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Preface

Supersymmetric Quantum Mechanics (SQM) (Witten, 1981)
is the simplest (d = 1) supersymmetric theory:

I Catches the basic features of higher-dimensional supersymmetric
theories via the dimensional reduction;

I Provides superextensions of integrable models like Calogero-Moser
systems, Landau-type models, etc;

I Extended SUSY in d = 1 is specific: dualities between various
supermultiplets (Gates Jr. & Rana, 1995, Pashnev & Toppan, 2001)
nonlinear “cousins” of off-shell linear multiplets (E.I., S.Krivonos,
O.Lechtenfeld, 2003, 2004), etc.

I The models of superconformal mechanics are relevant to AdS2/CFT1,
standing for CFT1, and to supersymmetric black holes, accounting for
their near-horizon geometry.



I The standard approach to setting up SQM models:

1. Start from a few irreps of d = 1 supersymmetry;

2. Construct their invariant Lagrangian (with the second- and
first-order kinetic terms for bosonic and fermionic d = 1 fields);

3. Quantize and define the relevant Hamiltonian and supercharges;

4. Find the relevant (at least double-degenerate) spectrum and wave
functions.

I Example: the original Witten’s SQM is N = 2 SQM associated with the
supermultiplets (1, 2, 1), the numerals counting physical bosonic,
physical fermionic and auxiliary bosonic d = 1 fields.



I Recently, a new kind of SQM models with N = 4, d = 1 supersymmetry
was discovered and studied (Fedoruk, E.I., Lechtenfeld, 2009, 2010,
2011). They involve two coupled irreducible N= 4 multiplets, one
dynamical (standard) and one “semi-dynamical”, with the first-order
d=1 Wess-Zumino term for the bosonic variables.

I Upon quantization, the semi-dynamical variables play the role of spin
degrees of freedom parametrizing a fuzzy manifold. In the simplest
case they are SU(2) doublets, and one obtains the standard fuzzy
sphere (Madore, 1992). Hence the alternative name “spin multiplet”
for the semi-dynamical multiplet.

I Why N= 4 and not, e.g., N= 2? Just because N= 4 SUSY possesses
non-abelian SU(2) symmetry: spin variables are in fact a sort of target
SU(2) harmonic variables.



I The first examples of these N= 4 SQM models were constructed as a
one-particle limit of a new type of N= 4 super Calogero models. They
describe an off-shell coupling of a dynamical (1,4,3) multiplet to a
gauged (4,4,0) spin multiplet. The latter finally carry only two
independent bosonic variables due to gauge freedom and some
algebraic constraint.

I They inherit the superconformal D(2, 1;α) invariance of the parent
super Calogero models and realize a novel mechanism of generating a
conformal potential ∼ x−2 for the dynamical bosonic variable, with a
quantized strength.

I This construction was generalized by replacing the dynamical (1,4,3)
multiplet with a (4,4,0) or a (3,4,1) one, still keeping the (4,4,0) spin
multiplet (E.I., Konyushikhin, Smilga, 2010; Bellucci, Krivonos,
Lechtenfeld, Sutulin, 2010).

I The larger number of dynamical bosons allowed for Lorentz-force-type
couplings to non-abelian self-dual background gauge fields in a
manifestly N= 4 supersymmetric fashion. The presence of the spin
variables proved to be crucial for going beyond abelian backgrounds.



I What about making use of other N= 4 multiplets to represent the target
spin degrees of freedom? Recently, the multiplet with the off-shell
contents (3,4,1) was used as the spin one (Fedoruk, E.I., Lechtenfeld,
1204.4474), still with the (1,4,3) multiplet as dynamical.

I A new striking feature: in this case N= 4 supersymmetry amounts to a
Nahm-like equation for the SU(2) triplet of the bosonic spin variables,
with the physical bosonic variable of the dynamical multiplet playing the
role of “evolution” parameter.

