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1. Introduction

Very strong magnetic fields may exist (or have existed)

• during the electroweak phase transition (
√
eB ∼ 1 − 2 GeV)

• in the interior of dense neutron stars (magnetars) (
√
eB ∼ 1 MeV)

• in noncentral heavy ion collisions at RHIC (
√
eB ∼ 100 MeV)

and LHC (
√
eB ∼ 500 MeV),

because antiparallel currents of the spectators create

a strong magnetic field



Non-central heavy ion collision Kharzeev, McLerran, Warringa, ’08
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Such strong magnetic fields may lead to

• a strengthening of the chiral symmetry breaking at low temperature

(increase of the chiral condensate, increase of Fπ, decrease of Mπ)

also known as “magnetic catalysis”

• a change of the finite temperature chiral transition

both in temperature (Tc) and in strength

(eventually even changing the order)

• the chiral magnetic effect (CME): induced by a background of definite-

sign topological density, an event-by-event charge asymmetry could be

generated in non-central heavy ion collisions



Chiral model at T = 0 (Shushpanov, Smilga, ’97)

< ψ̄ψ >B=< ψ̄ψ >0

(

1 + 1
F 2

π
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96π2M2
π
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(eB)4

F 4
πM

4
π
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In the chiral limit, Mπ ≪
√
eB ≪ 2πFπ ∼ Λhadr:

from J. Schwinger’s (’51) solution

< ψ̄ψ >B=< ψ̄ψ >0

(
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F 2

π

(eB) log 2
16π2 + O
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F 4
π
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Mπ0(B) = Mπ0(0)
(

1 − 1
F 2

π

(eB) log 2
16π2 + . . .

)

Fπ(B) = Fπ(0)
(

1 + 1
F 2

π

(eB) log 2

8π2 + . . .
)

Mπ+(B) = Mπ−(B) ∝
√
eB



Strong fields
√
eB ≫ Fπ,Mπ,Λhadr

or in deconfined phase (T > Tc)

< ψ̄ψ >B∼ |eB|3/2 =⇒ eB the only scale

Dyson-Schwinger equations suggest a selfconsistent quark mass:

mq(B) ∼
√

|eB| exp
[

−
√

π/(αscF )
]

< ψ̄ψ >B∼ |eB|3/2 exp
[

−π
2

√

π/(2αscF )
]

where αs ≡ αs(|eB|)

Effective models on the influence of eB on the transition ?



• Splitting of chiral and deconfining transition with increasing magnetic field

is in different effective models predicted by

K. Fukushima, M. Ruggieri, R. Gatto, Phys. Rev. D 81 (2010) 114031

(PNJL-model)

A. J. Mizher, M. N. Chernodub, E. S. Fraga, Phys. Rev. D 82 (2010) 105016

(quark-meson model)

R. Gatto, M. Ruggieri, Phys. Rev. D 82 (2010) 054027

Both transitions enhanced by the magnetic field,

chiral transition temperature rises with increasing eB !

• R. Gatto, M. Ruggieri [arXiv:1012.1291]

improved non-local Polyakov-NJL models (fitting lattice data

at zero and imaginary chemical potential) predict:

Both transitions remain entangled with each other !

• K. Fukushima, J. M. Pawlowski [arXiv:1203.4331]

Chiral transition temperature is increasing with increasing magnetic field;

influence of quantum fluctuations is studied in FRG approach.



2. Previous non-quenched lattice studies

(with controversial results)

All with staggered fermions. All with Nc = 3 colors.

• M. D’Elia, S. Mukherjee, F. Sanfilippo, Phys. Rev. D 82 (2010) 051501(R)

Nf = 2 flavours, unimproved fermion action. At fixed lattice spacing a = 0.3 fm.

Different quark masses corresponding to mπ = 200...480 fm.

⇒ slightly rising transition temperature Tc(B)
Tc(0) = 1 + A

(

|eB|
T 2

)1.45

• G. S. Bali, F. Bruckmann, G. Endrödi, Z. Fodor, S. D.Katz, S. Krieg,

A. Schäfer, K. K. Szabo, JHEP 1202 (2011) 044

Nf = 2 + 1 flavours, stout-link improved fermion action.

