Fundamental Spinor Quantum Gravity regularized on a lattice

Dmitri Diakonov (1,2) and Alexey Vladimirov (3)

(1) Petersburg Nuclear Physics Institute, Kurchatov National Research Center
(2) St. Petersburg Academic University
(3) Bochum University
D.D., A.Tumanov, A. Vladimirov, Phys. Rev. D84, 124042 (2011)
D.D., arXiv:1109.0091; A. Vladimirov and D.D., in preparation

The logic

- Fermions \Longleftrightarrow Cartan (not Riemann) geometry: torsion is generally nonzero
- Classically, torsion turns out to be zero, the observational difference between two formulations is undistinguishable
- Quantum mechanically, though, in Cartan formulation large fluctuations of metrics are not restricted, as a matter of principle
- A way out: Spinor Quantum Gravity, where the tetrad is a bilinear fermion "current", and looks like the Standard Model
- Spinor quantum gravity is easily regularized on a diffeomorphisminvariant lattice. It is a well-defined and well-behaved quantum theory
- Spinor quantum gravity typically breaks chiral symmetry, or fermion number conservation
- Presumably we "live" at the phase transition point, which guarantees long-range gravity

Fermions in General Relativity

There are fermions in Nature that need to be incorporated into the GR.
The standard way is by V. Fock and H. Weyl (1929): it involves new entities that are not encountered in Riemann geometry - the frame field and the spin connection.

$$
\begin{aligned}
S_{\mathrm{f}}= & i \int d^{4} x \operatorname{det}(e) \frac{1}{2}\left(\bar{\Psi} e^{A \mu} \gamma_{A} \mathcal{D}_{\mu} \Psi-\overline{\mathcal{D}_{\mu} \Psi} e^{A \mu} \gamma_{A} \Psi\right), \quad \mathcal{D}_{\mu}=\partial_{\mu}+\frac{1}{8} \omega_{\mu}^{B C}\left[\gamma_{B} \gamma_{C}\right] \\
& \operatorname{det}(e) e^{D v}=\frac{1}{6} \epsilon^{\kappa \lambda \mu v} \epsilon^{A B C D} e_{\kappa}^{A} e_{\lambda}^{B} e_{\mu}^{C}, \quad e^{D v} e_{E v}=\delta_{E}^{D}
\end{aligned}
$$

the contravariant tetrad is the inverse matrix

This action is invariant under
i) general coordinate transformations (diffeomorphisms) $\quad x^{\mu} \rightarrow x^{\prime \mu}(x)$
ii) local Lorentz rotations $\Psi(x) \rightarrow L(x) \Psi(x), \quad L(x) \in S O(4) \simeq S U(2)_{L} \times S U(2)_{R}$.

$$
\omega_{\mu} \rightarrow L^{-1} \omega_{\mu} L+L^{-1} \partial_{\mu} L
$$

Cartan's formulation of general relativity (early 1920's) uses precisely these variables: Independent variables, instead of the metric tensor, are

1) vierbein or frame field $\quad e_{\mu}^{A}, \quad g_{\mu \nu}=e_{\mu}^{A} e_{\nu}^{A}, \quad A=1,2,3,4$.

16 var's
2) spin connection
$\omega_{\mu}^{A B}=-\omega_{\mu}^{B A}$
Yang - Mills potential of the
24 var's
Lorentz $\mathrm{SO}(4)$ group

SO(4) Yang - Mills field strength or Cartan curvature:

$$
F_{\mu \nu}^{A B}=\partial_{\mu} \omega_{\nu}^{A B}-\partial_{\nu} \omega_{\mu}^{A B}+\omega_{\mu}^{A C} \omega_{\nu}^{C B}-\omega_{\nu}^{A C} \omega_{\mu}^{C B}
$$