I Actually, this triplet is restricted by some algebraic constraint, just
leaving us with two independent bosonic variables parametrizing the
“spin space”, just as in the case of the (4,4,0) spin multiplet. These two
spin multiplets are related by a type of quantum Hopf mapping.

I Both sorts of the spin multiplets have a natural off-shell superfield
description in Harmonic N = 4, d = 1 superspace (E.I., Lechtenfeld,
2003) which is d = 1 version of Harmonic N = 2, d = 4 superspace
(Galperin, E.I., Kalitzin, Ogievetsky, Sokatchev, 1984).



Warm-up: the (1, 4, 3)⊕ (4, 4, 0) model
The off-shell superfield action is a sum of three parts

S = SX + SFI + SWZ , (1)

SX = − 1
2

∫
dt d4θX

2 , SWZ = − 1
2

∫
µ

(−2)
A V Z̃+ Z+ , SFI = − i

2 c
∫
µ

(−2)
A V ++ .

N = 4 superfield X describes the off-shell multiplet (1, 4, 3)

DiDi X = 0 , D̄i D̄i
X = 0 , [Di , D̄i ] X = 0 .

Superfields Z+, Z̃+ are defined on the analytic subspace (tA, θ+, θ̄+, u±i ) of
the harmonic N = 4, d = 1 superspace (θi , θ̄i , u±i ). They obey the harmonic
constraints

(D++ + i V ++)Z+ = (D++ − i V ++) Z̃+ = 0

and describe a gauge-covariantized version of the N= 4 multiplet (4,4,0).
The gauge analytic superfields V ++ and V are subject to the gauge freedom

V ′ = V + D++λ−− , V ++′ = V ++ − D++λ, Z+′ = eiλZ+ ,

where λ, λ−− are arbitrary analytic superfield parameters. The superfield V
is an analytic “prepotential” for the (1, 4, 3) multiplet, X =

∫
du V, and µ(−2) is

the measure of integration over the analytic superspace.



After passing to WZ gauge V ++ = 2i θ+θ̄+A(tA) , integrating over θ and
eliminating auxiliary fields from both (1, 4, 3) and (1, 4, 3) multiplets, as well
as some rescalings of the involved fields, the action becomes

S =

∫
dt
[
p ẋ + i

(
ψ̄k ψ̇

k − ˙̄ψkψ
k
)

+ i
2

(
z̄k żk − ˙̄zk zk

)
− H

]
H = 1

4 p2 +
1
4

(z̄k zk )2

4x2 +
ψi ψ̄k z(i z̄k)

x2 .

The “gauge” field A(t) is the Lagrange multiplier for the first-class constraint

D0 − c ≡ z̄k zk − c ≈ 0 , (2)

which should be imposed on the wave functions in quantum case. We
rewrite the potential term as

(z̄k zk )2

4x2 =
(yaya)

x2 , ya = 1
2 z̄i (σa)i

jz j , y2 − c2/4 ≈ 0 .

The mapping (zi , z̄ i )→ ya is none other than Hopf S3 → S2 fibration. Upon
quantization, zi → ẑ i = ∂/∂z̄ i , the triplet ŷa becomes SU(2) generators

[ŷa, ŷb] = i εabc ŷc ,

while the S2 sphere condition y2 − c2/4 ≈ 0 becomes the Casimir condition

ŷaŷa = 1
2

ˆ̄zk ẑk
(

1
2

ˆ̄zk ẑk + 1
)
⇒ 1

2 c
( 1

2 c + 1
)

Thus after quantization one is left with the “fuzzy” sphere in the target space,
c being “fuzzyness” (or SU(2) spin for the SU(2) irrep wave functions).



The wave functions satisfy the constraint

D0Φ = ˆ̄zi ẑ i Φ = z̄i
∂

∂ẑ i Φ = c Φ → Φ(x , ψ, ẑi ) = φk1...kc (x)ẑk1 . . . ẑkc .

