Wilson loop remainder function for null polygons in the limit of self-crossing

work with Sebastian Wuttke : arXiv:1104.2469 and 1111.6815

- Motivation and introduction
- Strategy and results
- Comparison with full analytic results
- Some details of the calculation
- Conclusions

Study Wilson loops in $\mathcal{N}=4$ SYM in the planar limit for special contours:
Null polygons with vertices $x_{1}, x_{2}, \ldots, x_{n}$ and

$$
\text { edges } p_{k}=x_{k}-x_{k-1}, \quad k=1, \ldots, n
$$

These objects are of interest in its own and with respect to the correspondence between

Wilson loops, MHV gluon scattering amplitudes and
string surfaces in AdS
Wilson loops UV divergent, scattering amplitudes IR divergent, in dimensional regularisation $\epsilon_{I R} \Leftrightarrow-\epsilon_{U V}$

Wilson loop for
null hexagon

6 point scattering
amplitude

string surface in

AdS
$\log W=\sum_{l} a^{l}\left(f^{(l)}(\epsilon) W^{(1)}(l \epsilon,\{s\})+C^{(l)}(\epsilon)\right)+R(a,\{u\})+\mathcal{O}(\epsilon)$,
with $\{s\}$ the set of Mandelstam variables $s_{k l}=\left(x_{k}-x_{l}\right)^{2}$ and $\{u\}$ the conformally invariant cross ratios form out of the $s_{k l}$.
$a=\frac{g^{2} N}{8 \pi^{2}}, \quad W^{(1)}(\epsilon,\{s\})$ one loop contribution.
The blue part is the BDS structure, fixed also by anomalous conformal Ward identities.
R is called the remainder function, it appears for $n \geq 6$ only and starts at order a^{2}.

Remarkable: Single diagrammatic contrib. to $\log W$ (via non-Abelian expo theorem) contain higher powers $\frac{1}{\epsilon^{k}}, \quad k>2$ but $\log W$ has only $\frac{1}{\epsilon^{2}}$ and $\frac{1}{\epsilon}$.

Situation changes if contour has self-crossing ($R=a^{2} R^{(2)}+a^{3} R^{(3)}+\ldots$) $R^{(2)} \propto \frac{1}{\epsilon^{3}}+\ldots, \quad R^{(3)} \propto \frac{1}{\epsilon^{5}}+\ldots$
(From now: $R:=\log W-$ BDS also for $\epsilon \neq 0$.)
\Rightarrow interesting problem in its own
\Rightarrow alternative aspect

Approach to self-crossing from a generic configuration:
The (generically) finite R develops singularities
$\propto \log ^{3}(1-u) \quad$ for $R^{(2)}$
$\propto \log ^{5}(1-u) \quad$ for $R^{(3)}$
if some characteristic cross-ratio $u \rightarrow 1$.

Available info on R in generic configuration:
hexagon $R^{(2)}$: full analytic result Goncharov, Spradlin, Vergu, Volovich 2010 hexagon $R^{(3)}$: full symbol Dixon, Drummond, Henn and Caron-Huot, He 2011
\exists also info on symbols for higher polygons and/or explicit analytic results for restricted configurations (2D).

Different self-crossing types:
a) crossing of two edges, not \exists free conformally invariant parameter
b) touching of two vertices, \exists one free conformally invariant parameter

a)

b)
$R^{(2)}$ for case of touching vertices studied in our 1104.2469
This talk: Concentrate on crossing edge case, $R^{(2)}, R^{(3)} 1111.6815$
Related singularities for scattering amplitudes:
touching vertices \Leftrightarrow momentum conservation for a subset of momenta
crossing edges $\Leftrightarrow \exists$ two opposite external momenta whose both adjacent inner momenta become in some integration region collinear to them, might be relevant for double parton scattering, e.g. Gaunt, Stirling 2011

Use RG-equation for self-crossing Wilson loops
\& input $\log W=\mathrm{BDS}+R$

- RG-equation with mixing under renormalisation, due to self-crossing
- Use general structure of anomalous dimension matrix
in case of null-edges Korchemskaya, Korchemsky 1994
- Book-keep the dependence on $\log \mu^{2}, \quad \mu$ RG-scale
- Concentrate on leading and nextleading power of $\log \mu^{2}$
- μ enters only via $a \rightarrow a \mu^{2 \epsilon}$, hence one can reconstruct corresponding poles in ϵ for $R(\epsilon, \mu,\{s\})$

