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Motivations

Identify the symmetries of low-energy limit of M-theory

↪→ definition of M-theory. Some proposals that identify Kac–Moody

algebras within 11D sugra :

1 B. Julia (80’s) : Affine and hyperbolic Kac–Moody algebras ! hidden

symmetries of dimensional reductions of supergravity.

2 Damour-Henneaux-Nicolai (2000) : E10 ! symmetry of e.o.m. in vicinity

of a cosmological singularity.

3 P. West (2001) : non-linear realisation of E11  extension of maximal

supergravity relevant to M-theory.

Understand dual formulations of (linearised) gravity along lines of [N.B., S.

Cnockaert, M. Henneaux (2003)]. In particular, to find a covariant action for

Hull’s double-dual graviton (2000) appearing in the dimensional reduction of

exotic N6 = (4, 0) superconformal theory [J. Strathdree (1986)].
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Dual graviton

Hull (2000) : on-shell Hodge duality in linearised gravity → C[n−3,1] .

West (2001) : E11 decomposes into an infinite set of highest-weight

SL(11,R) tensors. At low levels, E11 3 C[8,1] s.t. C[µ1...µ8,ν] ≡ 0 which

was identified with the dual graviton :

↪→ Einstein–Cartan action (first-order) re-written with ω
a[2]
1 −→ Y an−2

s.t. SEC[ea1, Y
a
n−2] =

∫
Mn

e
(
dea ∧ Y an−2 + Y 2

)
.

On-shell and linearising, Y an−2  dCan−3 the curl of dual graviton.

In [N.B., S. Cnockaert, M. Henneaux (2003)], the off-shell Hodge dualisation of

linearised gravity was done in Mn . Using a parent action : Fierz–Pauli

⇐⇒ action of [Curtright, Aulakh–Koh–Ouvry (1985-86)] for free gln-irreducible

massless C[n−3,1] gauge field.
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Double-dual graviton

Hull (2000) conjectured a duality between an exotic N6 = (4, 0)

superconformal theory and the strong coupling limit of N5 = 8 sugra.

Upon dimensional reduction 6D ↘ 5D of the field content of the

linearised theory, not only do the graviton and the dual graviton

appear, but also the double-dual graviton  “triality”.

The exotic interacting six-dimensional theory suggested is to maximally

N5 = 8 sugra what superconformal N6 = (2, 0) theory is to maximally

supersymmetric Yang–Mills theory in five dimensions.

↪→ Is there a corner of M-theory that contains the exotic N6 = (4, 0)

theory ? [recent work arXiv:1108.3085 by M. Chiodaroli, M. Gunaydin, and

R. Roiban]
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Goals

Construct a gln-covariant action for the double-dual graviton

Dµ[n−3],ν[n−3] in Mn ;

Consider all possible further dualisations of the graviton.

In [N.B., S. Cnockaert, M. Henneaux (2003)], parent action that reproduces

SFP[hµ,ν ] upon elimination of some set of auxiliary fields, and reproduces

S[C[n−3,1]] after elimination of other aux. fields.

Relation between E11 and Hull’s proposal ?
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Some results in [1205.2277] with Paul P. Cook and Dmitry Ponomarev :

A parent action that reproduces S[C[n−3,1]] on one hand and

S[D[n−3,n−3]] on the other :

S[Ωa[2],b, Ya[3],b] S[Ha[n−3],b[2], Db[3],a[n−3]]

↙ ↘ ↙ ↘

SFP(hµν) SCurt.(Cµ[n−3],ν) SDD(Dµ[n−3],ν[n−3])

Three infinite gravity towers with fields h̃µ1[n−2]...,µk[n−2],ν,ρ ,

C̃µ1[n−2],...,µk[n−2],ν[n−3],ρ and D̃µ1[n−2],...,µk[n−2],ν[n−3],ρ[n−3] (k = 1, 2, . . .)

referred to as the Fierz-Pauli tower, the dual graviton tower and the

double-dual tower.

By-product : places a conjecture of [Riccioni-West (2006)] (that

C̃µ1[n−2],...,µk[n−2],ν[n−3],ρ ! dual gravitons) on firm, off-shell footing.
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Review of first dualisation

Consider the quadratic parent action [N.B., S.C., M.H.]

S[Ω, Y ] = −
∫
dnx

(
2 Ωab,c∂dY

dab,c + Ωab,cΩab,c + 2 Ωab,cΩac,b + 1term
)

and vary w.r.t Yabc,d ≡ Y[abc],d : ∂[dΩab],c = 0 =⇒ Ωab,c = ∂[ahb],c where

h[1,1] ∼ ⊗ .

Eliminating Y that way, the action becomes the Fierz–Pauli action.

On the other hand, Ωab,c is an auxiliary field.

Eliminate it 99K resulting action equivalent to the Curtright action.
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Second dualisation : 1

(i) Construct the action :

S[Ha[n−3],
bc, D

bcd, a[n−3]] =

∫
dnx

[
Ha[n−3],

bc ∂dD
bcd, a[n−3] + “HH ′′

]
where “HH” must give the Curtright action via

Hµ[n−3],
ν[2] −→ 2 ∂[ν1Cµ[n−3],

ν2] .

(ii) Eliminate Db[3], a[n−3] from the action, enforcing

Hµ[n−3],
ν[2] = 2 ∂[ν1Cµ[n−3],

ν2] −→ SCurt.[H(C)] .