Gravitation action:

$$
S=\int d^{4} x\left(-\lambda^{4} \operatorname{det}(e)-M_{P}^{2} \frac{1}{4} \epsilon^{\kappa \lambda \mu v} \epsilon_{A B C D} F_{\kappa \lambda}^{A B} e_{\mu}^{C} e_{v}^{D}\right) \quad \begin{gathered}
M_{\mathrm{p}}=\frac{1}{\sqrt{16 \pi G_{N}}}=1 . \\
\lambda=2.39 \cdot 10^{-3} \mathrm{eV}
\end{gathered}
$$

Classically, and with no sources, it is equivalent to Einstein's theory based on Riemann geometry Proof. The action in quadratic in ω_{μ}, so saddle point integration in ω_{μ} is exact.

Saddle-point equation for ω_{μ} :

$$
D_{\mu}^{A B} e_{v}^{B}-D_{v}^{A B} e_{\mu}^{B} \equiv 2 T_{\mu v}^{A}=0, \quad D_{\mu}^{A B}=\partial_{\mu} \delta^{A B}+\omega_{\mu}^{A B}
$$

this combination is called torsion

$$
\bar{\omega}_{\mu} \sim e^{-1} \partial_{\mu} e
$$

24 algebraic equation on 24 components of $\omega_{\mu}^{A B}$ determine the saddle-point uniquely as

$$
\bar{\omega}_{\mu}^{A B}(e)=\frac{1}{2} e^{A \kappa}\left(\partial_{\mu} e_{\kappa}^{B}-\partial_{\kappa} e_{\mu}^{B}\right)-\frac{1}{2} e^{B \kappa}\left(\partial_{\mu} e_{\kappa}^{A}-\partial_{\kappa} e_{\mu}^{A}\right)-\frac{1}{2} e^{A \kappa} e^{B \lambda} e_{\mu}^{C}\left(\partial_{\kappa} e_{\lambda}^{C}-\partial_{\lambda} e_{\kappa}^{C}\right)
$$

Substituting the saddle-point value back into the action, one recovers identically the Einstein - Hilbert action written in terms of $g_{\mu \nu}$:

$$
\left(-\frac{1}{4} \epsilon^{\kappa \lambda \mu \nu} \epsilon_{A B C D} F_{\kappa \lambda}^{A B}(\bar{\omega}) e_{\mu}^{C} e_{v}^{D}\right)=\bar{R} \sqrt{g}
$$

Torsion appears to be zero dynamically, even if one allows it, as in Cartan formulation.

In the presence of fermion sources, torsion is nonzero and induces local 4-fermion Interaction. However, its effect is totally negligible, at least in the range of applicability of the derivative expansion [D.D., Tumanov and Vladimirov (2011)].

Sign Problem of quantum gravity

In quantum gravity, space-time is allowed to fluctuate:

curvature fluctuates, too, and can be locally of any sign:

around saddle points curvature is negative, $R<0$. around maxima and minima curvature is positive.

The standard Einstein - Hilbert action of General Relativity $\int d^{4} x R \sqrt{\operatorname{det} g_{\mu \nu}}$ is not sign-definite! Therefore, it cannot restrict quantum fluctuations of the metrics!
What about $\int d^{4} x R^{2} \sqrt{\operatorname{det} g_{\mu \nu}}=\int d^{4} x \frac{\left(\epsilon^{A B C D} \epsilon^{\kappa \lambda \mu \nu} F_{\kappa \lambda}^{A B} e_{\mu}^{C} e_{v}^{D}\right)^{2}}{\epsilon^{A B C D} \epsilon^{\kappa \lambda \mu \nu} e_{\kappa}^{A} e_{\lambda}^{B} e_{\mu}^{C} e_{\nu}^{D}}$
What about the cosmological term $\int d^{4} x \sqrt{\operatorname{det} g_{\mu \nu}}=\frac{1}{4!} \int d^{4} x \epsilon^{A B C D} \epsilon^{\kappa \lambda \mu \nu} e_{\kappa}^{A} e_{\lambda}^{B} e_{\mu}^{C} e_{\nu}^{D} \quad ?$

