - j(j+1)$$

$$\geq \left(\frac{n_{xy}}{2} + n_c\right) \left(\frac{n_{xy}}{2} + n_c + 1\right) - \frac{n_{xy}}{2} \left(\frac{n_{xy}}{2} + 1\right)$$

$$= \left(n_{xy} + n_c\right) \underbrace{\left(\frac{n_c - 1}{2}\right)}_{>0} > 0 \quad \text{because } n_c = \deg(\omega) \ge 2$$

Bi-Poincaré Lemma Algebra of Forms

Bi-Poincaré Lemma

Lemma

A is diagonalizable with $\operatorname{Spec}(\Lambda) > 0$ on forms ω with $\operatorname{deg}(\omega) \geq 2$.

Bi-Poincaré Lemma

$$\left. \begin{array}{l} d^1\omega \ = \ 0 \\ d^2\omega \ = \ 0 \\ \deg(\omega) \ \ge \ 2 \end{array} \right\} \qquad \Rightarrow \qquad {\rm locally} \ \omega \ = \ d\eta \ {\rm exact}$$

$$d = d^1 d^2$$

A Triplectic Bi-Darboux Theorem and Para-Hypercomplex Geometry

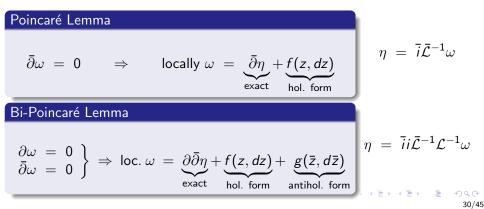
2 Bi-Poincaré Lemma

3 Hodge Theory

4 Bi-Poisson Structures

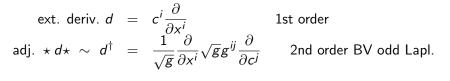
Complex Hodge Theory: Dolbeault Op

form $\omega = \omega(z, \overline{z}, dz, d\overline{z})$ Dolbeault op $[\partial, \overline{\partial}] = 0, \ \partial^2 = 0, \ \overline{\partial}^2 = 0.$



Real Hodge Theory

form
$$\omega = \omega(x,c)$$
 $c^i = dx^i$



$$d^2 = 0$$
 $(d^{\dagger})^2 = 0$ $[d^{\dagger}, d] = \Delta$ Beltrami Lapl.

Bi-Poincaré Lemma

$$egin{array}{ccc} d\omega &=& 0 \ d^{\dagger}\omega &=& 0 \end{array}
ight\} \qquad \Rightarrow \qquad {
m locally} \ \omega &=& \Delta\eta \ {
m exact}$$

э

・ロト ・ 雪 ト ・ ヨ ト

One Poisson Bracket Bi-Poisson Structures Para-Hypercomplex Structure Bi-Darboux Theorem

A Triplectic Bi-Darboux Theorem and Para-Hypercomplex Geometry

- 2 Bi-Poincaré Lemma
- 3 Hodge Theory

One Poisson Bracket Bi-Poisson Structures Para-Hypercomplex Structure Bi-Darboux Theorem

Poisson Manifold with Local Coordinates

- Manifold \mathcal{M} .
- Poisson bracket $\{\cdot, \cdot\}$.
- PB has intrisic Grassmann parity $\varepsilon = \begin{cases} 0 & \text{even PB} \\ 1 & \text{odd PB} \end{cases}$
- Locally there exist coordinates z^{I} of Grassmann parity ε_{I} .
- Poisson bivector $\pi^{IJ} = \{z^I, z^J\}$ may depend on z^K .

To not clog slides with Grassmann sign factors, let us simplify:

Bosonic Coordinates

$$\varepsilon(Z') = 0$$

Bosonic PB
$$\varepsilon = 0$$

The theory works more generally in a superized formalism.

One Poisson Bracket Bi-Poisson Structures Para-Hypercomplex Structure Bi-Darboux Theorem

Darboux Theorem

Regular Poisson bivector π^{IJ} . Assume rank $(\pi^{IJ}) = \text{constant}$.