Alternatively, extremise the action w.r.t. Ha[n−3],
b[2] to get

S[Dbcd, a[n−3]] =

∫
dnx

[
∂eDbce,

a[n−3] ∂dD
bcd, a[n−3] + · · ·

]
which by construction is ⇐⇒ to SCurt.[H(C)] ;
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Towards second dualisation : 2

(iii) Decompose Db[3],
a[n−3] into gln-irreducible components :

Db[3],
a[n−3] = Xb[3],

a[n−3] + Zb[3],
a[n−3] ,

Zb[3],
a[n−3] = δ

[a1
[b1
Z(1)

b2b3],
a2...an−3] + δ

[a1
[b1
δa2b2 Z

(2)
b3],

a3...an−3] + Z(3) ,

Xb1b2b3 ,
b1a[n−4] ≡ 0 ≡ Z(1)

b1b2 ,
b1 a[n−5] , Z(2)

b,
ba[n−6] ≡ 0 ,

and exhibits the double-dual graviton

Da[n−3],b[n−3] := 1
(n−3)! εc[3]a[n−3] X

c[3], b[n−3] . The other components

E(1)
a[n−2],b[n−4] :=

1

(n− 2)!
εc[2]a[n−2] Z

(1) c[2], b[n−4] ,

E(2)
a[n−1],b[n−5] :=

1

(n− 1)!
εca[n−1] Z

(2) c, b[n−5] .

and Z
(3)
a[n−6] are required off-shell.
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Fierz–Pauli tower : 1

Starting from the Fierz–Pauli action

S[h[1,1]] =

∫
dnx LFP(∂αhµ,ν) =

∫
dnx ∂αhµ,ν ∂αhµ,ν + . . . ,

where h[1,1] ∼ ⊗ , one introduces the independent field Gα,µ,ν1 which

transforms in the representation ⊗ ⊗ of gln contrary to the curl

Ω ∼ ∂[αhµ],ν ∼ ⊗ from which one derives the Curtright action.

Then writes the parent action

S
(P1)
FP [G1, F1] =

∫
dnx

(
Gα,µ,ν∂βF

βα,µ,ν − 1
2 L

FP(G1)
)

,

where F1 ∼ ⊗ ⊗ .
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Fierz–Pauli tower : 2

Repeating the procedure used previously, from S
(P1)
FP [G1, F1] one either

reproduces the Fierz–Pauli action SFP[h[1,1]] upon extremising with

respect to F1 , or another equivalent action

S
(1)
FP[h

(1)
[n−2,1,1]] =

∫
dnx

[
∂[µh

(1)
µ[n−2]],ν,ρ ∂

[µh(1)µ[n−2]],ν,ρ + . . .
]

,

expressed in terms of the field h
(1)
[n−2,1,1] obtained by Hodge dualising F1

on the first column.

Take n = 5 ; S
(1)
FP features h

(1)
[3,1,1] :

⊗ ⊗ ∼
︸ ︷︷ ︸
h̃(1)

⊕ ⊕ 2× ⊕ .
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Fierz–Pauli tower : 3

Start from the resulting child action S
(1)
FP[h

(1)
[n−2,1,1]] , integrating by parts

in order to “undo” anti-symmetrisations appearing in the curls. Denote

∂h
(1)
[n−2,1,1] by G2 with symmetry type [n− 2]⊗ [1]⊗ [1]⊗ [1] .

Parent action S
(P2)
FP [G2, F2] featuring G2 viewed as an independent field

together with a new field F2 ∼ [n− 2]⊗ [2]⊗ [1]⊗ [1] .

Extremising the parent action w.r.t. G2 and substituting the solution of

the algebraic equation inside the action 99K S(2)
FP[h

(2)
[n−2,n−2,1,1]] where

h
(2)
[n−2,n−2,1,1] obtained from F2 by Hodge dualising the second column.

etc. 99K S
(m)
FP [h

(m)
[n−2,...,n−2,1,1]] .
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Dual and double-graviton towers

Exactly the same procedure can be done, starting from the Curtright

action this time :

↪→ Example (n = 5,m = 1) : off-shell field C
(1)
[3,2,1] gl5 decomposition

⊗ ⊗ ∼
︸ ︷︷ ︸
C̃(1)

⊕ ⊕ ⊕ 2× ⊕ 2× .

Again, the same off-shell dualisation procedure works starting from the

double-dual graviton action.
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Comments about E11

Work inspired by the argument [Hull, 2000] that the strong coupling limit

of N5 = 8 sugra contains the double-dual graviton. We expected that E11

would know about that corner of M theory. However no such double-dual

graviton contained within E11. Instead : only the dual-graviton tower.

The actions for the various gravitons in the 3 towers each retain a number

of supplementary mixed-symmetry fields. These fields are seen on the E11

side : Given a real root ! a mixed-symmetry Young tableau

(dual-graviton tower), one identifies a sequence of null and imaginary

roots in the algebra whose generators have the symmetries of Young

tableaux formed by repeatedly moving boxes to the left.

↪→ Reproduces the supplementary off-shell fields needed, associated with

null and imaginary roots in the root system of E11.

N. Boulanger (UMONS) Spin-2 Hodge duality and E11 Lebedev 16 / 16


	Introduction
	Double-dual graviton
	Infinitely many off-shell dualisations
	Conclusions