If metrics is allowed to fluctuate arbitrarily, $\operatorname{det} g_{\mu \nu}(x, y, z, t)$ can become zero at some point t :
at such point the space effectively looses one dimension $\operatorname{det} g>0$
$t \uparrow \quad \operatorname{det} g=0$

$$
g \equiv \operatorname{det}\left(g_{\mu \nu}\right)=\operatorname{det}\left(e_{\mu}^{A} e_{\nu}^{A}\right)=\operatorname{det}(e) \operatorname{det}\left(e^{T}\right)=(\operatorname{det}(e))^{2}
$$

$\operatorname{det}(e)>0$

If det(e) passes through zero as $\operatorname{det}(\boldsymbol{e}) \sim \boldsymbol{t}$, then $\operatorname{det}(\mathrm{g})$ passes through zero as $\operatorname{det}(g) \sim t^{2}$
$\sqrt{\operatorname{det}(g)}$ should be then understood as
$\sqrt{\operatorname{det}(g)} \sim \operatorname{det}(e) \sim t \quad$ changing sign, and not as modulus $\sqrt{\operatorname{det}(g)} \neq|t|$
e^{1}

Passing through
$e^{2} \not z$ zero, $\operatorname{det}(\mathrm{e})$ changes sign by continuity

Therefore, the possible action term $\int R^{2} \sqrt{g}=\int R^{2} \operatorname{det}(e) \quad$ is, strictly speaking, not sign-definite, too.

In Euclidian space-time we write quantum amplitude as exp(-Action). (used in thermodynamics, in tunneling problems, etc.)
If the action is not positive-definite, there is no ground state!
In Minkowski space-time we write the amplitude as $\exp (i$ Action) . (used for real-time problems.)
If the action is not sign-definite, there will be problems in defining
Feynman propagator for gravitons in arbitrary curved space!

ϕ^{3} theory does not restrict large quantum fluctuations, even though perturbation theory may be well defined.

Minkowski space-time with $e^{i S}$ doesn't seem to help, if the action can have any sign, and is unbounded: one cannot define Feynman's propagator, and there is tunneling to a bottomless state!

General covariance is a "curse" that makes any diffeomorphism-invariant action bottomless!

The Sign Problem of quantum gravity:
Large fluctuations of the frame and/or of spin connection are not restricted!

How, then, to define the path integral for Quantum Gravity? Use in part fermionic anticommuting variables instead of bosonic ones! [DD, arXiv:1109.0091]

Integration over anticommuting, called Grassmann, variables has been introduced by F. Berezin (1965):

$$
\begin{aligned}
& \psi_{i} \psi_{j}=-\psi_{j} \psi_{i}, \quad \psi_{i} \psi_{j}^{\dagger}=-\psi_{j}^{\dagger} \psi_{i} \quad \psi_{i}^{\dagger} \psi_{j}^{\dagger}=-\psi_{j}^{\dagger} \psi_{i}^{\dagger} \\
& \int d \psi=0, \quad \int d \psi \psi=1 \quad \int d \psi^{\dagger}=0, \quad \int d \psi^{\dagger} \psi^{\dagger}=1
\end{aligned}
$$

Berezin integrals are well defined for whatever sign of the (multi) fermion action:

$$
\begin{aligned}
& \int d \psi^{\dagger} d \psi \exp \left(\psi_{i}^{\dagger} A_{i j} \psi_{j}\right)=\epsilon^{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} A_{i_{1} j_{1}} \ldots A_{i_{N} j_{N}}=\operatorname{det}(A) \\
& \int d \psi^{\dagger} d \psi \exp \left(\psi_{i}^{\dagger} \psi_{j}^{\dagger} A_{i j, k l} \psi_{k} \psi_{l}\right)=\epsilon^{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} A_{i_{1}, j_{2} j_{2}} \ldots A_{i_{N-1} i_{N}, j_{N-1} j_{N}} \quad \text { etc. }
\end{aligned}
$$