Continuum limit probed with Nτ = 6, 8, 10

Finite volume effects probed at Nτ = 6

Different quark masses for u, d and s quarks

⇒ significantly decreasing transition temperature,

transition strength increasing with the magnetic field strength.



3. Our SU (2) lattice model

arXiv:1203.3360, Physical Review D in print

Our simplified quark-gluon matter:

- colour SU(2) replaces SU(3),

- staggered fermions without rooting of the fermionic determinant,

i.e. Nf = 4 flavours,

- consequence: unique e.-m. charge of all quarks.

Why this model?

- Very similar chiral behaviour as in SU(3) colour.

- Much faster to simulate. Can easily take the chiral limit.

- We use a farm of PC’s (and recently GPU’s).

- Educational aspect: nice model to be proposed for master students.



Further intentions with SU(2)

- Can be extended to finite baryon chemical potential without sign problem.

- Topology (important also for the CME) can be studied in a more simple case.

- Dyons (as caloron constituents) under magnetic field.

Pioneering calculations with magnetic field have been done in quenched SU(2)

working with - chirally optimal - overlap fermions (and a set of low-lying

eigenvalues):

Braguta, Buividovich, Chernodub, Lushchevskaya, Polikarpov,...

We have studied the respective unquenched case with dynamical quarks.



Lattice gauge action: built of elementary closed (Wilson) loops (“plaquettes”)

Un,µν ≡ Un,µ Un+µ̂,ν U
†
n+ν̂,µ U

†
n,ν , Un,µ ∈ SU(Nc)

SWG = β
∑

n,µ<ν

(

1 − 1

Nc
Re tr Un,µν

)

, β =
2Nc

g2
0

=
1

2

∑

n

a4 tr GµνGµν +O(a2),

→ 1

2

∫

d4x tr GµνGµν.

Continuum limit:

a(g0) =
1

ΛLatt
(β0g

2
0)

− β1

2β2
0 exp

(

− 1

2β0g2
0

)

(1 + O(g2
0)).

=⇒ a→ 0 for g0 → 0 (or β → ∞), asymptotic freedom.

For SU(Nc) and Nf massless fermions, independent of renormalization scheme:

β0 =
1

(4π)2

(

11

3
Nc −

2

3
Nf

)

, β1 =
1

(4π)4

(

34

3
N2
c −

10

3
NcNf −

N2
c − 1

Nc
Nf

)

.



Staggered fermion action

Kogut, Susskind, ’75

their steps towards staggered quarks consisted of

• Use naive discretization and diagonalize the action

with respect to spinor degrees of freedom.

• Neglect three out of four degenerate Dirac components.

• Attribute the 16 fermionic degrees of freedom, localized

around one elementary hypercube, to four tastes.

Chiral symmetry restored ⇐⇒ flavor symmetry broken.

Naturally, the mass-degenerated four-flavor case is described by this setting.



Path integral quantization for Euclidean time =⇒ ’statistical averages’.

Fermions handled as anticommuting Grassmann variables

=⇒ analytically integrated ⇒ non-local effective action Seff (U).

’Partition function’ describing Nf = 4 mass-degenerate staggered flavors:

Z =

∫

[dU ][dψ] [dψ̄] e−S
G(U) + ψ̄M(U)ψ

=

∫

[dU ] e−S
G(U) DetM(U)

=

∫

[dU ] e−S
eff (U), Seff (U) = SG(U) − log(DetM(U))

with M(U) ≡ DLatt(U) +m.

Simulation performed on a finite lattice Nt ×N3
s , with temporally

(anti-) periodic boundary conditions for gluons (quarks).

Most simulations are using the rooting prescription:

for Nf = 2 + 1 (+1) 4th-root of the fermionic determinant is taken

for each flavor =⇒ Locality violated ? Much debated !



Nf = 4 without rooting =⇒ standard Hybrid Monte Carlo algorithm applicable !

Non-zero temperature T ≡ 1/Lt = 1/(Nt a(β)) :

this work: T varied by changing β at fixed Nt

alternatively (fixed-scale approach): changing Nt at fixed β

(simulation in progress).

Order parameters:

Polyakov loop: L(~x) ≡ 1
Nc

tr
∏Nt

x4=1U4(~x, x4), 〈L(~x)〉 = exp(−βFQ),

FQ = free energy of an isolated infinitely heavy quark.