$$
\begin{array}{ll}
R^{(2)}=\frac{i \pi}{4}\left(\frac{1}{\epsilon^{3}}+\frac{1}{\epsilon^{2}} 2 \log \left(2 p q \mu^{2} \mathcal{X}\right)\right)+\mathcal{O}\left(\frac{1}{\epsilon}\right), & p q>0, \\
R^{(2)}=-\frac{i \pi}{4}\left(\frac{1}{\epsilon^{3}}+\frac{1}{\epsilon^{2}} 2 \log \left(2|p q| \mu^{2} \mathcal{X}\right)\right)+\frac{\pi^{2}}{2} \frac{1}{\epsilon^{2}}+\mathcal{O}\left(\frac{1}{\epsilon}\right), & p q<0 . \\
R^{(3)}=-\frac{7 i \pi}{108}\left(\frac{1}{\epsilon^{5}}+\frac{1}{\epsilon^{4}} 3 \log \left(2 p q \mu^{2} \mathcal{X}\right)\right)-\frac{\pi^{2}}{18} \frac{1}{\epsilon^{4}}+\mathcal{O}\left(\frac{1}{\epsilon^{3}}\right), & p q>0, \\
R^{(3)}=\frac{7 i \pi}{108}\left(\frac{1}{\epsilon^{5}}+\frac{1}{\epsilon^{4}} 3 \log \left(2|p q| \mu^{2} \mathcal{X}\right)\right)-\frac{\pi^{2}}{4} \frac{1}{\epsilon^{4}}+\mathcal{O}\left(\frac{1}{\epsilon^{3}}\right), & p q<0 .
\end{array}
$$

$$
\mathcal{X}=x y(1-x)(1-y), \quad x, y \text { fractions on edges } p \text { and } q \text { defining the crossing point. }
$$

Note: coefficient of nextleading pole is not conformally invariant, OK since at $\epsilon \neq 0$ conformal invariance broken.

Relation to singularities of generic (i.e. no self-crossing) $R(a,\{u\})$ for some special $u_{j} \rightarrow 1$:

- Consider conf. slightly off self-crossing as an alternative regularisation: distance z_{\perp}
- Argue (heuristically) for a "translation rule"

$$
g^{2 l} \frac{1}{\epsilon^{m}} \Leftrightarrow \alpha_{l, m} g^{2 l} \log ^{m}\left(\frac{1}{-\mu^{2} z_{\perp}^{2}}\right), \quad \alpha_{l, m}=\frac{l^{m-l} l!}{m!}, \quad\left(\text { note: } \quad \alpha_{l, l}=1\right)
$$

- Pure geometry of near self-crossing:

$$
\begin{aligned}
\log \left(\frac{1}{-\mu^{2} z_{\perp}^{2}}\right) & =-\log (u-1)-\log \left(-2 p q \mu^{2} \mathcal{X}\right)+\mathcal{O}\left(z_{\perp}^{2}\right), \quad p q<0 \\
& =-\log (1-u)-\log \left(2 p q \mu^{2} \mathcal{X}\right)+\mathcal{O}\left(z_{\perp}^{2}\right), \quad p q>0
\end{aligned}
$$

u cross ratio formed out of the 4 endpoints of the crossing edges.

$$
\begin{aligned}
R^{(2)} & =\frac{i \pi}{6} \log ^{3}(u-1)+\frac{\pi^{2}}{2} \log ^{2}(u-1)+\mathcal{O}(\log (u-1)), & & p q<0 \\
& =-\frac{i \pi}{6} \log ^{3}(1-u)+\mathcal{O}(\log (1-u)), & & p q>0
\end{aligned}
$$

$$
\begin{aligned}
R^{(3)} & =-\frac{7}{240} i \pi \log ^{5}(u-1)-\frac{3}{16} \pi^{2} \log ^{4}(u-1)+\mathcal{O}\left(\log ^{3}(u-1)\right), \quad p q<0 \\
& =\frac{7}{240} i \pi \log ^{5}(1-u)-\frac{1}{24} \pi^{2} \log ^{4}(1-u)+\mathcal{O}\left(\log ^{3}(1-u)\right), \quad p q>0
\end{aligned}
$$

- For $R^{(2)}$ full agreement with corresponding limit for result of Goncharov, Spradlin, Vergu, Volovich
- $R^{(3)}$: disagreement by factor $\frac{6}{7}$ with leading singularity from symbolic result of Dixon, Drummond, Henn

Comparison with full analytic result
$R^{(2)}=-\frac{1}{2} \operatorname{Li}_{4}\left(1-\frac{1}{u}\right)-\frac{1}{8}\left(\operatorname{Li}_{2}\left(1-\frac{1}{u}\right)\right)^{2}+\ldots$,
derived in Euclidean region, at first sight no singularity at $u \rightarrow 1$.