The idea is to present the frame field as a composite spinor bilinear combination:
vierbein $\quad \hat{e}_{\mu}^{A}=\frac{1}{2} \psi^{\dagger} \gamma_{A} \nabla_{\mu} \psi-\frac{1}{2}\left(\nabla_{\mu} \psi\right)^{\dagger} \gamma_{A} \psi$

$$
\hat{g}_{\mu \nu}=\hat{e}_{\mu}^{A} \hat{e}_{\nu}^{A}
$$

$$
\nabla_{\mu}=\partial_{\mu}+\frac{1}{8} \omega_{\mu}^{A B}\left[\gamma_{A} \gamma_{B}\right]
$$

metric tensor

History of composite frames:

- K. Akama (1978)
- G. Volovik (1990) [superfluid ${ }^{3} \boldsymbol{H e}-B$]
- C. Wetterich $(2005,2011)$
use ordinary derivatives, not covariant
e_{μ}^{A} is not a Lorentz vector as it should be!

Standard Dirac action in d-dim curved space

$$
S=\int d^{d} x \epsilon^{\mu_{1} \ldots \mu_{d}} \epsilon^{A_{1} \ldots A_{d}} e_{\mu_{1}}^{A_{1}} \ldots e_{\mu_{d-1}}^{A_{d-1}}\left(\psi^{\dagger} \gamma_{A_{d}}\left(\nabla_{\mu_{d}} \psi\right)-\left(\nabla_{\mu_{d}} \psi\right)^{\dagger} \gamma_{A_{d}} \psi\right)
$$

is in fact the cosmological term in disguise:

$$
S=\int d^{d} x \epsilon^{\mu_{1} \ldots \mu_{d}} \epsilon^{A_{1} \ldots A_{d}} e_{\mu_{1}}^{A_{1}} \ldots e_{\mu_{d-1}}^{A_{d-1}} e_{\mu_{d}}^{A_{d}}=\int d^{d} x \operatorname{det}(e)=\int d^{d} x \sqrt{g}
$$

All such kind of actions can be easily UV regularized by putting them on a lattice.
Discretized frame field:

$$
\hat{e}_{\mu}^{A}=\frac{1}{2} \psi^{\dagger} \gamma_{A} \nabla_{\mu} \psi-\frac{1}{2}\left(\nabla_{\mu} \psi\right)^{\dagger} \gamma_{A} \psi
$$

parallel transporter

$$
\rightarrow \quad \frac{1}{2 a}\left[\psi^{\dagger}(x) \gamma_{A} \Omega_{\mu}(x+a / 2) \psi(x+a)-\psi^{\dagger}(x+a) \Omega_{\mu}^{\dagger}(x+a / 2) \gamma_{A} \psi(x)\right]
$$

Discretized connection $=$ unitary $S U(2) \times S U(2)$ matrices living on lattice links:

$$
\omega_{\mu}^{A B} \quad \rightarrow \quad \Omega_{\mu}=\exp \left(a \omega_{\mu}^{A B}\left[\gamma_{A} \gamma_{B}\right] / 8\right), \quad \Omega_{\mu}^{\dagger}=\exp \left(-a \omega_{\mu}^{A B}\left[\gamma_{A} \gamma_{B}\right] / 8\right)
$$

Discretized curvature:

$$
F_{\mu \nu}^{A B} \rightarrow \Omega_{\mu \nu}=\xrightarrow[\substack{\Omega_{2} \\ \text { plaquette }}]{\Omega_{\Omega_{\mu}}^{\dagger}}=1_{4 \times 4}+\frac{a^{2}}{8} F_{\mu \nu}^{A B}\left[\gamma_{A} \gamma_{B}\right]+O\left(a^{3}\right)
$$

Discretized `cosmological term’ action: $\sum_{x} \epsilon^{\mu_{1} \ldots \mu_{d}} \operatorname{Tr}\left(e_{\mu_{1}} \ldots e_{\mu_{d}}\right)$
 gauge- and diffeomorphism-invariant!

