Influence of a magnetic field on the chiral/deconfining phase transition

E.-M. Ilgenfritz VBLHEP JINR Dubna

in collaboration with M. Kalinowski, A. Schreiber, M. Müller-Preussker, B. Petersson (Humboldt-University Berlin)

Ginzburg Conference on Physics

Moscow, Lebedev Institute, May 28 – June 2, 2012

Outline:

- **1.** Introduction
- 2. Previous non-quenched lattice studies
- **3.** Our SU(2) lattice model
- 4. How to couple an external constant magnetic field *B* to the non-Abelian gauge field ?
- 5. The influence of an external magnetic field on the chiral condensate and on the critical temperature
- 6. The chiral limit of the chiral condensate
- 7. Conclusions and outlook

1. Introduction

Very strong magnetic fields may exist (or have existed)

- during the electroweak phase transition $(\sqrt{eB} \sim 1 2 \text{ GeV})$
- in the interior of dense neutron stars (magnetars) $(\sqrt{eB} \sim 1 \text{ MeV})$
- in noncentral heavy ion collisions at RHIC (\sqrt{eB} ~ 100 MeV) and LHC (\sqrt{eB} ~ 500 MeV),
 because antiparallel currents of the spectators create a strong magnetic field

Such strong magnetic fields may lead to

- a strengthening of the chiral symmetry breaking at low temperature (increase of the chiral condensate, increase of F_{π} , decrease of M_{π}) also known as "magnetic catalysis"
- a change of the finite temperature chiral transition both in temperature (T_c) and in strength (eventually even changing the order)
- the chiral magnetic effect (CME): induced by a background of definitesign topological density, an event-by-event charge asymmetry could be generated in non-central heavy ion collisions

Chiral model at T = 0 (Shushpanov, Smilga, '97)

$$<\bar{\psi}\psi>_B=<\bar{\psi}\psi>_0\left(1+\frac{1}{F_{\pi}^2}\frac{(eB)^2}{96\pi^2M_{\pi}^2}+\mathcal{O}\left(\frac{(eB)^4}{F_{\pi}^4M_{\pi}^4}\right)\right)$$

In the chiral limit, $M_{\pi} \ll \sqrt{eB} \ll 2\pi F_{\pi} \sim \Lambda_{hadr}$:

from J. Schwinger's ('51) solution

$$<\bar{\psi}\psi>_{B}=<\bar{\psi}\psi>_{0}\left(1+\frac{1}{F_{\pi}^{2}}\frac{(eB)\log 2}{16\pi^{2}}+\mathcal{O}\left(\frac{(eB)^{2}}{F_{\pi}^{4}},\frac{(eB)^{2}}{\Lambda_{hadr}^{4}}\right)\right)$$
$$M_{\pi^{0}}(B)=M_{\pi^{0}}(0)\left(1-\frac{1}{F_{\pi}^{2}}\frac{(eB)\log 2}{16\pi^{2}}+\ldots\right)$$
$$F_{\pi}(B)=F_{\pi}(0)\left(1+\frac{1}{F_{\pi}^{2}}\frac{(eB)\log 2}{8\pi^{2}}+\ldots\right)$$
$$M_{\pi^{+}}(B)=M_{\pi^{-}}(B)\propto\sqrt{eB}$$

Strong fields $\sqrt{eB} \gg F_{\pi}, M_{\pi}, \Lambda_{hadr}$ or in deconfined phase $(T > T_c)$

 $\langle \bar{\psi}\psi \rangle_B \sim |eB|^{3/2} \implies \mathbf{e}B$ the only scale

Dyson-Schwinger equations suggest a selfconsistent quark mass:

$$m_q(B) \sim \sqrt{|eB|} \exp\left[-\sqrt{\pi/(\alpha_s c_F)}\right]$$

$$<\bar{\psi}\psi>_B\sim |eB|^{3/2}\exp\left[-\frac{\pi}{2}\sqrt{\pi/(2\alpha_s c_F)}\right]$$

where $\alpha_s \equiv \alpha_s(|eB|)$

Effective models on the influence of eB on the transition ?