But: The three independent cross-ratios u_{1}, u_{2}, u_{3} do not fix the conformal class of hexagon configurations.

projection on (1,2)-plane, edges running backward and forward in time, both a) and b) have $u_{2}=1$.

In twisting a) to b) $\frac{1}{u_{2}}$ goes from 1 to 0 and back to 1 , i.e. argument of Polylogs $v:=1-\frac{1}{u}: \quad v=0 \quad \longrightarrow \quad v=1 \quad \longrightarrow \quad v=0$ Implementing the $i \varepsilon$-prescription \Rightarrow "reflection" at $v=1$ (branchpoint of the Li's) is combined with encircling

Twisting moves us into second sheet of the Polylogs, there we hit logarithmic singularities at $v=0$, i.e. $u=1$.
$\operatorname{Li}_{n}(v+i \varepsilon)-\operatorname{Li}_{n}(v-i \varepsilon)=\frac{2 \pi i \log ^{n-1} v}{(n-1)!}$

$$
\begin{aligned}
& W_{a}=Z_{a b} W_{b}^{\text {ren }}, \quad W_{1}:=\langle U(\mathcal{C})\rangle, \quad W_{2}:=\left\langle U\left(\mathcal{C}^{\text {upper }}\right) U\left(\mathcal{C}^{\text {lower }}\right)\right\rangle \\
& U(\mathcal{C}):=\frac{1}{N} \operatorname{tr} \mathcal{P} \exp \left(i g \int_{\mathcal{C}} A^{\mu} \mathrm{d} x_{\mu}\right), \quad \Gamma:=\left.Z^{-1} \mu \frac{d}{d \mu} Z\right|_{g_{\text {bare }} \text { fixed }}
\end{aligned}
$$

$$
\mu \frac{\partial}{\partial \mu} \log W_{1}^{\text {ren }}=-\Gamma_{12} \frac{W_{2}^{\text {ren }}}{W_{1}^{\text {ren }}}-\Gamma_{11}
$$

Anomalous dim. due to cusps and self-crossings for time-like or space-like contours depend on angles $\vartheta, \quad \cosh \vartheta=\frac{p q}{\sqrt{p^{2} q^{2}}}, \quad \vartheta \rightarrow \infty$ for $p^{2}, q^{2} \rightarrow 0$. Div. linear in ϑ to all orders, modified type of RG-equation with anomalous dimensions depending linearly on $\log \mu$ ($\mu \mathrm{RG}$-scale). Korchemsky

$$
\begin{gathered}
\Gamma=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \frac{\Gamma_{\text {cusp }}(a)}{2} \sum_{k \in \text { cusps, not adj. crossing }} \log \left(-s_{k} \mu^{2}\right)+\left(\begin{array}{cc}
A & \gamma_{12}(a) \\
0 & B
\end{array}\right) \\
A= \\
B=\frac{\Gamma_{\text {cusp }}(a)}{2}\left(\log \left(-2 p p_{-} \mu^{2}\right)+\log \left(-2 p p_{+} \mu^{2}\right)+\log \left(-2 q q_{-} \mu^{2}\right)+\log \left(-2 q q_{+} \mu^{2}\right)\right) \\
\\
\quad+\gamma_{22}(a)\left(\log \left(-s x y \mu^{2}\right)+\log \left(-s(1-x)(1-y) \mu^{2}\right)\right),
\end{gathered}
$$

planar approximation, $s=2 p q, s_{k}=\left(x_{k+1}-x_{k-1}\right)^{2}$.
$Z \Leftrightarrow \Gamma$ relation:

$$
\begin{gathered}
\mu \frac{d}{d \mu} \log Z_{11}=\Gamma_{11}, \quad \mu \frac{d}{d \mu} Z_{12}=Z_{11} \Gamma_{12}+Z_{12} \Gamma_{22}, \\
\mu \frac{d}{d \mu} \log Z_{22}=\Gamma_{22}, \quad \text { with } \mu \frac{d}{d \mu}=\mu \frac{\partial}{\partial \mu}-2 \epsilon a \frac{\partial}{\partial a} \\
Z_{11}^{(0)}=1, \quad Z_{11}^{(1)}=-\frac{n \Gamma_{\text {cusp }}^{(1)}}{4 \epsilon^{2}}-\frac{\Gamma_{11}^{(1)}}{2 \epsilon}, \quad Z_{12}^{(1)}=-\frac{\gamma_{12}^{(1)}}{2 \epsilon}, \\
Z_{22}^{(0)}=1, \quad Z_{22}^{(1)}=-\frac{n \Gamma_{\text {cusp }}^{(1)}+4 \gamma_{22}^{(1)}}{4 \epsilon^{2}}-\frac{\Gamma_{22}^{(1)}}{2 \epsilon} . \\
Z_{12}^{(2)}=\frac{(2 n+1) \gamma_{12}^{(1)}}{8 \epsilon^{3}}+\frac{\gamma_{12}^{(1)}\left(\Gamma_{11}^{(1)}+\Gamma_{22}^{(1)}\right)}{8 \epsilon^{2}}-\frac{\gamma_{12}^{(2)}}{4 \epsilon} .
\end{gathered}
$$