Discretized `Einstein - Hilbert' action: $\sum_{x} \epsilon^{\mu_{1} \ldots \mu_{d}} \operatorname{Tr}\left(e_{\mu_{1}} \ldots e_{\mu_{d-2}} \Omega_{\mu_{d-1} \mu_{d}}\right)$ Such actions define the same general covariant theory in the continuum limit

for rectangular

and
arbitrarily distorted
lattices:

in fact, starting from $d=3$ one has to use simplices: triangles, tetrahedra, etc.

Cf. two lattice gauge theories

$$
\begin{array}{lll}
\prod_{\text {links }} d U \exp \left(\beta \sum_{x} \operatorname{Tr} U_{\text {plaquette }}\right) \rightarrow \int D A_{\mu} \exp \left(-\frac{1}{2 g^{2}} \int d^{4} x \operatorname{Tr}\left(F_{\mu \nu} F_{\mu \nu}\right)\right) & \begin{array}{l}
\text { diffeomorphism } \\
\text {-noninvariant }
\end{array} \\
\prod_{\text {links }} d U \exp \left(\beta \sum_{x} \operatorname{Tr} U_{12} U_{34}\right) \rightarrow \int D A_{\mu} \exp \left(-\frac{1}{2 g^{2}} \int d^{4} x \epsilon^{\kappa \lambda \mu \nu} \operatorname{Tr}\left(F_{k \lambda} F_{\mu \nu}\right)\right) & \text { diffeomorphism } & \text {-invariant }
\end{array}
$$

Regularized partition function for quantum gravity:

The theory is well-defined, well-behaved in the ultraviolet, explicitly gauge invariant under local Lorentz group, and diffeomorphism-invariant in the continuum limit !

The lattice does not need to be regular: it can be arbitrarily deformed.

This is a very unusual lattice field theory - with many-fermion vertices but no bilinear term for the fermion propagator!

Nevertheless, fermions "propagate" since vertices contain spinors belonging to neighbour lattice sites.

How to work with such new kind of lattice gauge theory?

At each lattice one integrates over 8 Grassmann variables $\int_{d} d \psi_{1}^{\dagger} d \psi_{2}^{\dagger} d \psi_{3}^{\dagger} d \psi_{4}^{\dagger} d \psi_{1} d \psi_{2} d \psi_{3} d \psi_{4}$ The action has also 8 operators $S(x) \sim \psi^{\dagger} \psi^{\dagger} \psi^{\dagger} \psi^{\dagger} \psi \psi / \mu / \psi$. One has to Taylor-expand $e^{\sum^{x} s(x)}$ such that there are precisely 8 fermion operator per site, otherwise the integral $=0$.

After integrating over link variables using $\int d U U^{\dagger \alpha}{ }_{\beta} U_{\delta}^{\gamma}=\frac{1}{2} \delta_{\delta}^{\alpha} \delta_{\beta}^{\gamma}, \quad \int d U U_{\beta}^{\alpha} U_{\delta}^{\gamma}=\frac{1}{2} \epsilon^{\alpha \gamma} \epsilon_{\beta \delta}$ one gets only gauge invariant combinations of fermion operators $\left(\psi^{\dagger} \psi\right), \quad\left(\psi^{\dagger} \epsilon \psi^{\dagger}\right), \quad(\psi \epsilon \psi)$

The partition function is in fact a sum over all types of closed loops, closed surfaces and closed 3 -volumes!

Numerical simulations are possible: one can generate closed loops by e.g. Metropolis-like procedure.

Toy model: 2d quantum gravity

In 2d the partition function can be computed exactly by summing over all closed loops, which is a good way to test approximate numerical methods, to be used in $\mathrm{d}>2$.

