Chern-Simons vector models and higher spins

Simone Giombi

Perimeter Institute

Ginzburg Conference, Moscow, June 1 2012

Simone Giombi (PI)

Chern-Simons and higher spins

∃ ► < ∃ ►</p> Lebedev Inst., Jun 1 2012 1 / 24

- 3

Outline

- The Klebanov-Polyakov-Sezgin-Sundell conjectures:
 - HS gravity in $AdS_4 \quad \leftrightarrow \quad$ 3d vector models
- Vasiliev's higher spin gauge theory in 4d
 - the "Type A" and "Type B" models
 - Parity violating models
- Chern-Simons theory with vector fermion matter
 - Exact planar thermal free energy on R^2
 - Higher spin symmetry at large N and conjectural AdS dual
- Summary and conclusions

Based on work with S. Minwalla, S. Prakash, S. Trivedi, S. Wadia, X. Yin

Klebanov-Polyakov-Sezgin-Sundell ('02) conjecture:

Vasiliev's minimal bosonic HS gravity in AdS_4 is dual to free or critical 3d O(N) vector model, in the O(N) singlet sector.

$$\begin{split} S &= \frac{1}{2} \int d^3 x \partial_\mu \phi^i \partial_\mu \phi^i & \leftrightarrow \quad \text{``type A'' HS gravity} \\ & (\Delta, S) = (1, 0)^+ + \sum_{s \text{ even}} (s + 1, s) \\ S &= \int d^3 x \psi^i \gamma^\mu \partial_\mu \psi^i & \leftrightarrow \quad \text{``type B'' HS gravity} \\ & (\Delta, S) = (2, 0)^- + \sum_{s \text{ even}} (s + 1, s) \end{split}$$

- Critical theories: interacting fixed points reached after perturbing these free theories by quartic interaction. Correspond to change of boundary condition on the bulk scalar field in the HS gravity side.
- Non-minimal versions (all integer spins): vector models with complex fields in U(N) singlet sector.

Simone Giombi (PI)

Klebanov-Polyakov-Sezgin-Sundell ('02) conjecture:

Vasiliev's minimal bosonic HS gravity in AdS_4 is dual to free or critical 3d O(N) vector model, in the O(N) singlet sector.

- Why vector models? A free gauge theory of SYM type also has HS cunserved currents $J_{s} \sim \text{Tr} \Phi \partial^{s} \Phi$. But in addition there are many more single trace operators $\operatorname{Tr} \Phi \partial^{k_1} \Phi \partial^{k_2} \Phi \cdots \partial^{k_n} \Phi$, which should be dual to massive fields in the bulk.
- In a vector theory, operators of the form $(\phi^i \partial \cdots \partial \phi^i)(\phi^j \partial \cdots \partial \phi^j)$ are analogous to multi-trace operators and should be thought as multi-particle states from bulk point of view.
- A vector model has precisely the right spectrum to be dual to a *pure* HS gauge theory!

Klebanov-Polyakov-Sezgin-Sundell ('02) conjecture:

Vasiliev's minimal bosonic HS gravity in AdS_4 is dual to free/critical 3d O(N) vector model, in the O(N) singlet sector.

- The restriction to singlet sector is important to match boundary and bulk spectrum. It may be implemented by gauging the O(N) symmetry and taking a limit of zero gauge coupling. In practice, we may couple the vector field to a Chern-Simons gauge field at level k, and take the limit $k \to \infty$.
- This suggests it may be interesting to study more generally vector models coupled to Chern-Simons at finite coupling (i.e. finite λ = N/k in the large N limit).