Thus in our case the wave function carries an irreducible spin c/2
representation of the group SU(2), being an SU(2) spinor of the rank c. In
contradistinction, in most models of the ordinary (super)conformal
mechanics, these w.f. are singlets of the internal symmetry group.

The quantum supercharges have the simple form

Q i = p̂ψ̂i − i
ẑ(i ˆ̄zk)ψ̂k

x̂
, Q̄i = p̂ ˆ̄ψi + i

ẑ(i
ˆ̄zk)

ˆ̄ψk

x̂
.

{Q i , Q̄k} = 2δi
k H , H =

1
4

(
p̂ 2 +

ĝ
x̂2

)
,

ĝ ≡ 1
2

D0
(

1
2

D0 + 1
)

+ 4ẑ(i ˆ̄zk)ψ̂(i
ˆ̄ψk) .

Taking into account that D0 = c on wave functions, we observe that the
“semi-dynamical” spin variables enter the Hamiltonian and supercharges only
through the composite SU(2) triplet ẑ(i ˆ̄zk) ∼ ŷa. Is it possible to find a
formulation in which this variable is elementary and appears from scratch?
The answer is YES (Fedoruk, E.I., Lechtenfeld, 1204.4474 [hep-th]).



The (1,4,3) ⊕ (3,4,1) model
The superfield action is

S = − 1
2

∫
µH X

2 + i
2

∫
µ

(−2)
A V (L++ + c++)− i

2

∫
µ

(−2)
A L

(+2)(L++, u) .

Here, c++ = c ik u+
i u+

k . The constrained N = 4 superfield X describes the
multiplet (1, 4, 3), the analytic gauge V superfield is the (1, 4, 3) prepotential
and the analytic constrained superfield L++, D++L++ = 0, describes the
multiplet (3, 4, 1) ∝ (v (ik), ψk , ψ̄k ,B). After eliminating all auxiliary fields
except B, the bosonic part of the component action takes the form

SbOS =

∫
dt
[
ẋ ẋ − 1

4 (va + ca)(va + ca)−Aav̇a + B (x − U)
]
,

U(v) :=

∫
du
∂L++

∂v++
, Aa(v) :=

∫
du (u+σau−)

∂L++

∂v++
,

∆ U = ∆ Ab = 0 , ∂aAa = 0 , Fab := ∂aAb − ∂bAa = −εabc∂cU ,

U = Un := g0 +
n∑

s=1

gs

|~v − ~ks|
=⇒ ~A =

n∑
s=1

~A s ,

~A s = gs
~ns × (~v − ~ks)

|~v − ~ks|
(
|~ns||~v − ~ks|+ ~ns(~v − ~ks)

) , multi−monopoles on R3 .



Quantization: Hamiltonian constraints
The relevant Hamiltonian constraints and the Hamiltonian are

πa ≡ pa + Aa ≈ 0 , h ≡ x − U ≈ 0 ,

H = 1
4 p2 + 1

4 (va + ca)(va + ca) + λaπa + Bh ,

where λa and B are the Lagrange multipliers. Poisson brackets of these
constraints:

[πa, πb]P = −Fab , [πa, h]P = ∂aU , (3)

Determinant of the matrix of the r.h.s. of (3) is (∂aU∂aU)2 6= 0, implying that
all four constraints are second class. The Dirac brackets are

[x , p]D = 1 , [va, x ]D = 0 ,

[va, p]D =
∂aU

∂pU∂pU
, [va, vb]D = −εabc

∂cU

∂pU∂pU
.

We end up with two independent physical phase variables (x and p) and two
independent spin variables, hidden in va. The constraint x − U(v) ≈ 0 can be
treated as the equation defining a two-dimensional surface in the R3 manifold
parametrized by the variables va.



Quantization: Nahm equations

The Dirac brackets [va, p]D and [va, vb]D amount to the equations

[p, va]D = 1
2 εabc [vb, vc ]D ⇒ v ′a = − 1

2 εabc [vb, vc ]D

for va = va(x , `b), such that [`a, x ]D = [`a, p]D = 0.