Some exact results:
number of points
on the lattice
physical
volume
physical
volume
susceptibility

$$
\begin{array}{cl}
<\int d^{2} x \operatorname{det}(e)>=\frac{N}{\lambda_{1}} & \begin{array}{l}
\text { extensive quantity, good! } \\
\text { fermions are non-compressable! }
\end{array} \\
<\int d^{2} x \operatorname{det}(e) R>=0 & \begin{array}{l}
\text { space is on the average flat, good! } \\
\text { average torsion is also zero }
\end{array}
\end{array}
$$

$$
\begin{aligned}
&<\left(\int d^{2} x \operatorname{det}(e)\right)^{2}>-<\int d^{2} x \operatorname{det}(e)>^{2}=-\frac{N}{\lambda_{1}^{2}} \\
&<V^{2}>-<V>^{2}
\end{aligned}
$$

it's quantum gravity, not
classical!
this is also nice!

A typical difficulty in other models of discretized gravity: when allowed to fluctuate nonperturbatively, the space gets either crunched or forms chaotic `branched polymers’.

Here the fluctuating space is smooth, because fermions are non-compressible!

Spinor quantum gravity is a very rich and yet unexplored theory. It turns out that, depending on the values of dimensional coupling constants, there can be several phases!

Two continuous symmetries that can be spontaneously broken:

1) Chiral symmetry, $\quad \psi \rightarrow e^{i \alpha \gamma_{5}} \psi, \quad \psi^{\dagger} \rightarrow \psi^{\dagger} e^{i \alpha \gamma_{5}}$;
2) Fermion number conservation: $\psi \rightarrow e^{i \alpha} \psi, \quad \psi^{\dagger} \rightarrow \psi^{\dagger} e^{-i \alpha}$;

The phase diagram can be found by a relatively simple mean field method. It works quite accurately, as can be checked by comparison with an exactly solvable model:

We check that in the broken phase the "effective chiral Lagrangian" for long-range Goldstone fields is explicitly diffeomorphism-invariant:

$$
L=\int d x<\sqrt{g} g^{\mu \nu}>\partial_{\mu} \alpha \partial_{\nu} \alpha
$$

We need< however, all degrees of freedom to be long-ranged, not only the Goldstone mode. To that end, one needs to stay at exactly the phase transition point.

We expect that the low-energy Einstein action will come out automatically there, since diffeomorphism-invariance is supported by construction.

To see it, one can introduce the effective action by means of a Legendre transform,

$$
\begin{aligned}
& \underset{\text { generating functional }}{\exp \left(-W\left[\Theta^{\mu \nu}\right]\right)}=\prod_{\text {links }} \int d \Omega_{\mu} \prod_{\text {sites }} \int d \psi^{\dagger} d \psi \exp \left(S+\int \Theta^{\left.\begin{array}{c}
\text { stress-energy source } \\
\Theta^{\mu \nu} \\
\hat{g}_{\mu \nu}
\end{array}\right)}\right. \\
& \begin{array}{r}
\underset{\substack{\text { classical } \\
\text { metrics }}}{g_{\mu \nu}^{\text {class }}=\frac{\delta W}{\delta \Theta^{\mu \nu}} \Rightarrow \Theta^{\mu \nu}\left(g_{\mu \nu}^{\text {class }}\right) \Rightarrow \quad \Gamma\left[g_{\mu \nu}^{\text {class }}\right]=W\left[\Theta^{\mu \nu}\right]-\Theta^{\mu \nu} g_{\mu \nu}^{\text {class }}} \\
\text { effective action, must be } \int R\left(g^{\text {class }}\right) \sqrt{g^{\text {class }}}!!
\end{array}
\end{aligned}
$$

Speculations: Unifying quantum gravity with the Standard Model?

The Standard Model is based on the $\operatorname{SU}(3) c \times S U(2) w \times U(1)$ gauge group, and has 64 real fermion dof's per generation.

