Comments about Higher-Spin and Duality.

Part I: Spin-2 and E11

Nicolas Boulanger

Université de Mons (UMONS), Belgium

29 May 2012, Ginzburg Conference 2012

Based on 1205. 2277 [hep-th]
in collaboration with Paul P. Cook (King's) and Dmitry Ponomarev (UMONS)

Plan

(1) Introduction
(2) Double-dual graviton
(3) Infinitely many off-Shell dualisations
(4) Conclusions

Motivations

- Identify the symmetries of low-energy limit of M-theory \hookrightarrow definition of M-theory. Some proposals that identify Kac-Moody algebras within 11D sugra :

Motivations

- Identify the symmetries of low-energy limit of M-theory \hookrightarrow definition of M-theory. Some proposals that identify Kac-Moody algebras within 11D sugra :
(1) B. Julia (80's) : Affine and hyperbolic Kac-Moody algebras 4 hidden symmetries of dimensional reductions of supergravity.

Motivations

- Identify the symmetries of low-energy limit of M-theory \hookrightarrow definition of M-theory. Some proposals that identify Kac-Moody algebras within 11D sugra :
(1) B. Julia (80's) : Affine and hyperbolic Kac-Moody algebras 4 midden symmetries of dimensional reductions of supergravity.
(2) Damour-Henneaux-Nicolai (2000) : $E_{10} \rightarrow$ symmetry of e.o.m. in vicinity of a cosmological singularity.

Motivations

- Identify the symmetries of low-energy limit of M-theory \hookrightarrow definition of M-theory. Some proposals that identify Kac-Moody algebras within 11D sugra :
(1) B. Julia (80's) : Affine and hyperbolic Kac-Moody algebras 4 midden symmetries of dimensional reductions of supergravity.
(2) Damour-Henneaux-Nicolai (2000) : $E_{10} \rightarrow$ symmetry of e.o.m. in vicinity of a cosmological singularity.
(3) P. West (2001) : non-linear realisation of $E_{11} \rightsquigarrow$ extension of maximal supergravity relevant to M-theory.

Motivations

- Identify the symmetries of low-energy limit of M-theory \hookrightarrow definition of M-theory. Some proposals that identify Kac-Moody algebras within 11D sugra :
(1) B. Julia (80's) : Affine and hyperbolic Kac-Moody algebras 4 midden symmetries of dimensional reductions of supergravity.
(2) Damour-Henneaux-Nicolai (2000) : $E_{10} \rightarrow$ symmetry of e.o.m. in vicinity of a cosmological singularity.
(3) P. West (2001) : non-linear realisation of $E_{11} \rightsquigarrow$ extension of maximal supergravity relevant to M-theory.
- Understand dual formulations of (linearised) gravity along lines of [N.B., S. Cnockaert, M. Henneaux (2003)]. In particular, to find a covariant action for Hull's double-dual graviton (2000) appearing in the dimensional reduction of exotic $\mathscr{N}_{6}=(4,0)$ superconformal theory [J. Strathdree (1986)].

Dual graviton

- Hull (2000) : on-shell Hodge duality in linearised gravity $\rightarrow C_{[n-3,1]}$.
- West (2001) : E_{11} decomposes into an infinite set of highest-weight $S L(11, \mathbb{R})$ tensors. At low levels, $E_{11} \ni C_{[8,1]}$ s.t. $C_{\left[\mu_{1} \ldots \mu_{8}, \nu\right]} \equiv 0$ which was identified with the dual graviton :
\hookrightarrow Einstein-Cartan action (first-order) re-written with $\omega_{1}^{a[2]} \longrightarrow Y_{\mathbf{n - 2}}^{a}$ s.t. $S^{\mathrm{EC}}\left[e_{\mathbf{1}}^{a}, Y_{\mathbf{n}-\mathbf{2}}^{a}\right]=\int_{M_{n}} e\left(\mathrm{~d} e_{a} \wedge Y_{\mathbf{n}-\mathbf{2}}^{a}+Y^{2}\right)$.

On-shell and linearising, $Y_{\mathbf{n - 2}}^{a} \rightsquigarrow \mathrm{~d} C_{\mathbf{n}-\mathbf{3}}^{a}$ the curl of dual graviton.

- In [N.B., S. Cnockaert, M. Henneaux (2003)], the off-shell Hodge dualisation of linearised gravity was done in \mathbb{M}_{n}. Using a parent action : Fierz-Pauli \Longleftrightarrow action of [Curtright, Aulakh-Koh-Ouvry (1985-86)] for free $\mathfrak{g l}_{n}$-irreducible massless $C_{[n-3,1]}$ gauge field.