These are none other than the generalized (the so called “SDiff(Σ2)”)
Nahm equations (see, e.g., Ward, 1990; Dunajski, 2003).

It turns out that these Nahm equations and their quantum counterpart just
guarantee the very existence of the N= 4 supersymmetry in models with
the (3, 4, 1) spin multiplet, both at the classical and the quantum levels.



Taking into account the hamiltonian constraints including x − U(v) ≈ 0, the
classical supercharges and Hamiltonian are calculated to be

Q i = p χi + i (va + ca)σik
a χk , Q̄i = p χ̄i − i

(
va + ca

)
σa ik χ̄

k ,

H = 1
4 p2 + 1

4

(
va + ca) (va + ca

)
− χiσ

ik
a χ̄k ∂aU/(∂pU∂pU) .

With the Dirac brackets for the bosonic phase variables as above and with
{χi , χ̄k}D = − i

2 δ
i
k , these operators form the classical N = 4 superalgebra

{Q i , Q̄k}D = −2i δ i
k H , {Q i ,Qk}D = [Q i ,H]D = 0 .

Direct calculation shows that these relations are in fact valid just because of
the Nahm equations.

In the classical case these equations are just the consequence of the
underlying (Poisson -Dirac) structure. But what about quantum case? The
Dirac brackets among the variables p and va are in general highly nonlinear
and it is not obvious how to quantize them. It turns out that requiring the
validity of the basic N = 4 superalgebra relations in the quantum case is
again equivalent to the proper quantum version of the Nahm equations.



The quantum expressions for the supercharges are uniquely found to be

Q̂ i = p̂ χ̂i + i (v̂a + ca)σik
a χ̂k ,

ˆ̄Qi = p̂ ˆ̄χi − i
(

v̂a + ca

)
σa ik ˆ̄χk ,

{χ̂i , ˆ̄χk} = 1
2 ~δ i

k .

One calculates their anticommutators and finds, e.g.,

{Q̂ i , Q̂ j} = i σij
a

(
[p̂, v̂a]− 1

2 εabc [v̂b, v̂c ]
)
χ̂nχ̂n .

It is vanishing only provided the quantum version of the Nahm equation
holds

[p̂, v̂a] = 1
2 εabc [v̂b, v̂c ] ⇒ ~ ∂

∂x̂
v̂a = i

2 εabc [v̂b, v̂c ] .

The same equation arises from requiring the {Q, Q̄} anticommutator to
contain only SU(2) singlet part ∼ Hq . The relevant quantum Hamiltonian is
uniquely determined:

Ĥ = 1
4 p̂2 + 1

4 (v̂a + ca)
(

v̂a + ca

)
− i~−1[p̂, v̂a]χ̂iσ

ik
a ˆ̄χk .

Thus, quite similarly to the classical case, after quantization the quantum
operators v̂a must be subjected to the operator Nahm equations.



Examples: one-monopole case

U1 :=
g

|~v − ~k |
, Aa = g

εabcnb(vc − kc)

|~v − ~k |
(
|~n||~v − ~k |+ ~n(~v − ~k)

) , (~n = ~k/|~k | , ~k = −~c) .

Constraint:

x =
g

|~v − ~k |
⇒ `a`a = g2 , for `a = x (va − ka) = g

va − ka

|~v − ~k |
.

The new phase variables x , p, `a satisfy

[x , p]D = 1 , [`a, x ]D = 0 , [`a, p]D = 0 , [`a, `b]D = εabc`c .