Then from $W_{j}=Z_{j k} W_{k}^{\text {ren }}$ and expanding $\log W_{j}$ in powers of a

$$
\begin{aligned}
& \left(\log W_{1}^{\text {ren }}\right)^{(1)}=W_{1}^{\text {ren }(1)}=\operatorname{MS}\left[\left(\log W_{1}\right)^{(1)}\right], \\
& \left(\log W_{1}^{\text {ren }}\right)^{(2)}=\mathrm{MS}\left[\left(\log W_{1}\right)^{(2)}+Z_{12}^{(1)}\left(W_{1}^{\text {ren }(1)}-W_{2}^{\text {ren }(1)}\right)\right], \\
& \left(\log W_{1}^{\text {ren }}\right)^{(3)}=\operatorname{MS}\left[\left(\log W_{1}\right)^{(3)}-T_{1}-T_{2}\right],
\end{aligned}
$$

with MS [...] denoting minimal subtraction and

$$
\begin{aligned}
& T_{1}:=Z_{12}^{(1)}\left(\frac{1}{2}\left(W_{1}^{\mathrm{ren}(1)}-W_{2}^{\mathrm{ren}(1)}\right)^{2}-\left(\log W_{1}^{\mathrm{ren}}\right)^{(2)}+\left(\log W_{2}^{\mathrm{ren}}\right)^{(2)}\right) \\
& T_{2}:=\left(\left(Z_{12}^{(1)}\right)^{2}+Z_{12}^{(1)} Z_{11}^{(1)}-Z_{12}^{(2)}\right)\left(W_{1}^{\mathrm{ren}(1)}-W_{2}^{\mathrm{ren}(1)}\right)
\end{aligned}
$$

- We have under control the dependence on $L:=\log \left(\mu^{2}\right)$ of:
- $\left(\log W_{1}^{\text {ren }}\right)^{(1)},\left(\log W_{2}^{\text {ren }}\right)^{(1)}:$
up to L^{2}
- $\left(\log W_{1}^{\text {ren }}\right)^{(2)},\left(\log W_{2}^{\text {ren }}\right)^{(2)}:$ up to L^{3}
- the BDS contribution to $\left(\log W_{1}^{\text {ren }}\right)^{(3)}$: up to L^{2}
- due to poles up to $\frac{1}{\epsilon^{3}}$ in the Z-factors, vanishing terms up to $\mathcal{O}\left(\epsilon^{3}\right)$ from $\left(W_{1}^{\text {ren(1) }}-W_{2}^{\text {ren(1) }}\right)$ are relevant, and contribute up to L^{5}

Together we find:
$\left(\log W_{1}^{\text {ren }}\right)^{(3)}=\mathrm{MS}\left[\left(\log W_{1}\right)^{(3)}\right]+$ number $\cdot L^{5}+$ number $\cdot L^{4}+\mathcal{O}\left(L^{3}\right)$.

Inserting this into the starting $R G$-equation for $\log W_{1}^{\text {ren }}$ and book-keep order a^{3} one gets the leading and nextleading (L^{5} and L^{4}) dependence of $\mathrm{MS}\left[R^{(3)}\right]$.

- In case of two crossing edges leading and nextleading UV divergence of remainder determined by one-loop info on anomalous dimensions
- Explicit results for $R^{(2)}$ and $R^{(3)}$ in dimensional regularisation
- Treatment of higher orders seems realistic
- Studied $R^{(2)}$ also in case of touching vertices, here already leading divergence requires two-loop info on anomalous dimensions
- Translation into singularities of generic remainder for the approach to self-crossing can give checks and hints for the search to full analytic results, similar to multi Regge limit, collinear limit, ...
- Heuristic translation rule works perfect up to two loops, gives correct relative weight at three loops (ensuring conformal invariance)
- Factor $6 / 7$ discrepancy relative to info from symbolic results in literature
- Work in progress: direct analysis of Feynman diagrams