5 / 24

イロト 不得 とうせい かほとう ほ

The Vasiliev's equations

- Master fields:
 - 1. $W(x|y, \bar{y}, z, \bar{z}) = W_{\mu}dx^{\mu}$ 2. $S(x|y, \bar{y}, z, \bar{z}) = S_{\alpha}dz^{\alpha} + S_{\dot{\alpha}}d\bar{z}^{\dot{\alpha}}$ 3. $B(x|y, \bar{y}, z, \bar{z})$ x^{μ} : spacetime, $y_{\alpha}, \bar{y}_{\dot{\alpha}}, z_{\alpha}, \bar{z}_{\dot{\alpha}}$: twistor variables. 1-form in (z, \bar{z}) -space scalar

• Collecting W and S into the 1-form $\mathcal{A} = W_{\mu}dx^{\mu} + S_{\alpha}dz^{\alpha} + S_{\dot{\alpha}}d\bar{z}^{\dot{\alpha}}$, Vasiliev's equation can be written as

$$d\mathcal{A} + \mathcal{A} * \mathcal{A} = \mathcal{V}(B * \kappa)dz^{2} + \bar{\mathcal{V}}(B * \bar{\kappa})d\bar{z}^{2}$$
$$dB + \mathcal{A} * B - B * \pi(\mathcal{A}) = 0$$

6 / 24

イロト イポト イヨト イヨト 二日

The Vasiliev's equations

$$d\mathcal{A} + \mathcal{A} * \mathcal{A} = \mathcal{V}(B * \kappa)dz^{2} + \bar{\mathcal{V}}(B * \bar{\kappa})d\bar{z}^{2}$$
$$dB + \mathcal{A} * B - B * \pi(\mathcal{A}) = 0$$

• Up to field redefinitions, $\mathcal{V}(X)$ can be put in the form

 $\mathcal{V}(X) = X \exp_*(i\Theta(X)),$ $\Theta(X) = \theta_0 + \theta_2 X * X + \theta_4 X * X * X * X + \dots$

An infinite family of HS gravity theories in 4d. Same spectrum, but a choice of $\Theta(X)$ characterizes the *interactions* in the theory. (e.g. θ_0 affects 3-point interactions. $\theta_2, \theta_4, \ldots$ enter in higher-point functions)

Simone Giombi (PI)

Parity

- If we impose that the theory has a parity symmetry only two inequivalent choices are left
 - Θ(X) = 0, i.e. V(X) = X if B is parity even
 Θ(X) = π/2, i.e. V(X) = iX if B is parity odd

which correspond respectively to the "type A" and "type B" models, conjecturally dual to scalar/fermion vector models (free or critical).

- If we do not require parity symmetry, we have a large class of possible parity breaking HS gravity theories parameterized by a choice of the function Θ(X), or parameters θ₀, θ₂,....
- At least classically, these are all consistent HS theories in AdS₄. One may ask what are the dual CFTs.

イロト 不得 とくほ とくほ とうしょう

Chern-Simons vector model

SG, S. Minwalla, S. Prakash, S. Trivedi, S. Wadia, X. Yin 2011

 Consider the 3d theory of a fundamental massless fermion coupled to a U(N) Chern-Simons gauge field at level k

$$S = rac{k}{4\pi}S_{CS}(A) + \int d^3x\,ar\psi_i\gamma^\mu D_\mu\psi^i \qquad i=1,\ldots,N$$

- In 3d, ψ has dimension 1, and the only marginal coupling is the Chern-Simons coupling k. This cannot run because it is quantized to be integer.
- Fine-tuning the mass of the fermion to zero, we obtain a family of interacting CFT's labelled by two integers *k*, *N*.
- Taking k→∞, this reduces to the singlet sector of the free fermionic vector model dual to Vasiliev's type B theory.

Chern-Simons vector model

$$S = \frac{k}{4\pi}S_{CS}(A) + \int d^3x \, \bar{\psi}_i \gamma^{\mu} D_{\mu} \psi^i \qquad i = 1, \dots, N$$

• We will be interested in the large N 't Hooft limit

 $N \to \infty, k \to \infty$ with $\lambda = \frac{N}{k}$ fixed

- In this limit, we effectively have a *continuous line* of non-susy CFT's parameterized by λ. At λ = 0 we reduce to the free fermionic vector model.
- All I said so far applies for fermion being in any representation, e.g. the adjoint. However, working with a vector fermion entails several simplifications so that exact results become possible.
- The analogous Chern-Simons bosonic vector model has been studied in parallel to our work in *Aharony et. al., 2011*. Also, interesting work in progress on susy extensions of these Chern-Simons vector models (see X. Yin talk).