Double-dual graviton

- Hull (2000) conjectured a duality between an exotic $\mathscr{N}_{6}=(4,0)$ superconformal theory and the strong coupling limit of $\mathscr{N}_{5}=8$ sugra. Upon dimensional reduction $6 D \searrow 5 D$ of the field content of the linearised theory, not only do the graviton \square and the dual graviton \square appear, but also the double-dual graviton $\boxplus \rightsquigarrow$ "triality".
- The exotic interacting six-dimensional theory suggested is to maximally $\mathscr{N}_{5}=8$ sugra what superconformal $\mathscr{N}_{6}=(2,0)$ theory is to maximally supersymmetric Yang-Mills theory in five dimensions. \hookrightarrow Is there a corner of M-theory that contains the exotic $\mathscr{N}_{6}=(4,0)$ theory? [recent work arXiv: 1108.3085 by M. Chiodaroli, M. Gunaydin, and R. Roiban]

Goals

- Construct a $\mathfrak{g l}_{n}$-covariant action for the double-dual graviton $D_{\mu[n-3], \nu[n-3]}$ in \mathbb{M}_{n};
- Consider all possible further dualisations of the graviton. In [N.B., S. Cnockaert, M. Henneaux (2003)], parent action that reproduces $S^{\mathrm{FP}}\left[h_{\mu, \nu}\right]$ upon elimination of some set of auxiliary fields, and reproduces $S\left[C_{[n-3,1]}\right]$ after elimination of other aux. fields.
- Relation between E_{11} and Hull's proposal?

SOME RESULTS in [1205.2277] with Paul P. Cook and Dmitry Ponomarev :

- A parent action that reproduces $S\left[C_{[n-3,1]}\right]$ on one hand and $S\left[D_{[n-3, n-3]}\right]$ on the other :

$$
\begin{array}{ccc}
S\left[\Omega_{a[2], b}, Y_{a[3], b]}\right. & S\left[H_{a[n-3], b[2]}, D_{b[3], a[n-3]}\right] \\
\swarrow & \searrow & \swarrow \\
S_{\mathrm{FP}}\left(h_{\mu \nu}\right) & S_{\mathrm{Curt} .}\left(C_{\mu[n-3], \nu}\right) & S_{\mathrm{DD}}\left(D_{\mu[n-3], \nu[n-3]}\right)
\end{array}
$$

- Three infinite gravity towers with fields $\tilde{h}_{\mu_{1}[n-2] \ldots, \mu_{k}[n-2], \nu, \rho}$, $\tilde{C}_{\mu_{1}[n-2], \ldots, \mu_{k}[n-2], \nu[n-3], \rho}$ and $\tilde{D}_{\mu_{1}[n-2], \ldots, \mu_{k}[n-2], \nu[n-3], \rho[n-3]}(k=1,2, \ldots)$ referred to as the Fierz-Pauli tower, the dual graviton tower and the double-dual tower.
- By-product : places a conjecture of [Riccioni-West (2006)] (that $\tilde{C}_{\mu_{1}[n-2], \ldots, \mu_{k}[n-2], \nu[n-3], \rho} \nrightarrow>$ dual gravitons) on firm, off-shell footing.

$$
\tilde{h}^{(m)} \quad \sim
$$

4	4	\ldots	4
3	3	\ldots	3

$$
\tilde{h}^{(m)} \quad \sim
$$

4	4	\ldots	4
3	3	\ldots	3

0

-

$$
\tilde{h}^{(m)} \quad \sim
$$

-

$$
\begin{aligned}
\tilde{C}^{(m)} \sim & \begin{array}{|c|c|c|c|c|}
\hline n & n & \ldots & n & n \\
\hline n-1 & n-1 & n & n-1 & n-1 \\
\hline & & \\
\hline & \vdots & \vdots & \ldots & \vdots \\
\hline
\end{array} \\
& \begin{array}{|c|c|c|c|c|}
\hline 4 & 4 & \cdots & 4 & 4 \\
\hline 3 & 3 & \ldots & 3 &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\tilde{D}^{(m)} \sim & \begin{array}{|c|c|c|c|c|}
\hline n & n & \cdots & n & n \\
\hline n-1 & n-1 & n \\
\hline & n-1 & n-1 & n-1 \\
\hline & \vdots & \vdots & \cdots & \vdots \\
\hline
\end{array} \\
& \begin{array}{|c|c|c|c|c|c|}
\hline 4 & 4 & \cdots & 4 & 4 & 4 \\
\hline 3 & 3 & \cdots & 3 &
\end{array}
\end{aligned}
$$