=⇒ FQ → ∞, i.e. 〈L(~x)〉 → 0 within the confinement phase (for T < Tc).

=⇒ 〈L(~x)〉 order parameter for the deconfinement transition (at T = Tc).

Chiral condensate: 〈ψ̄ψ〉 (here obtained from a stochastic estimator)

order parameter for chiral symmetry breaking (T < Tc) and restoration (T > Tc).



Find critical Tc (or βc) from maxima of susceptibilities of L(~x) and/or ψ̄ψ.

This is possible in our model.

In real QCD (assuming, say O(4) universality) the transition temperature

is determined from a fit of the condensate to the “magnetic equation of state”

(i.e. the scaling function of J. Engels et al.).



Fixing the physical scale:

T > 0 calculations done on lattices of size: 163 × 6 (243 × 6)

T = 0 calculations for calibration at each β : 163 × 32

The lattice unit scale a(β) fixed via scale parameter r0 (R. Sommer, ’94),

numerically assumed to be the same as in real QCD:

Compute static force F (r) = dV/dr phenomenologically well-known

from c̄c- or b̄b-potential VQ̄Q:

F (r0) r
2
0 ≡ 1.65 ↔ r0 ≃ 0.468(4) fm

Then, determine e.g. the pion mass mπ.

For T = 0, ma = 0.01, B = 0 we obtain at β = 1.80 (this is ≃ βc for Nt = 6).

a = 0.170(5) fm

mπ = 330(10) MeV

Tc = 193(6) MeV



4. How to couple an external constant magnetic field B

to the non-Abelian gauge field ?

B̄ = (0, 0, B) Ā(r̄) = B
2 (−y, x, 0)

On the lattice we use the compact formulation. Constant magnetic field

≡ constant magnetic flux φ = a2(eB) through all (x, y) plaquettes.

On the links, in addition to the non-Abelian transporters, define U(1) elements

both coupled to quark fields in the lattice covariant derivative.

Vx(r̄, τ ) = e−iφy/2

Vy(r̄, τ ) = eiφx/2

Vx(Ns, y, z, τ ) = e−iφ(Ns+1)y/2

Vy(x,Ns, z, τ ) = eiφ(Ns+1)x/2

Flux will be quantized: φ = 2πNb

N2
S

Nb = 1, 2, . . . DeGrand, Toussaint ’80

Typical field strength for β = 1.80 ≃ βc , Nb = 50 ⇐⇒
√

(eB) ≃ O(1 GeV)

Electromagnetic and non-Abelian field are indirectly coupled, via fermions.



5. The influence of an external magnetic field on the

chiral condensate and on the critical temperature

Saturation behavior for various β (Vµ periodic in φ):
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β-dependence (≡ T dependence) of the bare chiral condensate
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Polyakov loop

ma = 0.01 ma = 0.1
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Susceptibilities

chiral condensate Polyakov loop

ma = 0.01 ma = 0.01
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Spatial anisotropy of plaquette averages:

confined phase, β = 1.7

Nb = 0 Nb = 50
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transition region, β = 1.9

Nb = 0 Nb = 50

Spacelike-timelike plaquette differences ∝ energy density
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deconfined phase, β = 2.1
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6. The chiral limit of the chiral condensate

Confined phase, β = 1.7
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The chiral condensate as a function of the flux for various values of ma

and with two chiral extrapolations

The slope at ma = 0 can be compared with chiral model ⇒ Fπ ≈ 60 MeV
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The chiral condensate, transition region, β = 1.9
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The chiral condensate, deconfined phase, β = 2.1
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7. Conclusions and outlook

• We have investigated how a finite temperature system reacts

to a constant external magnetic field, in two-colour QCD.

• In the confined phase the chiral condensate increases with the

magnetic field strength as predicted by a chiral model, even

a semi-quantitative agreement is achieved.

• The transition temperature increases with the magnetic field

strength. Probably a generic result.

• The chiral condensate goes to zero in the deconfined region

for all values of the magnetic field.

• Simulations in the fixed-scale approach are running on GPU.



We hope to come back to

• Topology and dyon structure

at non-vanishing chemical potential

with and without magnetic field.