Darboux theorem

Locally there exist **Bosonic** Darboux coordinates:

positions q^i momenta p_j Casimirs c_{α}

$$\{q^{i}, p_{j}\} = \delta^{i}_{j} = -\{p_{j}, q^{i}\}$$

All other fund. PB = 0, *i.e.*,

$$\{q^{i},q^{j}\} = 0 \qquad \{p_{i},p_{j}\} = 0 \qquad \{c_{\alpha},\cdot\} = 0$$

Morale: Jac. id. are the integrability cond. for \exists Darboux coord.

One Poisson Bracket Bi-Poisson Structures Para-Hypercomplex Structure Bi-Darboux Theorem

Two Poisson Brackets

C.

$$\{\cdot,\cdot\}^1 \qquad \qquad \{\cdot,\cdot\}^2$$

Compatibility cond = 6-term Mixed Jac Id

$$\sum_{\text{vcl. } f,g,h} \{\{f,g\}^1,h\}^2 = -(1\leftrightarrow 2)$$

Sym. Jac. id. are the main ammunition for what to follow.

- Used in integrable systems to recursively generate infinitely many conserved charges (Magri's method 1978).
- Used in BRST/anti-BRST triplectic quantization (1995).
- Questions: Does there exists common Darboux coordinates?
- Gelfand and Zakharevich (2000) investigate case with at least one non-deg. bracket.

One Poisson Bracket Bi-Poisson Structures Para-Hypercomplex Structure Bi-Darboux Theorem

Triplectic manifold

Def. triplectic manifold $(\mathcal{M}; \{\cdot, \cdot\}^a)$

- 3n-dimensional manifold \mathcal{M}
- \bullet equipped with two Poisson brackets $\{\cdot,\cdot\}^1$ and $\{\cdot,\cdot\}^2$
- that both have rank 2n out of 3n possible,
- that are compatible, *i.e.*, the mixed Jac. id.
- that are jointly non-degenerate, which means that there are no common Casimirs.
- and that have mutually involutive Casimirs, which means that the Casimirs with respect to one bracket are in involution with respect to the other bracket, and vice-versa.

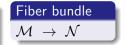
One Poisson Bracket Bi-Poisson Structures Para-Hypercomplex Structure Bi-Darboux Theorem

Base manifold ${\cal N}$

- Define notation: $c_k = \text{Casimirs for 1st PB}$.
- Define notation: p_i = Casimirs for 2nd PB.

Base manifold $\mathcal N$

 $\mathcal{N} = 2n$ dim manifold of Casimir variables p_i and c_k .



One Poisson Bracket Bi-Poisson Structures Para-Hypercomplex Structure Bi-Darboux Theorem

Two Paracomplex Structures Σ and P

- A complex structure $J: TN \to TN$ $J^2 = -1$
- A paracomplex structure $P: T\mathcal{N} \to T\mathcal{N}$ $P^2 = 1$
 - = local product structure

1st Paracomplex str.				
Σ	p_j	c _j		
p _i	δ_i^j	0		
р _і с _і	0	$-\delta_i^j$		

• Sym. Jac. Id. \Rightarrow

P p_j c_j p_i 0 $(E^{-1})_i^j$ c_i E^j_i 0

P integrable

- $\{\Sigma, P\}_+ = 0$ anticommute
- $J := P\Sigma$ complex structure
- Triple (Σ, P, J) para-hypercomplex structure

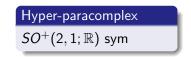
One Poisson Bracket Bi-Poisson Structures Para-Hypercomplex Structure Bi-Darboux Theorem

Para-Hypercomplex Structure

Thm

There is a one-to-one correspondence between triplectic manifolds and twisted para-hypercomplex manifolds

- A para-Hypercomplex manifold is endowed with an Obata connection ∇, *i.e.*, unique torsionfree connection compatible with the para-hypercomplex structure.
- Twisting refers a two-form field F^{ij} .



Bi-Poisson $SL(2,\mathbb{R})$ sym

・ロト ・ 戸 ・ ・ ヨ ・ ・

One Poisson Bracket Bi-Poisson Structures Para-Hypercomplex Structure Bi-Darboux Theorem

Caratheodory-Jacobi-Lie (CJL) Theorem

- Define notation: $c_k = \text{Casimirs for 1st PB}$.
- Define notation: p_i = Casimirs for 2nd PB.
- CJL Theorem implies $\exists q^i$ so 1st PB on Darboux form.
- CJL does this **without** changing the c_i 's and p_i 's.