Simone Giombi (PI)

Chern-Simons vector model

- I will discuss in particular two interesting results about the large N limit of this Chern-Simons vector model
 - 1. The *exact* free energy of the theory on R^2 at finite temperature

 $F = -T \log Z_{R^2 \times S^1_{\beta}} = -h(\lambda) NV_2 T^3$

 $h(\lambda)$ is a non-trivial function which we can compute *exactly* in λ .

At N→∞, for all λ, the theory admits an ∞-dimensional higher spin symmetry, i.e. there is an infinite tower of HS currents J_s, s = 1, 2, 3, ... which are conserved at large N, so that

$$\Delta(J_s) = s + 1 + \mathcal{O}(\frac{1}{N}) \qquad \forall \ \lambda$$

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Exact thermal free energy

- The Chern-Simons gauge field does not carry propagating degrees of freedom, so the theory is still essentially a vector model, and we expect it to be simpler than a typical large N gauge theory.
- However, the cubic self-interaction of the CS gauge field still makes perturbation theory complicated in general.
- Drastic simplifications can be achieved in a convenient gauge. We employ the "*light-cone gauge*"

$$A_{-} = 0 \qquad \qquad x^{\pm} = x^{1} \pm ix^{2}$$

Here x^1, x^2 are the Euclidean coordinates on \mathbb{R}^2 . The Euclidean time direction is x^3 , which will be compactified on a circle of radius $\beta = 1/T$.

 In this gauge, the cubic self-interaction vanishes, and the large N free energy can be solved exactly.

Simone Giombi (PI)

Exact fermion propagator

• The basic ingredient we need to get the free energy is the exact fermion propagator

$$\langle \psi(\pmb{
ho})^i ar{\psi}(-\pmb{
ho})_j
angle = \delta^j_i rac{1}{i \pmb{
ho}_\mu \gamma_\mu + \pmb{\Sigma}(\pmb{
ho})}$$

• $\Sigma(p)$ is the exact fermion self-energy. In the light-cone gauge and in the planar limit, it receives contributions only from 1PI rainbow diagrams

• Note that diagrams with matter loops do not contribute at leading order at large *N*, because the fermion is in the fundamental.

Simone Giombi (PI)

Chern-Simons and higher spins

Lebedev Inst., Jun 1 2012

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q (>

Exact fermion propagator

 It is not difficult to see that the sum of rainbow diagrams contributing to Σ(p) satisfies the Schwinger-Dyson equation

$$\Sigma(p) = rac{N}{2} \int rac{d^3 q}{(2\pi)^3} \left(\gamma^\mu rac{1}{i \gamma^lpha q_lpha + \Sigma(q)} \gamma^
u
ight) G_{\mu
u}(p-q)$$

- Here $G_{\mu\nu}(p)$ is the light-cone A_{μ} propagator: $G_{+3} = -G_{3+} = \frac{4\pi i}{kp^+}$.
- At finite temperature, we impose antiperiodic b.c. on the fermion, so

$$q^3 = rac{2\pi}{eta}(n+1/2), \qquad \int d^3q
ightarrow \int d^2q \sum_{\mathbb{Z}+1/2}$$

Exact fermion propagator

- Employing the "dimensional reduction" scheme to regulate the loop integrals (shown to be consistent in CS-matter theories by *Chen, Semenoff, Wu '92* up to 2-loops), we solved the Schwinger-Dyson equation explicitly.
- The solution takes the form

$$\Sigma(p) = f(\beta p_s) p_s + i g(\beta p_s) p^- \gamma^+ \qquad p_s^2 \equiv p_1^2 + p_2^2$$

with

$$f(y) = \frac{2\lambda}{y} \log\left(2\cosh\left[\frac{1}{2}\sqrt{c^2 + y^2}\right]\right), \qquad g(y) = \frac{c^2}{y^2} - f(y)^2$$
$$c = 2\lambda \log\left(2\cosh\frac{c}{2}\right)$$

The equation determining c = c(λ) has no solutions for |λ| ≥ 1. We conclude that the CFT is defined only for 0 ≤ |λ| < 1.