REVIEW of FIRST DUALISATION

- Consider the quadratic parent action [N.B., S.C., M.H.]
$S[\Omega, Y]=-\int d^{n} x\left(2 \Omega_{a b, c} \partial_{d} Y^{d a b, c}+\Omega^{a b, c} \Omega_{a b, c}+2 \Omega^{a b, c} \Omega_{a c, b}+1\right.$ term $)$
and vary w.r.t $Y_{a b c, d} \equiv Y_{[a b c], d}: \partial_{[d} \Omega_{a b], c}=0 \Longrightarrow \Omega_{a b, c}=\partial_{[a} h_{b], c}$ where $h_{[1,1]} \sim \square \otimes \square$.
- Eliminating Y that way, the action becomes the Fierz-Pauli action.
- On the other hand, $\Omega_{a b, c}$ is an auxiliary field.

Eliminate it \rightarrow resulting action equivalent to the Curtright action.

SECOND DUALISATION : 1

(I) Construct the action :

$$
S\left[H^{a[n-3],}{ }_{b c}, D^{b c d},{ }_{a[n-3]}\right]=\int d^{n} x\left[H^{a[n-3],}{ }_{b c} \partial_{d} D^{b c d},{ }_{a[n-3]}+" H H^{\prime \prime}\right]
$$

where " $H H$ " must give the Curtright action via

$$
H_{\mu[n-3]},{ }^{\nu[2]} \longrightarrow 2 \partial^{\left[\nu_{1}\right.} C_{\mu[n-3]},{ }^{\left.\nu_{2}\right]} .
$$

(ii) Eliminate $D^{b[3]},{ }_{a[n-3]}$ from the action, enforcing $H_{\mu[n-3],}{ }^{\nu[2]}=2 \partial^{\left[\nu_{1}\right.} C_{\mu[n-3]},{ }^{\left.\nu_{2}\right]} \longrightarrow S^{\text {Curt. }}[H(C)]$.
Alternatively, extremise the action w.r.t. $H^{a[n-3],}{ }_{b[2]}$ to get

$$
S\left[D^{b c d},{ }_{a[n-3]}\right]=\int d^{n} x\left[\partial^{e} D_{b c e},{ }^{a[n-3]} \partial_{d} D^{b c d},{ }_{a[n-3]}+\cdots\right]
$$

which by construction is \Longleftrightarrow to $S^{\text {Curt. }}[H(C)]$;

Towards second dualisation : 2

(iII) Decompose $D_{b[3]},{ }^{a[n-3]}$ into $\mathfrak{g l}_{n}$-irreducible components :

$$
\begin{aligned}
& D_{b[3]},{ }^{a[n-3]}=X_{b[3]},{ }^{a[n-3]}+Z_{b[3]},{ }^{a[n-3]}, \\
& Z_{b[3]},{ }^{a[n-3]}=\delta_{\left[b_{1}\right.}^{\left[a_{1}\right.} Z^{(1)}{ }_{\left.b_{2} b_{3}\right]},{ }^{\left.a_{2} \ldots a_{n-3}\right]}+\delta_{\left[b_{1}\right.}^{\left[a_{1}\right.} \delta_{b_{2}}^{a_{2}} Z^{(2)}{ }_{\left.b_{3}\right]},{ }^{\left.a_{3} \ldots a_{n-3}\right]}+Z^{(3)}, \\
& X_{b_{1} b_{2} b_{3},},^{b_{1} a[n-4]} \equiv 0 \equiv Z^{(1)}{ }_{b_{1} b_{2}},{ }^{b_{1} a[n-5]}, \quad Z^{(2)}{ }_{b},{ }^{b a[n-6]} \equiv 0,
\end{aligned}
$$

and exhibits the double-dual graviton

$$
\begin{aligned}
D_{a[n-3], b[n-3]} & :=\frac{1}{(n-3)!} \epsilon_{c[3] a[n-3]} X^{c[3]}, b[n-3]
\end{aligned} \text {. The other components } .
$$

and $Z_{a[n-6]}^{(3)}$ are required off-shell.

