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The logic

• Fermions               Cartan (not Riemann) geometry: 
torsion is generally nonzero

• Classically, torsion turns out to be zero, the observational
difference between two formulations is undistinguishable

• Quantum mechanically, though, in Cartan formulation large fluctuations 
of metrics are not restricted, as a matter of principle

• A way out: Spinor Quantum Gravity, where the tetrad is a bilinear
fermion “current”, and looks like the Standard Model 

• Spinor quantum gravity is easily regularized on a diffeomorphism-
invariant lattice. It is a well-defined and well-behaved quantum theory

• Spinor quantum gravity typically breaks chiral symmetry, 
or fermion number conservation

• Presumably we “live” at the phase transition point, which guarantees
long-range gravity



There are fermions in Nature that need to be incorporated into the GR. 
The standard way is by V. Fock and H. Weyl (1929): it involves new entities that
are not encountered in Riemann geometry – the frame field and the spin connection.    
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the contravariant tetrad is the inverse matrix

This action is invariant under  

i) general coordinate transformations (diffeomorphisms)

ii) local Lorentz rotations
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Fermions in General Relativity

1 1L L L Lµ µ µω ω− −→ + ∂
transforms as a Yang – Mills gauge field



Cartan’s formulation of general relativity (early 1920’s) uses precisely these variables:

Independent variables, instead of the metric tensor, are 

1)   vierbein or frame field                                                          16 var’s

2)   spin connection Yang – Mills potential of the       24 var’s
Lorentz SO(4) group

, , 1,2,3,4.A A Ag e e Aeµ µν µ ν= =

AB BA
µ µω ω= −

SO(4) Yang – Mills field strength or Cartan curvature:
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Gravitation action:
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Classically, and with no sources, it is equivalent to Einstein’s theory based on Riemann geometry
Proof:       The action in quadratic in          , so saddle point integration in           is exact.  µω µω
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Saddle-point equation for  wm :
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this combination is called torsion

24 algebraic equation on 24 components of       determine the saddle-point uniquely asAB
µω

Substituting the saddle-point value back into the action, one recovers identically the
Einstein – Hilbert action written in terms of        :

Torsion appears to be zero dynamically , even if one allows it, as in Cartan formulation. 

gµν

In the presence of fermion sources, torsion is nonzero and induces local 4-fermion
Interaction. However, its effect is totally negligible, at least in the range of applicability 
of the derivative expansion [D.D., Tumanov and Vladimirov (2011) ]. 
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In quantum gravity, space-time
is allowed to fluctuate:

curvature fluctuates, too, and can be
locally of any sign:

around saddle points curvature is negative, R < 0.
around maxima and minima curvature is positive.

The standard Einstein – Hilbert action of General Relativity                           
is not sign-definite!  Therefore, it cannot restrict quantum fluctuations of the metrics!

What about                                                      ?

What about the cosmological term                                ?  
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Sign Problem of quantum gravity



If metrics is allowed to fluctuate arbitrarily,                 can become zero at some point t:,et ( , , )d x yg z tµν

t

at such point the space effectively looses one dimension 
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Therefore, the possible action term                          is, strictly speaking, 
not sign-definite, too.

2 2 det( )R g R e=∫ ∫
In Euclidian space-time we write quantum amplitude as   exp( - Action) .
(used in thermodynamics, in tunneling problems, etc.)
If the action is not positive-definite, there is no  ground state!

In Minkowski space-time we write the amplitude as exp( i Action) .
(used for real-time problems.)
If the action is not sign-definite, there will be p roblems in defining
Feynman propagator for gravitons in arbitrary curve d space! 

theory does not restrict large quantum fluctuations,
even though perturbation theory may be well defined.
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Minkowski space-time with         doesn’t seem to help, 
if the action can have any sign, and is unbounded: 
one cannot define Feynman’s propagator, 
and there is tunneling to a bottomless state!

iSe

General covariance is a “curse” that makes any diffe omorphism-invariant action bottomless!



