ANDAL ANDAL ANDAL ANDAL ANDAL AND ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDA

Quest for the QCD phase diagram in extreme environments

Kenji Fukushima

Department of Physics, Keio University

How "extreme" typically? ಜನ್ನ ಸ್ಥಳದಲ್ಲಿ ಸ್ಥಳದಲ್ಲಿ ಸ್ಥಳದಲ್ಲಿ ಸ್ಥಳದ ಸ್ಥಳದಲ್ಲಿ ಸ್ಥಳದಲ್ಲಿ ಸ್ಥಳದಲ್ಲಿ ಸ್ಥಳದಲ್ಲಿ ಸ್ಥಳದಲ್ಲಿ ಸ್ಥಳದಲ್ಲಿ ಸ್ಥಳದಲ್ಲಿ **High Temperature** up to $T \sim \Lambda_{\rm OCD} \sim 200 {\rm MeV}$ **Relativistic Heavy-Ion Collision High Baryon Density** up to $\rho_{\rm B} \sim (\Lambda_{\rm OCD})^3 \sim 1 {\rm fm}^{-3}$ **Relativistic Heavy-Ion Collision, Neutron Star Strong Magnetic Field** up to $eB \sim (\Lambda_{OCD})^2 \sim 10^{18}$ gauss **Relativistic Heavy-Ion Collision, Neutron Star** May 28, 2012@Ginzburg Conference 2

Relativistic Heavy-Ion Collision
LHC:
$$\sqrt{s_{NN}} = 2.7 \text{ TeV} \rightarrow \gamma \sim 1400$$

RHIC: $\sqrt{s_{NN}} = 200 \text{ GeV} \rightarrow \gamma \sim 100$
 $\sqrt[]{}^{\text{Au, Pb, ...}}$
 $\sqrt[]{}^{\text{Au, Pb, ...}}$

Thermalization achieved (elliptic flow by a hydro-model) Initial temperature ~ 400MeV (distribution of direct photon)

How to understand deconfinement? Confinement understood from the non-perturbative propagators of gluons and ghosts in the Landau gauge

May 28, 2012@Ginzburg Conference

May 28, 2012@Ginzburg Conference

Polyakov-loop potential determined unambiguously

KF-Kashiwa (2012)

May 28, 2012@Ginzburg Conference

Phase Diagrams including DensityPrototype in 1983andUpdate in 2009

Modern View

Effective Model Results

Conjectured Phase Structure

Experimentally Confirmed

Menge Menge Menge Men Menge Menge Menge Menge Menge M

Experimental Data

and allow allow allo allow allow allow allow a

Freeze-out points are located by the particle yields Two regimes in **meson-dominance** and **baryon-dominance**

Mesonic Hagedorn Transition

$$Z \sim \int dm \rho(m) e^{-m/T}$$
$$\rho(m) \sim e^{m/T_{H}}$$
$$T_{c} = T_{H}$$

Baryonic Hagedorn Transition

$$Z \sim \int dm \rho_B(m) e^{-(m_B - \mu_B)/T}$$
$$\rho(m) \sim e^{m_B/T_B}$$
$$T_c = (1 - \mu_B/m_B) T_B$$

Andronic-Blaschke-Braun-Munzinger-Cleymans-KF -McLerran-Oeschler-Pisarski-Redlich-Sasaki (2010) Ginzburg Conference

Thermodynamics

Statistical Model Interpretation KF (2010)

Gluon Deconfinement ~ Increasing entropy

Quark Deconfinement ~ Increasing density

Thermodynamic quantities taken over by (quasi-)gluons and (quasi-)quarks (beyond the Hagedorn limit)

Experimentally Expected

ಹೆಸ್ಟ್ರಾನ ಮಾಡಿದ್ದಾರೆ. ಮಾಡಿದ ಮಾಡಿದ್ದಾರೆ, ಮಾಡಿದ್ದಾರೆ, ಮಾಡಿದ್ದಾರೆ, ಮಾಡಿದ್ದಾರೆ, ಮ

May 28, 2012@Ginzburg Conference

Theoretically Speculated

ಕೆಲಿಎಫ್ ನಕ್ರಮವು ನಕ್ರಮವು ನಕ್ರಮ ನಕ್ರಮವು ನಕ್ರಮವು ನಕ್ರಮವು ನಕ್ರಮವು ನಕ್ರಮವು ನ

May 28, 2012@Ginzburg Conference

Quarkyonic Matter

Structure of the Fermi Sphere

Quarks $P \sim O(N_c)$

Baryons

 $1 \sim \Lambda_{\rm OCD}$

Ground state of large- N_c quark matter at $\mu_q >> \Lambda_{QCD}$

> McLerran, Pisarski Hidaka, Kojo

Interacting Baryon Crystal ~ Quasi-quark Gas

Quarkyonic Chiral Spiral ($\mu_a >> \Lambda_{OCD}$) i, Alexi, Alexi, Alexi, Alexi, Alexi, Alexi, Alexi, Alexi, Alexi, A Choose one direction z with $p_z \sim \mu_q \ (p_x, p_v \sim \Lambda_{QCD})$ (1+1)D system effectively $\overline{\psi}(i\chi^{z}\partial_{z}+\mu\chi^{0})\psi$ $\psi = e^{i\gamma^{\vee}\gamma^{z}\mu z}\psi'$ $= \overline{\psi}'(i \chi^z \partial_z) \psi'$ $\langle \bar{\psi}' \psi' \rangle$ = Homogeneous condensate at zero density $\langle \bar{\psi}\psi \rangle = \langle \bar{\psi}'\psi' \rangle \cos(2\mu z)$ $\langle \bar{\psi} \chi^0 \chi^z \psi \rangle = \langle \bar{\psi}' \psi' \rangle \sin(2\mu z)$

This quasi-(1+1)D system forms "one patch"

Interweaving Chiral Spirals

As the Fermi sphere enlarges, the patch number increases, forming a chiral quasi-crystal.

Kojo-Hidaka-KF-McLerran-Pisarski (2011)

Some Model Results

$$E_{p} = \sqrt{p_{x}^{2} + p_{y}^{2} + (\sqrt{p_{z}^{2} + M^{2}} - q)^{2}}$$

Effect of the dynamical mass M is partially canceled by q

Even when N_c and \mu_q are not infinitely large, the chiral spiral is favored near the phase boundary of chiral symmetry Nakano-Tatsumi (2003), KF (2012)

Holographic Evidence

ġŎŎĿĿĿŎŎŎĿĿĿŎŎŎĿĿĿŎŎŎĿĿĿŎŎŎĿĔŎŎŎĔŎĿĿŎŎŎĿĿĿŎŎŎĿĿĿŎŎŎĿĿĿŎŎŎĿĿĿŎŎŎĿĿĿŎŎŎĿĿĿŎŎŎĿ

State-of-the-art phase diagram in holographic model

Nakamura-Ooguri-Park, Chuang-Dai-Kawamoto-Lin-Yeh (2010)

Density Effect ~ Magnetic Field Effect Energy dispersion relation in B

$$\omega^{2} = p_{z}^{2} + 2|eB|(n+1/2) + m^{2} - 2seB$$

Transverse motion = Harmonic Oscillator

Fermions (*s*=1/2) have zero mode – dominant at large *B* Quasi-(1+1)D system is realized along the *B* direction.

Very strong $B + Any \mu_q \rightarrow Chiral Spiral$

Basar-Dunne-Kharzeev

Very strong B + Attractive Int.

 \rightarrow Cooper Instability \rightarrow Magnetic Catalysis

Klimenko, Gyusynin-Miransky-Shovkovy

B Effect on the Phase Diagram r altra a **QCD** phase transitions affected by **B** Chiral cond. b= 0 0.25 Chiral cond. b = 8 Chiral cond. b = 16 Chiral cond. b = 24 Pol. loop b = 00.25 Pol. loop b = 8 0.2 Pol. loop b = 16 Pol. loop b = 240.15 à 0.1 -0.25 150 0.05 T (MeV) 5.28 5 27 5 29 ß

(D'Elia et al)

(Fodor et al)

Monte-Carlo simulation is possible (no sign problem) T_c increases or decreases? Contradictory results from two groups!

Origin of the Magnetic Field

Alexa, Alexa,

Strong B generated due to Electrodynamics

on top of the Quark-Gluon Plasma

Local Parity Violation (LPV)

Algen, Algen, Algen, Algen, Algen, Alge Algen, Algen, Algen, Algen, Algen, Algen, Alge

Current Generation through Anomaly Chiral Magnetic Effect

Vilenkin (1980), Metlitski-Zhitnitsky, KF-Kharzeev-Warringa

Wess-Zumino-Witten Action WZW term without U fields (contact term)

$$L_{P} = \frac{N_{c}}{8N_{f}\pi^{2}} \epsilon^{\mu\nu\rho\sigma} \left\{ \operatorname{tr} \left[v_{\mu} \left(\partial_{\nu}v_{\rho} - \frac{i}{3} [v_{\nu}, v_{\rho}] \right) \right] \partial_{\sigma} \theta \right. \\ \left. + \operatorname{tr} \left(a_{\mu} D_{\nu} a_{\rho} \right) \left[\frac{4}{3} \operatorname{tr} \left(a_{\sigma} \right) + \partial_{\sigma} \theta \right] \right\} - \frac{N_{c}}{12N_{f}^{2}\pi^{2}} \operatorname{tr} \left(a_{\mu} \right) \operatorname{tr} \left(\partial_{\nu} a_{\rho} \right) \partial_{\sigma} \theta$$

QED fields:
$$v_{\mu} = eQ A_{\mu} = e \begin{pmatrix} 2/3 & 0 \\ 0 & -1/3 \end{pmatrix} A_{\mu}$$

Kaiser-Leutwyler

Similar Effects

algosi algo

$$j_{\mu} \propto \epsilon_{\mu\nu\sigma\rho} (\partial^{\nu} \phi) F^{\sigma\rho}$$

Derivative of a pseudo-scalar quantity η ' condensatepion condensates / profileStrong θ angle2nd-ran

2nd-rank tensor Field strength tensor Angular momentum Angular velocity

These effects under investigations in HIC

Summary

QCD phase diagram with chiral and deconfinement phase transitions is investigated:

- □ *High Temperature* Phase transitions well understood from the zero-T properties of confinement.
- □ *High Baryon Density* Inhomogeneous states favored near the phase boundary of homogeneous states.
- □ *Strong B Field* Effects on the phase diagram not yet understood. Many interesting anomalous effects expected.

Experimental efforts focused on the baryon-rich matter and the visible effects of the strong *B*:

Systematic fluctuation measurements to confirm the local parity violation / critical point / inhomogeneity