• Splitting of chiral and deconfining transition with increasing magnetic field is in different effective models predicted by

K. Fukushima, M. Ruggieri, R. Gatto, Phys. Rev. D 81 (2010) 114031 (PNJL-model)

A. J. Mizher, M. N. Chernodub, E. S. Fraga, Phys. Rev. D 82 (2010) 105016 (quark-meson model)

R. Gatto, M. Ruggieri, Phys. Rev. D 82 (2010) 054027 Both transitions enhanced by the magnetic field, chiral transition temperature rises with increasing eB !

- R. Gatto, M. Ruggieri [arXiv:1012.1291] improved non-local Polyakov-NJL models (fitting lattice data at zero and imaginary chemical potential) predict: Both transitions remain entangled with each other !
- K. Fukushima, J. M. Pawlowski [arXiv:1203.4331] Chiral transition temperature is increasing with increasing magnetic field; influence of quantum fluctuations is studied in FRG approach.

2. Previous non-quenched lattice studies (with controversial results)

All with staggered fermions. All with $N_c = 3$ colors.

- M. D'Elia, S. Mukherjee, F. Sanfilippo, Phys. Rev. D 82 (2010) 051501(R) $N_f = 2$ flavours, unimproved fermion action. At fixed lattice spacing a = 0.3 fm. Different quark masses corresponding to $m_{\pi} = 200...480$ fm. \Rightarrow slightly rising transition temperature $\frac{T_c(B)}{T_c(0)} = 1 + A \left(\frac{|eB|}{T^2}\right)^{1.45}$
- G. S. Bali, F. Bruckmann, G. Endrödi, Z. Fodor, S. D.Katz, S. Krieg, A. Schäfer, K. K. Szabo, JHEP 1202 (2011) 044

 $N_f = 2 + 1$ flavours, stout-link improved fermion action.

Continuum limit probed with $N_{\tau} = 6, 8, 10$

Finite volume effects probed at $N_{\tau} = 6$

Different quark masses for u, d and s quarks

 \Rightarrow significantly decreasing transition temperature,

transition strength increasing with the magnetic field strength.

3. Our SU(2) lattice model

arXiv:1203.3360, Physical Review D in print

Our simplified quark-gluon matter:

- colour SU(2) replaces SU(3),
- staggered fermions without rooting of the fermionic determinant,
 i.e. N_f = 4 flavours,
- consequence: unique e.-m. charge of all quarks.

Why this model?

- Very similar chiral behaviour as in SU(3) colour.
- Much faster to simulate. Can easily take the chiral limit.
- We use a farm of PC's (and recently GPU's).
- Educational aspect: nice model to be proposed for master students.

Further intentions with SU(2)

- Can be extended to finite baryon chemical potential without sign problem.
- Topology (important also for the CME) can be studied in a more simple case.
- Dyons (as caloron constituents) under magnetic field.

Pioneering calculations with magnetic field have been done in quenched SU(2) working with - chirally optimal - overlap fermions (and a set of low-lying eigenvalues):

Braguta, Buividovich, Chernodub, Lushchevskaya, Polikarpov,...

We have studied the respective unquenched case with dynamical quarks.

Lattice gauge action: built of elementary closed (Wilson) loops ("plaquettes")

$$U_{n,\mu\nu} \equiv U_{n,\mu} U_{n+\hat{\mu},\nu} U_{n+\hat{\nu},\mu}^{\dagger} U_{n,\nu}^{\dagger}, \qquad U_{n,\mu} \in SU(N_c)$$

$$\begin{split} S_G^W &= \beta \sum_{n,\mu < \nu} \left(1 - \frac{1}{N_c} \operatorname{Re} \operatorname{tr} U_{n,\mu\nu} \right), \quad \beta = \frac{2N_c}{g_0^2} \\ &= \frac{1}{2} \sum_n a^4 \operatorname{tr} G^{\mu\nu} G_{\mu\nu} + O(a^2), \\ &\to \frac{1}{2} \int d^4 x \operatorname{tr} G^{\mu\nu} G_{\mu\nu}. \end{split}$$