The Sign Problem of quantum gravity:    
Large fluctuations of the frame and/or of spin connection are not restricted!

How, then, to define the path integral for Quantum Gravity?  Use in part 
fermionic anticommuting variables instead of bosonic ones!   [DD, arXiv:1109.0091]
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Berezin integrals are well defined for whatever sign of the (multi) fermion action:

Integration over anticommuting, called Grassmann, variables has been introduced
by F. Berezin (1965):  
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The idea is to present the frame field as a composite spinor bilinear combination:

metric tensor

spin connection,
gauge field

History of composite frames:

• K. Akama (1978)
• G. Volovik (1990) [ superfluid ]
• C. Wetterich (2005, 2011)
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use ordinary derivatives,
not covariant

is not a Lorentz vector
as it should be !
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Standard Dirac action in d-dim curved space

is in fact the cosmological term in disguise: 
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All such kind of actions can be easily UV regularized by putting them on a lattice.

Discretized frame field: 
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Discretized connection  =  unitary SU(2) x SU(2) matrices living on lattice links:

Discretized curvature:

2
3

4 41 [ ] ( )
8

AB
A B

a
F O aµν γ γ×= + +

plaquette

ABFµν →

† † †1
[ ( ) ( ) (( / 2) ( / 2) ( )]

2
)A Ax x a xa a

a
xa xxµ µψ γ ψ ψ γ ψ+ +→ Ω + − + Ω

† †1 1
ˆ ( )

2 2
A

A Aeµ µ µψ γ ψ ψ γ ψ= ∇ − ∇
parallel transporter



Discretized `cosmological term’ action: 1
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Discretized `Einstein – Hilbert’ action: 1
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in any number of dimensions  d

gauge- and  diffeomorphism-invariant!
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Such actions define the same general covariant theory in the continuum limit
for rectangular and           arbitrarily distorted      lattices:

Cf.  two lattice gauge theories
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in fact, starting from d=3
one has to use simplices:
triangles, tetrahedra, etc.



Regularized partition function for quantum gravity:

connection            frame

Haar measure SU(2) x SU(2)
normalized to unity

dimensionless
“coupling constants”

The theory is well-defined, well-behaved in the ultraviolet,
explicitly gauge invariant under local Lorentz group, 
and diffeomorphism-invariant in the continuum limit !

The lattice does not need to be regular: it can be arbitrarily deformed.

This is a very unusual lattice field theory – with many-fermion vertices 
but no bilinear term for the fermion propagator! 

Nevertheless, fermions “propagate” since vertices contain spinors belonging
to neighbour lattice sites.

D.D. 1109.0091
C. Wetterich
1110.1539

8 spinor fields 4 spinor fields
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How to work with such new kind of lattice gauge the ory?

At each lattice one integrates over 8 Grassmann variables

The action has also 8 operators                                 . One has to Taylor-expand 

such that there are precisely 8 fermion operator per site, otherwise the integral = 0.
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one gets only gauge invariant combinations  of fermion operators 
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The partition function is in fact a sum over all ty pes of closed loops, closed surfaces 
and closed 3-volumes!

Numerical simulations are possible: one can generate closed loops by e.g. Metropolis-like procedure. 



In 2d the partition function can be computed exactly by summing over all closed loops,
which is a good way to test approximate numerical methods, to be used in d>2.  

Some exact results:

physical
volume

number of points
on the lattice

extensive quantity, good! 

space is on the average flat, good!

physical
volume
susceptibility

it’s quantum
gravity, not
classical !2 2V V< > −< >

V< > fermions are non-compressable! 
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this is also nice!

Toy model: 2d quantum gravity

A typical difficulty in other models of discretized gravity: when allowed to fluctuate 
nonperturbatively, the space gets either crunched or forms chaotic `branched polymers’.

Here the fluctuating space is smooth, because fermions are non-compressible !