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Exact thermal free energy

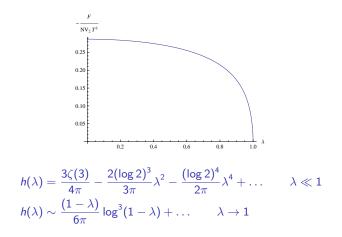
 Once we have the exact fermion self-energy Σ, one may show by path integral or diagrammatically that the free energy is given in terms of Σ by

$$F = NV_2 T \sum_{n} \int \frac{d^2 q}{(2\pi)^2} \operatorname{Tr}\left[\log\left[i\gamma^{\mu}q_{\mu} + \Sigma(q)\right] - \frac{1}{2}\Sigma(q)\left(\frac{1}{i\gamma^{\mu}q_{\mu} + \Sigma(q)}\right)\right]$$

• Performing the integral and sum, the final result is

$$F = -\frac{NV_2T^3}{6\pi} \left[c^3 \frac{1-\lambda}{\lambda} + 6 \int_c^\infty dy \ y \log\left(1 + e^{-y}\right) \right] \equiv -NV_2T^3h(\lambda)$$

where $c = c(\lambda)$ is the constant introduced earlier.



The function h(λ) decreases monotonically from the free field value to zero at λ = 1. Extreme thinning of d.o.f. at "strong coupling". For comparison, in ABJM model we have h(λ) ~ 1/√λ at λ → ∞.

Higher spin symmetry at large N

 Recall that in the free theory (λ = 0), the spectrum of U(N) invariant single trace primaries is

$$J_0 = \bar{\psi}_i \psi^i, \qquad J_s \sim \bar{\psi}_i \gamma_{(\mu_1} \partial_{\mu_2} \cdots \partial_{\mu_s)} \psi^i + \dots$$

- In the interacting theory, these can be made gauge invariant by $\partial_{\mu} \rightarrow D_{\mu}$. The CS sector does not add any further single-trace primaries, because $(F_{\mu\nu})^i_i \sim \frac{1}{k} \bar{\psi}_j \gamma^{\rho} \psi^i \epsilon_{\mu\nu\rho}$ by e.o.m.
- In the free theory ∂ · J_s = 0, i.e. J_s are in short representations of the conformal algebra with (Δ, S) = (s + 1, s).
- Turning on the interaction, we expect the currents not to be conserved any more and to acquire anomalous dimension Δ_s = s + 1 + ε_s(λ, N).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Higher spin symmetry at large N

• But for the currents to become non-conserved at $\lambda \neq \mathbf{0},$ we must have

 $\partial \cdot J_s \sim \lambda \mathcal{O}^{(s+2,s-1)}$

In other words, there must be an operator in the (s + 2, s - 1) representation with which J_s can combine to form a long representation.

- At N = ∞, single trace operators can only combine with other single trace operators. But there are no single-trace primaries in the spectrum with quantum numbers (s + 2, s − 1)!
- Therefore we conclude that at N = ∞, for all λ, the currents are still conserved, which implies

$$\Delta(J_s) = s + 1 + \mathcal{O}(\frac{1}{N}) \qquad \forall \ \lambda$$

• The vector nature of ψ is essential for this to work.

Higher spin symmetry at large N

• What happens is that, at finite *N*, *J*_s can (and does) combine with "multi-trace" operators. The non-conservation equation takes the schematic form

$$\partial \cdot J_{s} \sim \frac{f(\lambda)}{\sqrt{N}} \sum \partial^{m} J_{s_{1}} \partial^{n} J_{s_{2}} + \frac{g(\lambda)}{N} \sum \partial^{m} J_{s_{1}} \partial^{n} J_{s_{2}} \partial^{p} J_{s_{3}}$$

• The argument above implies that the HS currents do not have anomalous dimensions in the planar limit. But one can in fact argue that the scalar J_0 has protected dimension as well

$$\Delta(J_0)=2+\mathcal{O}(\frac{1}{N})$$

which we have checked perturbatively to two-loop order.

Comments on the holographic dual

- At $\lambda = 0$, we know that the theory should be dual to the Vasiliev's "type B" theory. So the holographic dual should be some deformation of it.
- Turning on $\lambda,$ we have seen that the spectrum of "single trace" primaries is

$$(\Delta, S) = (2 + \mathcal{O}(\frac{1}{N}), 0) + \sum_{s=1}^{\infty} (s + 1 + \mathcal{O}(\frac{1}{N}), s)$$

which implies that the dual bulk spectrum should contain classically massless higher spin fields and a $m^2 = -2$ scalar.

- The HS fields (and the scalar) can acquire mass via loop-corrections, but the bulk classical equations of motion should have exact higher spin gauge symmetry (to decouple longitudinal polarizations).
- Hence, the holographic dual should still be a higher spin gauge theory (with HS symmetry broken at quantum level), and it should break parity due to the boundary Chern-Simons term.

Simone Giombi (PI)

Comments on the holographic dual

• The only parity breaking higher spin gravity theory currently known is Vasiliev's theory specified by the general "interaction phase"

$$\Theta(X) = \theta_0 + \theta_2 X * X + \dots$$

• A natural conjecture is then that our Chern-Simons vector model is dual to the parity breaking Vasiliev's theory with some specific choice

 $\theta_0(\lambda), \quad \theta_2(\lambda), \quad \dots$

with the condition that $\theta_0(\lambda \to 0) = \frac{\pi}{2}$, $\theta_{2,4,\dots}(\lambda \to 0) = 0$.

 We do not know a priori how to determine the phase as a function of λ. But we can in principle compute perturbatively correlators on both sides and compare.

Comments on the holographic dual

 From considerations based on the softly broken HS symmetry purely on CFT side, Maldacena-Zhiboedov showed that 3pt functions should be a sum of free boson, free fermion and a parity odd tensor structure

 $\langle J_{s_1}J_{s_2}J_{s_3}\rangle = \cos^2\theta_0 \langle J_{s_1}J_{s_2}J_{s_3}\rangle_B + \sin^2\theta_0 \langle J_{s_1}J_{s_2}J_{s_3}\rangle_F + \sin\theta_0\cos\theta_0 \langle J_{s_1}J_{s_2}J_{s_3}\rangle_{odd}$

Confirmed by a direct 2-loop calculation in the CS-fermion theory, which gives $\theta_0(\lambda) = \frac{\pi}{2}(1-\lambda) + O(\lambda^3)$.

- From the bulk calculation in Vasiliev's theory with general phase θ_0 , we get such a decomposition, with $\langle JJJ \rangle_B$ and $\langle JJJ \rangle_F$ correctly coming out. However currently the coefficient of $\sin \theta_0 \cos \theta_0$ appears to vanish...
- The appearance of the odd structure should just follow from symmetries as shown by MZ, strongly suggesting that we are missing something in the bulk calculation.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Summary and conclusion

- Chern-Simons vector models define lines of interacting CFT's with lagrangian description. They have approximate higher spin symmetry at large *N*.
- We proposed a generalization of the KPSS conjecture which involves a parity breaking version of Vasiliev's HS gravity. Partial evidence, still work in progress.
- Some future directions
 - Higher-point functions from bulk and CFT
 - Study of exact solutions and their CFT interpretation
 - Free energy from the bulk HS theory? (Bulk action?)
 - Susy extensions and relation to string theory
 - Extensions to higher dimensions
 - . . .