Continuum limit:

$$a(g_0) = \frac{1}{\Lambda_{Latt}} (\beta_0 g_0^2)^{-\frac{\beta_1}{2\beta_0^2}} \exp\left(-\frac{1}{2\beta_0 g_0^2}\right) (1 + O(g_0^2)).$$

$$\implies \quad a \to 0 \quad \text{for} \quad g_0 \to 0 \quad (\text{or } \beta \to \infty), \quad asymptotic freedom.$$

For $SU(N_c)$ and N_f massless fermions, independent of renormalization scheme:

$$\beta_0 = \frac{1}{(4\pi)^2} \left(\frac{11}{3} N_c - \frac{2}{3} N_f \right), \qquad \beta_1 = \frac{1}{(4\pi)^4} \left(\frac{34}{3} N_c^2 - \frac{10}{3} N_c N_f - \frac{N_c^2 - 1}{N_c} N_f \right).$$

Staggered fermion action

Kogut, Susskind, '75

their steps towards staggered quarks consisted of

- Use naive discretization and diagonalize the action with respect to spinor degrees of freedom.
- Neglect three out of four degenerate Dirac components.
- Attribute the 16 fermionic degrees of freedom, localized around one elementary hypercube, to four tastes.

Chiral symmetry restored \iff flavor symmetry broken.

Naturally, the mass-degenerated four-flavor case is described by this setting.

Path integral quantization for Euclidean time \implies 'statistical averages'. Fermions handled as anticommuting Grassmann variables \implies analytically integrated \Rightarrow non-local effective action $S^{eff}(U)$.

'Partition function' describing $N_f = 4$ mass-degenerate staggered flavors:

$$Z = \int [dU] [d\psi] [d\bar{\psi}] e^{-S^G(U) + \bar{\psi}M(U)\psi}$$

= $\int [dU] e^{-S^G(U)} \operatorname{Det}M(U)$
= $\int [dU] e^{-S^{eff}(U)}, \quad S^{eff}(U) = S^G(U) - \log(\operatorname{Det}M(U))$

with $M(U) \equiv D_{\text{Latt}}(U) + m$.

Simulation performed on a finite lattice $N_t \times N_s^3$, with temporally (anti-) periodic boundary conditions for gluons (quarks).

Most simulations are using the rooting prescription: for $N_f = 2 + 1 \ (+1)$ 4th-root of the fermionic determinant is taken for each flavor \implies Locality violated ? Much debated ! **Non-zero temperature** $T \equiv 1/L_t = 1/(N_t \ a(\beta))$:

this work: T varied by changing β at fixed N_t

alternatively (fixed-scale approach): changing N_t at fixed β (simulation in progress).

Order parameters:

Polyakov loop: $L(\vec{x}) \equiv \frac{1}{N_c} \operatorname{tr} \prod_{x_4=1}^{N_t} U_4(\vec{x}, x_4), \qquad \langle L(\vec{x}) \rangle = \exp(-\beta F_Q),$

 F_Q = free energy of an isolated infinitely heavy quark.

 $\implies F_Q \to \infty, \text{ i.e. } \langle L(\vec{x}) \rangle \to 0 \text{ within the confinement phase (for } T < T_c).$ $\implies \langle L(\vec{x}) \rangle \text{ order parameter for the deconfinement transition (at } T = T_c).$

Chiral condensate: $\langle \bar{\psi}\psi \rangle$ (here obtained from a stochastic estimator) order parameter for chiral symmetry breaking $(T < T_c)$ and restoration $(T > T_c)$. Find critical T_c (or β_c) from maxima of susceptibilities of $L(\vec{x})$ and/or $\bar{\psi}\psi$. This is possible in our model.

In real QCD (assuming, say O(4) universality) the transition temperature is determined from a fit of the condensate to the "magnetic equation of state" (i.e. the scaling function of J. Engels et al.).

