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Problem about charged symmetric plane oscillator in the magnetic

field was solved by V.A. Fock (Zs. f. Phys. 47 (1928) 446-448). Two

years later for the particular case without oscillator field this result was

published by L.D. Landau. The corresponding energy levels are known

as Landau levels. Anisotropic case was considered by Margulis et al.

(1996,2004) and T.K. Rebane, ZheTF, 2012. Simple expressions for

wave functions were obtained only recently.
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Pedagogical. Solution of QM problem

At B = 0 the Hamiltonian reads Ĥ =
p̂2x + p̂2y
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.

Let magnetic field is directed along z-axis. Simplest description is in

gauge AAA = (0, Bx, 0). Now (ωB = eB/mc)

Ĥ =
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Problem – mixed term xp̂y.
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Solution – 1) canonical transformation Ŷ = −p̂y/(mω2), p̂Y = ymω2.

⇒ Ĥ⊥ =
p̂2x
2m

+
p̂2Y
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+mωBω2xŶ +
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2
.

2) Subsequent diagonalization is simple rotation:

(
x
Y

)
=

(
c s
−s c

)(
x1
x2

)
(c = cos θ, s = sin θ) and the same transformation for p̂x and p̂Y .

Ĥ =
p̂21
2m

+
mΩ2

1x̂
2
1

2
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)
with

Ω1,2 =
1

2

[√
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2 + ω2
B ±

√
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2 + ω2
B

]
,

E⊥(n1n2)
= ~Ω1(n1 +1/2) + ~Ω2(n2 +1/2) .
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The annihilation operators in the basic coordinates are

â1 =
1

2

√
mΩ1

~

(
cx− is

~
mω2

d
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+ c

~
mΩ1

d
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)
,

â2 =
1

2

√
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~

(
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~
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d
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− s

~
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d
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Ω2

)
.

The wave function of ground state is found from equations

â1ψ00(x, y) = â2ψ00(x, y) = 0 ⇒

ψ00(x, y) =

(
4c2ω1ω2

π2

)1/4
exp

(
−c(ω1x21 + ω2x

2
2) + ic12xy

)

where c =
m
√
ω2
B + (ω1 + ω2)

2

2~(ω1 + ω2)
, c12 =

mωBω2
~(ω1 + ω2)

≡
eBω2

~c(ω1 + ω2)
.
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For other wave function we have

ψn1n2 = (â+1 )n1(â+2 )n2ψ00/
√
n1!n2! .

Note that in the gauge (T.K. Rebane)

AAAR = B(−
ω2

ω1 + ω2
y,

ω1
ω1 + ω2

x, 0)

term c12 is absent.
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Hidden symmetries
With variation of a magnetic field our system passes through states

with hidden symmetries.

If magnetic field is such that Ω1 = rΩ2 with r = m/n, i.e. at

B = Br =
mc

e

√
ω1ω2(r − 1)2/r − (ω1 − ω2)

2 ,

the states become degenerated and additional conserved operators

appear

Ĉ
(1/r)
2 =

(
â+1z

)n
(â2z)

m , Ĉ
(2/r)
1 =

(
â+2z

)m
(â1z)

n .
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In particular, to get r = 2 we should have the magnetic field

B = B2 =
mc

e

√
ω1ω2/2− (ω1 − ω2)

2

and the additional conserved operators read

Ĉ
(1/2)
2 = â+1z (â2z)

2 , Ĉ
(2/2)
1 =

(
â+2z

)2
â1z.

In this case EN = ~Ω2(N + 3/2) (with N = 2n1 + n2). Degree of

degeneracy is n+1 for both N = 2n and N = 2n+1.
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For most of results the basic anisotropy is inessential, so that many
problems one can treat at ω1 = ω2. In this case Ω1 − Ω2 = ωB. ⇒
Ω1 describes rotation in the same direction as given by field, Ω2 – in
the opposite direction.

In the real system, the basic oscillator potential is an approximation
valid for distances smaller than some R. The levels En = ~ω(n+1/2)
can be described by a harmonic approximation at such n that the size
of wave function x0

√
n < R (here x0 =

√
~/(mω)).

If r = 1+1/p, first really degenerated state corresponds to n ≈ p. At
large p (r close to 1), it can be beyond harmonic region for potential.

Small unharmonic terms in the potential like εx2y result in redistribu-
tion of energy among modes like at Fermi resonance when magnetic
field pass through the mentioned critical value.
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How to observe?

We invite proposals.

1. The IR wave after passing through a plane with such oscillator ac-

quires a particular circular polarization according to the state (n1, n2)

of electron in a magnetic field. At the variation of magnetic field be-

yond resonance, this polarization varies weakly. After passing through

resonance value, this polarization state can changes strongly.
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Antioscillator (potential hill)
Questions

Let us consider initially unstable system

Ĥ =
p̂2x + p̂2y
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2y
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2
.

Whether magnetic field can stabilize this system (due to final value

of Larmor radius)? To simplify equations, we will write all only for

basically symmetric case.
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The same construction as above results in Hamiltonian at large enough

magnetic field

Ĥ =
p̂21
2m

+
mΩ2

1x̂
2
1

2m
−
(
p̂22
2m

+
mΩ2

2x̂
2
2

2m

)
with

En1n2 = ~Ω1(n1 +1/2)−~Ω2(n2 +1/2) ,

Ω1,2 =
1

2

[
ωB ±

√
ω2
B − 4ω2

]
1. Levels are discrete, but there is no ground state

2. Let Ω1/Ω2 = r.

If r = p/q is rational number, states are infinitely degenerated.

If r is irrational number, degeneracy is absent.
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Where such system may be realized?

Facts: All troubles are related to large distances from the top of
hill where harmonic approximation is broken. For the states localized
around this top our approximation may be good enough.

The possibilities

Let our potential is transformed to the approximately constant at
R > A.

One can consider the degenerated electron gas with Fermi level slightly
below 0. In this case all negative levels are occupied and some new
electron excitations correspond E ∼ 0. They may be described by our
hamiltonian.
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B. One can try to invent new set of problems. For systems, having

no regular ground state (antioscillator, attraction like g/r4, etc. one

can consider class of physical phenomena, for which these singular

effects are irrelevant.
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