Fierz-Pauli tower : 1

- Starting from the Fierz-Pauli action

$$
S\left[h_{[1,1]}\right]=\int d^{n} x L^{\mathrm{FP}}\left(\partial_{\alpha} h_{\mu, \nu}\right)=\int d^{n} x \partial^{\alpha} h^{\mu, \nu} \partial_{\alpha} h_{\mu, \nu}+\ldots,
$$

where $h_{[1,1]} \sim \square \otimes \square$, one introduces the independent field $G_{1}^{\alpha, \mu, \nu}$ which transforms in the representation $\square \otimes \square \otimes \square$ of $\mathfrak{g l} l_{n}$ contrary to the curl $\Omega \sim \partial_{[\alpha} h_{\mu], \nu} \sim \forall \otimes \square$ from which one derives the Curtright action.

- Then writes the parent action

$$
S_{\mathrm{FP}}^{(P 1)}\left[G_{1}, F_{1}\right]=\int d^{n} x\left(G_{\alpha, \mu, \nu} \partial_{\beta} F^{\beta \alpha, \mu, \nu}-\frac{1}{2} L^{\mathrm{FP}}\left(G_{1}\right)\right)
$$

where $F_{1} \sim \boxminus \otimes \square \otimes \square$.

Fierz-Pauli tower : 2

- Repeating the procedure used previously, from $S_{\mathrm{FP}}^{(P 1)}\left[G_{1}, F_{1}\right]$ one either reproduces the Fierz-Pauli action $S_{\mathrm{FP}}\left[h_{[1,1]}\right]$ upon extremising with respect to F_{1}, or another equivalent action

$$
S_{\mathrm{FP}}^{(1)}\left[h_{[n-2,1,1]}^{(1)}\right]=\int d^{n} x\left[\partial_{[\mu} h^{(1)}{ }_{\mu[n-2]], \nu, \rho} \partial^{[\mu} h^{(1) \mu[n-2]], \nu, \rho}+\ldots\right],
$$

expressed in terms of the field $h_{[n-2,1,1]}^{(1)}$ obtained by Hodge dualising F_{1} on the first column.

- Take $n=5 ; S_{\mathrm{FP}}^{(1)}$ features $h_{[3,1,1]}^{(1)}$:

Fierz-Pauli tower : 3

- Start from the resulting child action $S_{\mathrm{FP}}^{(1)}\left[h_{[n-2,1,1]}^{(1)}\right]$, integrating by parts in order to "undo" anti-symmetrisations appearing in the curls. Denote $\partial h_{[n-2,1,1]}^{(1)}$ by G_{2} with symmetry type $[n-2] \otimes[1] \otimes[1] \otimes[1]$.
- Parent action $S_{\mathrm{FP}}^{(P 2)}\left[G_{2}, F_{2}\right]$ featuring G_{2} viewed as an independent field together with a new field $F_{2} \sim[n-2] \otimes[2] \otimes[1] \otimes[1]$.
- Extremising the parent action w.r.t. G_{2} and substituting the solution of the algebraic equation inside the action $\rightarrow S_{\mathrm{FP}}^{(2)}\left[h_{[n-2, n-2,1,1]}^{(2)}\right]$ where $h_{[n-2, n-2,1,1]}^{(2)}$ obtained from F_{2} by Hodge dualising the second column.
- etc. $\quad-\rightarrow \quad S_{\mathrm{FP}}^{(m)}\left[h_{[n-2, \ldots, n-2,1,1]}^{(m)}\right]$.

DUAL AND DOUBLE-GRAVITON TOWERS

- Exactly the same procedure can be done, starting from the Curtright action this time :
\hookrightarrow Example ($n=5, m=1$) : off-shell field $C_{[3,2,1]}^{(1)} \mathfrak{g l}_{5}$ decomposition

$$
\exists \otimes \exists \otimes \square \sim \underbrace{\square}_{\tilde{C}^{(1)}} \oplus \boxminus \oplus \nexists \boxplus+2 \times \sharp \oplus 2 \times \square .
$$

- Again, the same off-shell dualisation procedure works starting from the double-dual graviton action.

Comments about E_{11}

- Work inspired by the argument [Hull, 2000] that the strong coupling limit of $\mathscr{N}_{5}=8$ sugra contains the double-dual graviton. We expected that E_{11} would know about that corner of M theory. However no such double-dual graviton contained within E_{11}. Instead : only the dual-graviton tower.
- The actions for the various gravitons in the 3 towers each retain a number of supplementary mixed-symmetry fields. These fields are seen on the E_{11} side : Given a real root ans a mixed-symmetry Young tableau (dual-graviton tower), one identifies a sequence of null and imaginary roots in the algebra whose generators have the symmetries of Young tableaux formed by repeatedly moving boxes to the left.
\hookrightarrow Reproduces the supplementary off-shell fields needed, associated with null and imaginary roots in the root system of E_{11}.