Fixing the physical scale:

T > 0calculations done on lattices of size: $16^3 \times 6$ $(24^3 \times 6)$ T = 0calculations for calibration at each β : $16^3 \times 32$

The lattice unit scale $a(\beta)$ fixed via scale parameter r_0 (R. Sommer, '94), numerically assumed to be the same as in real QCD:

Compute static force F(r) = dV/dr phenomenologically well-known from $\bar{c}c$ - or $\bar{b}b$ -potential $V_{\bar{Q}Q}$:

$$F(r_0) \ r_0^2 \equiv 1.65 \quad \leftrightarrow \quad r_0 \simeq 0.468(4) \text{ fm}$$

Then, determine e.g. the pion mass m_{π} .

For T = 0, ma = 0.01, B = 0 we obtain at $\beta = 1.80$ (this is $\simeq \beta_c$ for $N_t = 6$). a = 0.170(5) fm $m_{\pi} = 330(10)$ MeV $T_c = 193(6)$ MeV

4. How to couple an external constant magnetic field B to the non-Abelian gauge field ?

$$\bar{B} = (0, 0, B)$$
 $\bar{A}(\bar{r}) = \frac{B}{2}(-y, x, 0)$

On the lattice we use the compact formulation. Constant magnetic field \equiv constant magnetic flux $\phi = a^2(eB)$ through all (x, y) plaquettes.

On the links, in addition to the non-Abelian transporters, define U(1) elements both coupled to quark fields in the lattice covariant derivative.

$$V_x(\bar{r}, \tau) = e^{-i\phi y/2}$$

$$V_y(\bar{r}, \tau) = e^{i\phi x/2}$$

$$V_x(N_s, y, z, \tau) = e^{-i\phi(N_s + 1)y/2}$$

$$V_y(x, N_s, z, \tau) = e^{i\phi(N_s + 1)x/2}$$

Flux will be quantized: $\phi = \frac{2\pi N_b}{N_S^2}$ $N_b = 1, 2, ...$ DeGrand, Toussaint '80 Typical field strength for $\beta = 1.80 \simeq \beta_c$, $N_b = 50 \iff \sqrt{(eB)} \simeq O(1 \text{ GeV})$

Electromagnetic and non-Abelian field are indirectly coupled, via fermions.

5. The influence of an external magnetic field on the chiral condensate and on the critical temperature

Saturation behavior for various β (V_{μ} periodic in ϕ):

β -dependence (\equiv T dependence) of the bare chiral condensate

 $\langle \bar{\psi}\psi \rangle$ increases with B for all $\beta \longrightarrow T_c$ increases

Polyakov loop

Susceptibilities

 $B \nearrow \Rightarrow T_c \nearrow$ is coherently shifted, no splitting into two transitions

Spatial anisotropy of plaquette averages:

confined phase, $\beta = 1.7$

plaquette anisotropy

 $N_b = 0$

 $N_b = 50$

transition region, $\beta = 1.9$

Spacelike-timelike plaquette differences \propto energy density

deconfined phase, $\beta = 2.1$

6. The chiral limit of the chiral condensate

Confined phase, $\beta = 1.7$

CE1: $a^3 < \bar{\psi}\psi >= a_0 + a_1\sqrt{ma} + a_2ma$ **CE2:** $a^3 < \bar{\psi}\psi >= b_0 + b_1ma\log ma + b_2ma$) **FS** = check for finite-size effects with $24^3 \times 6$.

The chiral condensate as a function of the flux for various values of ma and with two chiral extrapolations

The slope at ma = 0 can be compared with chiral model $\Rightarrow F_{\pi} \approx 60$ MeV

The chiral condensate, transition region, $\beta=1.9$

The chiral condensate, deconfined phase, $\beta = 2.1$

7. Conclusions and outlook

- We have investigated how a finite temperature system reacts to a constant external magnetic field, in two-colour QCD.
- In the confined phase the chiral condensate increases with the magnetic field strength as predicted by a chiral model, even a semi-quantitative agreement is achieved.
- The transition temperature increases with the magnetic field strength. Probably a generic result.
- The chiral condensate goes to zero in the deconfined region for all values of the magnetic field.
- Simulations in the fixed-scale approach are running on GPU.

We hope to come back to

• Topology and dyon structure at non-vanishing chemical potential with and without magnetic field.