With a composite frame field built as a bilinear spinor current, the content of QG are also fermions and the gauge field of the local Lorentz group $\operatorname{SU}(2) \times \operatorname{SU}(2)$.

In the SM quantum fluctuations are tamed, and in the QG the fluctuations are now also tamed. Why not unify them?!

We want the spinor fields to carry exactly the same number of dof's as the frame field, equal to $d x d$. This doesn't happen in any number of space-time dimensions.

The dimension of the two spinor representations of the $\mathrm{SO}(\mathrm{d}=2 \mathrm{n})$ group is $2^{\frac{1}{2}}=d^{2}$. This equation has only one solution: $\boldsymbol{d = 1 6}$.

The 256-dimensional spinor representation of $\mathrm{SO}(16)$ falls neatly into four generations of the Standard Model.

One needs a mechanism to break spontaneously the $\mathrm{SO}(16)$ rotational gauge group.
The action in $\mathrm{d}=16$ may have 7 terms: $(e \wedge e \ldots \wedge e), \quad(e \wedge e \ldots \wedge e \wedge F), \ldots,(e \wedge e \wedge F \ldots \wedge F \wedge F)$ with a priori arbitrary coefficients. $16 \quad 14$ Write them in terms of fermions.

It may happen that the fermion condensates $\left\langle\psi_{i}^{\dagger} \psi^{j}\right\rangle \neq 0$ break spontaneously the rotational $\mathrm{SO}(16)$ symmetry, for example, by compactifying the 16 d space down to e.g. a direct product of several low-dimensional spheres, or whatever

and breaks the $\mathrm{SO}(16)$ gauge group down to the gauge group of the Standard Model and Lorentz gauge group: [Coleman - Mandula theorem works for flat space only!]

$$
\underset{\text { gravity spin connection }}{S O(16) \supset\left(S U(2)_{L} \times S U(2)_{R}\right) \times S U(3)_{C} \times S U(2)_{W} \times U(1)_{Y}}
$$

Conclusions

1. All general covariant action terms are not sign-definite. It prevents from defining a quantum theory where large fluctuations are allowed.
2. In order to define a quantum theory properly, one presents the frame field as a composite bilinear fermion "current". This will be then spinor quantum gravity.
3. It is easily regularized at short distances by imposing a diffeomorphism-preserving lattice. Fermion path integrals are well defined and well-behaved.
4. It is an exciting new kind of theory, with potentially rich phase structure associated with spontaneous breaking of continuous symmetries by fermion condensates.
5. Einstein's theory is expected in the low-energy limit at the phase transition point(s) where the original lattice structure is "forgotten".
6. Spinor quantum gravity and the Stadard Model share the same basic degrees of freedom, viz. fermion and gauge fields. Therefore new ways arise to unify the two.

Conceptual problem

Supposing one has a well-defined quantum gravity at hand, how to check it has the correct infrared limit - the Einstein's gravity?

In general, one has to compute diffeomorphism-invariant correlation functions, like
$I_{1}(s)=\frac{<\int d x \sqrt{g} \int d y \sqrt{g} \delta(S(x, y)-s)>}{<\int d z \sqrt{g}>}\left(=2 \pi^{2} s^{3}\right) \quad$ interval over geodesic $\quad S(x, y)=\int d t \sqrt{g_{\mu \nu} \dot{x}^{\mu}(t) \dot{x}^{\nu}(t)}$
$I_{2}(s)=\frac{<\int d x \sqrt{g} R(x) \int d y \sqrt{g} R(y) \delta(S(x, y)-s)>}{<\int d z \sqrt{g}>}\left(\sim \frac{1}{s^{3}}\right)$
Newton's law in disguise

In our case, however, $g_{\mu \nu}$ is a fermion operator and cannot be used.
One can introduce the classical metric tensor by means of a Legendre transform:

