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Higher spin -- CFT duality

Some years ago, a concrete proposal for a higher 
spin - CFT duality was made: [Klebanov-Polyakov]

[Sezgin-Sundell]

higher spin theory
      on AdS4

3d O(N) vector model
    in large N limit

Actually different versions, depending on whether
vector model fields are bosons or fermions and on 
whether one considers free or interacting fixed point.



Checks of the proposal

Recently impressive checks of the duality
have been performed, in particular 

[Giombi & Yin]

3-point functions of HS fields on AdS4

3-point functions of HS currents in 
O(N) model to leading order in 1/N.  

have been matched to 



AdS3 / CFT2

Here: describe 3d/2d CFT version of this duality.

Lower dimensional version interesting

‣ 2d CFTs well understood

‣ Higher spin theories simpler in 3d

Also, 3d conformal field theories with unbroken higher 
spin symmetry and finite number of d.o.f. (finite N) are 
necessarily free, but this is not the case in 2d.

[Maldacena,Zhiboedov]



WN,k

λ =
N

N + k
and M2 = −(1− λ2)

3d proposal

The 3d/2d proposal takes the form

λ

AdS3:
 higher spin theory
 with a complex 
 scalar of mass M

2d CFT:
             minimal models
    in large N ‘t Hooft limit   
    with coupling 

where

[MRG,Gopakumar]



Scalars

In original version of conjecture there were two
scalars.

Given our more detailed understanding of the 
symmetries (see below), it now seems that 
one of the scalars should be rather thought of as
a non-perturbative state.

[This new point of view resolves also some puzzles regarding 
the structure of the correlation functions.]

[Papadodimas, Raju]
[Chang, Yin]



λ = 0

Comparison to 4d/3d case

In contrast to 4d/3d case: 

     1 parameter family of dual theories. 

‣ For            the 2d CFT is equivalent to   
   singlet sector of a free theory.

Special values:

[MRG,Suchanek]

λ = 1‣ For            the resulting theory has linear
           symmetry (free bosons).W∞



Outline

In the rest of the talk I want to explain the proposal
in more detail and indicate which consistency checks
have been performed.

• The HS theory in 3d

• Matching the symmetries

• The spectrum 

• Conclusions



sl(2, R)

sl(2, R)→ hs[λ]

The HS theory on AdS3

Recall that pure gravity in AdS3: Chern-Simons theory 
based on [Achucarro & Townsend]

[Witten]

Higher spin description: replace

[Vasiliev]

The AdS3 HS theory can be described very simply.



hs[λ]

hs[λ]
∣∣∣
λ=N

∼= sl(N, R)

hs[λ] ≡ sl(λ, R)

Higher spin algebra

[Bordemann et.al.]
[Bergshoeff et.al.]
[Pope, Romans, Shen]
[Fradkin,Linetsky]

The higher spin algebra           is an infinite dimensional
Lie algebra that can be thought of as  

since

for integer N.



W∞[λ] algebra

sl(2, R) → Virasoro
hs[λ] → W∞[λ]

Asymptotic symmetries

For these higher spin theories asymptotic symmetry 
algebra can be determined following Brown & Henneaux, 
leading to classical

[Henneaux & Rey]
[Campoleoni et al]
[MRG, Hartman]

Extends algebra `beyond the wedge’:

pure gravity:
higher spin:

[Figueroa-O’Farrill et.al.]



W∞[λ] = lim
N→∞

WN with λ =
N

N + k
.

Dual CFT

By the usual arguments, dual CFT should therefore have

Basic idea:

‘t Hooft limit of 2d CFT!

W∞[λ] symmetry.



WN,k :
su(N)k ⊕ su(N)1

su(N)k+1

The minimal models

The minimal model CFTs are the cosets 

General N: higher spin analogue of Virasoro minimal 
models. [Spin fields of spin s=2,3,..,N.]

e.g. Ising model (N=2, k=1)
       tricritical Ising (N=2, k=2)
       3-state Potts (N=3,k=1),..

cN (k) = (N − 1)
[
1− N(N + 1)

(N + k)(N + k + 1)

]
.

with central charge 



W∞[λ] vs lim
N,k→∞

WN,k

Relation of symmetries

appear to be quite different. However, the asymptotic 
symmetry analysis only determines the classical 
symmetry algebra, i.e. the algebra to leading order in 1/c.

In order to understand above relation, we need to 
understand the quantum version of this algebra.

On the face of it, the two symmetries



[Wm, Wn] = 2(m− n)Um+n +
N3

12
(m− n)(2m2 + 2n2 −mn− 8)Lm+n

+
8N3

c
(m− n) (LL)m+n +

N3c

144
m(m2 − 1)(m2 − 4)δm,−n

Quantum symmetry

The full structure of the quantum algebra can actually
be determined completely. [MRG, Gopakumar]

There are two steps to this argument. To illustrate them
consider an example. For classical algebra, we have

spin-3 field
non-linear term



Jacobi identity

[Wm, Wn] = 2(m− n)Um+n +
N3

12
(m− n)(2m2 + 2n2 −mn− 8)Lm+n

+
8N3

c
(m− n) (LL)m+n +

N3c

144
m(m2 − 1)(m2 − 4)δm,−n

spin-3 field
non-linear term



[Wm, Wn] = 2(m− n)Um+n +
N3

12
(m− n)(2m2 + 2n2 −mn− 8)Lm+n

+
8N3

c + 22
5

(m− n) Λ(4)
m+n +

N3c

144
m(m2 − 1)(m2 − 4)δm,−n

Λ(4)
n =

∑

p

: Ln−pLp : + 1
5xnLn

Jacobi identity

[Wm, Wn] = 2(m− n)Um+n +
N3

12
(m− n)(2m2 + 2n2 −mn− 8)Lm+n

+
8N3

c
(m− n) (LL)m+n +

N3c

144
m(m2 − 1)(m2 − 4)δm,−n

Jacobi identity determines quantum correction

where

Similar considerations apply for the other commutators.



W · W ∼ c

3
· 1 + 2 · L +

32
(5c + 22)

· Λ(4) + 4 · U

W · U ∼ 56
25

N4

N2
3

W + · · ·

N4

N2
3

=
15
14

λ2 − 9
λ2 − 4

+O( 1
c ) .

Structure constants

The second step concerns structure constants. W-field 
can be rescaled so that 

spin-4 field
and

Classical analysis determines 



Structure constants

N4

N2
3

=
15
14

λ2 − 9
λ2 − 4

+O( 1
c ) .

Classical analysis determines 



λ = N WN :

N4

N2
3

=
75 (c + 2) (λ− 3)

(
c(λ + 3) + 2(4λ + 3)(λ− 1)

)

14 (5c + 22) (λ− 2)
(
c(λ + 2) + (3λ + 2)(λ− 1)

) .

Structure constants

N4

N2
3

=
15
14

λ2 − 9
λ2 − 4

+O( 1
c ) .

Classical analysis determines 

Requirement that representation theory agrees for
            with 

hs[λ]
∣∣∣
λ=N

∼= sl(N, R)[Note:                              implies                               .]   W∞[λ]|λ=N = WN



C4
33C

4
44 =

48
(
c2(λ2 − 19) + 3c(6λ3 − 25λ2 + 15) + 2(λ− 1)(6λ2 − 41λ− 41)

)

(λ− 2)(5c + 22)
(
c(λ + 2) + (3λ + 2)(λ− 1)

)

(C5
34)

2 =
25(5c + 22)(λ− 4)

(
c(λ + 4) + 3(5λ + 4)(λ− 1)

)

(7c + 114)(λ− 2)
(
c(λ + 2) + (3λ + 2)(λ− 1)

)

C5
45 =

15
8(λ− 3)(c + 2)(114 + 7c)

(
c(µ + 3) + 2(4λ + 3)(λ− 1)

) C4
33

×
[
c3(3λ2 − 97) + c2(94λ3 − 467λ2 − 483) + c(856λ3 − 5192λ2 + 4120)

+ 216λ3 − 6972λ2 + 6756
]

.

Higher Structure Constants

Similarly, higher structure constants can be 
determined [Blumenhagen, et.al.] [Hornfeck]



γ2 ≡ (C4
33)

2 =
896
75

N4

N2
3

C4
44 =

9(c + 3)
4(c + 2)

γ − 96(c + 10)
(5c + 22)

γ−1

(C5
34)

2 =
75(c + 7)(5c + 22)
16(c + 2)(7c + 114)

γ2 − 25

C5
45 =

15 (17c + 126)(c + 7)
8 (7c + 114)(c + 2)

γ − 240
(c + 10)
(5c + 22)

γ−1

Higher Structure Constants

Actually, can rewrite all of them more simply as 

where

Suggests that all of these structure constants are 
determined by Jacobi identity. [Candu, MRG, Kelm, 

Vollenweider, to appear]

[MRG, Gopakumar]



γ2 and c .

(C4
33)

2 ≡ γ2 =
64(c + 2)(λ− 3)

(
c(λ + 3) + 2(4λ + 3)(λ− 1)

)

(5c + 22)(λ− 2)
(
c(λ + 2) + (3λ + 2)(λ− 1)

) .

W∞[λ1] ∼=W∞[λ2] ∼=W∞[λ3] at fixed c

Quantum algebra

Thus full quantum algebra characterised by two
free parameters

But 

Thus there are three roots that lead to the same algebra:

[MRG, Gopakumar]



W∞[N ] ∼=W∞[ N
N+k ] ∼=W∞[− N

N+k+1 ] at c = cN,k

Triality

In particular, 

minimal model asymptotic symmetry
algebra of hs theory

This is even true at finite N and k, not just in the
‘t Hooft limit! 

This triality generalises level-rank duality of coset models
of [Kuniba, Nakanishi, Suzuki] and [Altschuler, Bauer, Saleur].



hs[λ]
W∞[λ]

Symmetries

So the symmetries suggest that we should have 

HS on AdS3 2d CFT with 

symmetry
=CS with

minimal models

Semiclassical limit: take c large --- ‘t Hooft limit!

=



q = exp
(
− 1

kBT

)

Spectrum

Higher spin fields themselves correspond only to the 
vacuum representation of the W-algebra!

To see this, calculate partition function of massless 
spin s field on thermal AdS3

Z(s) =
∞∏

n=s

1
|1− qn|2 .

[MRG, Gopakumar, Saha]

[Generalisation of Giombi, Maloney & Yin calculation to higher spin,
using techniques developed in David, MRG, Gopakumar.]



Zhs =
∞∏

s=2

∞∏

n=s

1
|1− qn|2 .

1-loop partition function

The complete higher spin theory therefore contributes

This reproduces precisely contribution to the partition 
function of dual CFT in ‘t Hooft limit coming from the 
vacuum representation 

--- not a consistent CFT by itself.....

 MacMahon
   function!



(ρ, µ; ν)

su(N)k su(N)k+1su(N)1

ρ + µ− ν ∈ ΛR(su(N))

µ

Representations

Indeed, the full CFT also has the representations
labelled by (from coset description)

rep of 

Compatibility constraint: 

fixes     uniquely: label representations by            . (ρ; ν)



’t Hooft limit: h(f; 0) =
1
2
(1 + λ) h(0; f) =

1
2
(1− λ)

semiclassical: h(f; 0) =
1
2
(1−N) h(0; f) = − c

2N2

Simple representations

Simplest reps that generate all W-algebra reps upon 
fusion: (0;f) and (f;0) (& conjugates). 

non-perturbative    dual to 
perturbative
    scalar



M2 = ∆(∆− 2) ⇒ ∆ = 1 + λ .

Proposal

Contribution from all representations of the form
(*;0) is accounted for by adding to the hs theory 
a complex scalar field of the mass

−1 ≤M2 ≤ 0 with M2 = −(1− λ2) .

[Compatible with hs symmetry since hs theory has massive 
scalar multiplet with this mass.]

[MRG,Gopakumar]

[Vasiliev]

Corresponding conformal dimension then



Z(1)
scalar =

∞∏

l=0,l′=0

1
(1− qh+lq̄h+l′)

,

h =
1
2
∆ =

1
2
(1 + λ) .

Checks of proposal

Main evidence from 1-loop calculation:

Contribution of single real scalar to thermal partition
function is 

where

[Giombi, Maloney & Yin]



Z(1)
pert =

∞∏

s=2

∞∏

n=s

1
|1− qn|2 ×

∞∏

l,l′=0

1
(1− qh+lq̄h+l′)2

Total 1-loop partition function

The total perturbative 1-loop partition function of our 
AdS theory is then

We have shown analytically that this agrees exactly with 
CFT partition function of (*;0) representations in ‘t Hooft 
limit! [MRG,Gopakumar]

[MRG,Gopakumar,Hartman,Raju]

Strong consistency check!



(∗; ν) with ν "= 0

Non-perturbative states

The remaining states, i.e. those of the form

seem to correspond to conical defect solutions 
(possibly dressed with perturbative excitations).

[Castro, Gopakumar, Gutperle, Raeymaekers]
[MRG, Gopakumar]



Generalisations

Various generalisations of the proposal have also
been proposed and tested, in particular

‣ supersymmetric version

‣ orthogonal (instead of unitary) groups

[Creutzig, Hikida, Ronne]
[Candu, MRG]
[Henneaux,Gomez,Park,Rey]
[Hanaki,Peng]

[Ahn],  [MRG, Vollenweider]



Classical solutions

Another very interesting development concerns 
the classical solutions of the HS theory.

[Gutperle, Kraus, et.al.]

Very interesting lessons (that are maybe applicable
more generally): because of large HS gauge symmetry, 
usual GR tensors are not gauge invariant any longer! 

Characterisation of regular classical solutions is
therefore subtle! 



Black holes

However CS description allows for HS gauge 
invariant formulation. Using this point of view, 
black hole solutions for these theories have been 
constructed. [Gutperle,Kraus,et.al.]

Their entropy can be matched to dual CFT 
description. [Kraus,Perlmutter]

[MRG,Hartman,Jin]



Conclusions

Given strong evidence for duality between 

WN,k

λ =
N

N + k
and M2 = −(1− λ2)

λ

AdS3:
 higher spin theory
 with a complex 
 scalar of mass M

2d CFT:
             minimal models
    in large N ‘t Hooft limit   
    with coupling 

where



Conclusions

‣ The duality is non-supersymmetric.

‣ It allows for detailed precision tests: 
   spectrum, correlation functions, etc.

‣ Can shed maybe interesting light on 
   conceptual aspects of quantum gravity.



Main challenges

‣ Reproduce calculable quantum corrections of CFT
   from  

Higher Spin Quantum Gravity 
                 on AdS3 

‣ Understand deformation of classical hs symmetry
   in quantum theory. cf [Maldacena,Zhiboedov]