1 PE	$PB \{\cdot, \cdot\}^1$				
	q ^j	P_j	c _j		
q^i	0	δ^i_i	0		
P _i	$-\delta_i^j$	Ő	0		
P _i c _i	0	0	0		

2 PB	$\{\cdot,\cdot\}^2$			
	q ^j	p _j	c _j	
q^i	F ^{ij}	0	E^{i}_{i}	
p _i	0	0	0	
c _i	-E ^j ,	0	0	

・ロト ・ 理 ・ ・ ヨ ・ ・

One Poisson Bracket Bi-Poisson Structures Para-Hypercomplex Structure Bi-Darboux Theorem

Canonical Transformations for 1st PB

• Only two remaining non-trivial matrix structures

$$E^{i}_{j} = \{q^{i}, c_{j}\}^{2} = E^{i}_{j}(p, c)$$
 $F^{ij} = \{q^{i}, q^{j}\}^{2} = F^{ij}(p, c)$

- Can we also get 2nd PB on Darboux form **without** spoiling Darboux form for 1st PB?
- Only CT for 1st PB allowed
- c_i are passive spectators
- locally $F_3 = F_3(q', p)$ type CT
- Generator F_3 must be linear in q'

$$-F_3 = A_j(p)q'^j + B(p)$$

One Poisson Bracket Bi-Poisson Structures Para-Hypercomplex Structure Bi-Darboux Theorem

Bi-Darboux Theorem

Bi-Darboux Theorem

Necessary and Sufficient condition for Bi-Darboux coordinates on triplectic manifold is that

• (in triplectic language) The E^i_k matrix factorizes

$$E^{i}_{k}(p,c) = P^{i}_{j}(p)C^{j}_{k}(c)$$

• (in para-hypercomplex language) The Obata connection ∇ is flat.

Poincaré Lemma Bi-Poisson Bracket Hodge Theory Bi-Poisson Structures Hodge Theory Bi-Poisson Structures Bi-Darboux Theorem

F^{ij} Matrix?

Closed $F^{ij} = \{q^{i}, q^{j}\}^{2} \text{ closed because of mixed Jac. id.}$ $\sum_{\text{cycl. } i,j,k} \frac{\partial F^{jk}(p,c)}{\partial p_{i}} = 0$ $\sum_{\text{cycl. } i,j,k} \frac{\partial F^{jk}(p,c)}{\partial c_{i}} = 0$

• Is it possible to make F^{ij} matrix vanish by CT?

$$F^{ij}(p,c) = rac{\partial^2 B(p,c)}{\partial c_i \partial p_j} - (i \leftrightarrow j)$$
 exact

• Yes, because of Bi-Poincaré Lemma.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Poincaré Lemma Bi-Poisson Bracket Hodge Theory Bi-Poisson Structures Bi-Poisson Structures Bi-Darboux Theorem

Conclusions

- We have proved a Bi-Poincaré Lemma for triples of variables.
- Rather than the standard method of using Fermionic duality, the new proof relies heavily on sl(2, C) rep. theory; morally a kind of triality.
- We have proved a Bi-Darboux Theorem for triplectic manifolds.
- This strengthen the geometric foundation of triplectic quantization.
- This may infuse renewed interests and developments in triplectic quantization.
- We have proved a one-to-one correspondence between triplectic manifolds and twisted para-hypercomplex manifolds.

One Poisson Bracket Bi-Poisson Structures Para-Hypercomplex Structure Bi-Darboux Theorem

References

- I.A. Batalin and K. Bering, A Triplectic Bi-Darboux Theorem and Para-Hypercomplex Geometry, arXiv:1104.4446.
- M.A. Grigoriev and A.M. Semikhatov, On the Canonical Form of a Pair of Compatible Antibrackets, Phys. Lett. B417 (1998) 259, arXiv:hep-th/9708077.
- M.A. Grigoriev and A.M. Semikhatov, A Kaehler Structure of the Triplectic Geometry, Theor. Math. Phys. 124 (2000) 1157, arXiv:hep-th/9807023.