Spinor quantum gravity is a very rich and yet unexplored theory. It turns out that, depending
on the values of dimensional coupling constants, there can be several phases!

Two continuous symmetries that can be spontaneously broken:

1) Chiral symmetry,

2) Fermion number conservation:

5 5† †, ;i ie eαγ αγψ ψ ψ ψ→ →
† †, ;i ie eα αψ ψ ψ ψ −→ →

A Ae eµ µ→

The phase diagram can be found by a relatively simple mean field method.
It works quite accurately, as can be checked by comparison with an exactly solvable model:
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When symmetry is broken the order parameter is non-analytical
phase transition is II order



We check that in the broken phase the “effective chiral Lagrangian” for long-range Goldstone
fields is explicitly diffeomorphism-invariant: 

L dx g g µν
µ να α= < > ∂ ∂∫

We need< however, all degrees of freedom to be long-ranged, not only the Goldstone mode.
To that end, one needs to stay at exactly the phase transition point.

We expect that the low-energy Einstein action will come out automatically there, since
diffeomorphism-invariance is supported by construction. 

To see it, one can introduce the  effective action  by means of a Legendre transform, 
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Speculations:  Unifying quantum gravity with the St andard Model ?

The Standard Model is based on the SU(3)c x SU(2)w x U(1) gauge group, and has 
64 real fermion dof’s per generation.

With a composite frame field built as a bilinear spinor current, the content of QG
are also fermions and the gauge field of the local Lorentz group SU(2) x SU(2).

In the SM quantum fluctuations are tamed, and in the QG the fluctuations are now
also tamed.  Why not unify them?! 

We want the spinor fields to carry exactly the same number of dof’s as the frame field,
equal to d x d.  This doesn’t happen in any number of space-time dimensions.

The dimension of the two spinor representations of the SO(d=2n) group is               .
This equation has only one solution: d=16.

The 256-dimensional spinor representation of SO(16) falls neatly into four generations 
of the Standard Model. 
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One needs a mechanism to break spontaneously the SO(16) rotational gauge group.

The action in d=16 may have 7 terms:
with a priori arbitrary coefficients.
Write them in terms of fermions.

It may happen that the fermion condensates break spontaneously 
the rotational SO(16) symmetry, for example, by compactifying the  16d  space down 
to e.g. a direct product of several low-dimensional spheres, or whatever

x x

and breaks the SO(16) gauge group down to the gauge group of the Standard Model 
and Lorentz gauge group:    [ Coleman – Mandula theorem works for flat space only! ]
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gravity spin connection                          Standard  Model

256 fermion fields needed to describe the 16d metric, fits precisely 4 generations of the SM.
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Conclusions

1.   All general covariant action terms are not sign-definit e. It prevents from defining 
a quantum theory where large fluctuations are allowed. 

2.   In order to define a quantum theory properly, one presents the frame field as
a composite bilinear fermion “current”.  This will be then spinor quantum gravity .

3. It is easily regularized at short distances by imposing a diffeomorphism-preserving
lattice. Fermion path integrals are well defined and well-behaved .

4. It is an exciting new kind of theory, with potentially rich phase structure associated
with spontaneous breaking of continuous symmetries by fermion condensates .

5.   Einstein’s theory is expected in the low-energy lim it at the phase transition point(s)
where the original lattice structure is “forgotten”.

6. Spinor quantum gravity and the Stadard Model share the same basic degrees of
freedom, viz. fermion and gauge fields. Therefore new ways arise to unify the two.



Conceptual problem

Supposing one has a well-defined quantum gravity at hand, how to check it has the
correct infrared limit – the Einstein’s gravity ?  

In general, one has to compute diffeomorphism-invariant correlation functions, like
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Newton’s law in disguise

In our case, however,            is a fermion operator and cannot be used. 
One can introduce the classical metric tensor by means of a Legendre transform:  

gµν