Thus the variables `a parametrize a sphere S2 with the radius g and
generate SU(2) group with respect to the Dirac brackets. The Nahm
equations are evidently satisfied by va = `a

x + ka . After quantization:

`a → ˆ̀a , [ˆ̀a, ˆ̀b] = i~ εabc ˆ̀c , ˆ̀a ˆ̀a = ~2n(n + 1), (4)

hence ˆ̀a are (2n + 1)×(2n + 1) matrices. As a result, the wave function has
(2n + 1) components and describes a non–relativistic spin n conformal
particle. The quantum Nahm equation becomes the standard matrix SU(2)
Nahm equation (still with x as the evolution parameter).



Since the Nahm equations are satisfied at the classical and quantum levels,
the N = 4 superalgebra relations always hold. The quantum supercharges
and the Hamiltonian are:

Q i = p χi + i
ˆ̀a σ

ik
a χk

x
, Q̄i = p χ̄i − i

ˆ̀a σa ik χ̄
k

x

H =
1
4

(
p2 +

ˆ̀a ˆ̀a

x2

)
+

ˆ̀a χiσ
ik
a χ̄k

x2 .

The wave function is:

ΨA(x , χi ) = φA(x) + χi ψA
i (x) + χiχi ϕ

A(x) ,

Here A = 1, . . . 2n is an index of the irreducible SU(2) representation with ˆ̀a

as generators. W.r.t. the full SU(2) generated by Ja = ˆ̀a − χiσ
ik
aˆ̄χk , the

bosonic wave functions φA(x) and ϕA(x) form two spin n SU(2) irreps, while
the fermionic functions ψA

i (x) carry two SU(2) irreps, with SU(2) spins n ± 1
2 .

This system exhibits an extended N = 4 superconformal symmetry OSp(4|2)
and so supplies an example of N = 4 superconformal mechanics.



Examples: two-monopole cases

U2 :=
g1

|~v − ~k1|
+

g2

|~v − ~k2|
, ~k1 = (0, 0, k1) , ~k2 = (0, 0, k2) .

The idea is to pass to the new spin variables, such that the spinning sector in
the phase space is separated from the dynamical “space” sector (x , p). We
pass to the new variables as

`3 :=
g1(v3 − k1)

|~v − ~k1|
+

g2(v3 − k2)

|~v − ~k2|
, ϕ := arctan

(
v2

v1

)
.

They commute with the variables of the dynamical sector:

[`3, p ]D = [`3, x ]D = 0 , [ϕ, p ]D = [ϕ, x ]D = 0 .

The variables `3 and ϕ are conjugate to each other:

[ϕ, `3 ]D = 1 .

The variable `3 in the bosonic limit commutes with the Hamiltonian and so
generates U(1) symmetry. Both SU(2) and OSp(4|2) are now broken, only
N = 4, d = 1 Poincaré supersymmetry and U(1) R-symmetry survive.



One should still express va as va = va(x , ϕ, `3), since supercharges and
Hamiltonian involve just va. Even in the classical case these inverse relations
for the two-center case can be found only as a series in `3:

v± := v1 ± iv2 = V (x , `3)e±iϕ , v3 = W (x , `3) . (5)

No problem with the validity of the classical Nahm equations in this case.
What about the quantum case?

The basic step in passing to the quantum supercharges from the classical
ones is to perform the Weyl-ordering of the latter (Smilga, 1987). In our case
this prescription amounts to replacing

v± ⇒ v̂± = 〈V (x̂ , ˆ̀3) e±iϕ̂〉W , v3 ⇒ v̂3 = W (x̂ , ˆ̀3) . (6)

and making use of the Moyal bracket, when calculating the
(anti)commutators between supercharges and Hamiltonian.

Rather surprisingly, in the two-center model it proves insufficient just to
Weyl-order the classical expressions to obtain the correct quantum N = 4
superalgebra. One can explicitly check that the quantum Nahm equations
which guarantee the validity of N = 4 superalgebra are not satisfied with
(6). Only when va are linear in `a, the quantum Nahm equations are satisfied.
But this is possible only in the one-center and some special multi-center
cases.



The way out is as follows. We assume that the above functions V (x , `3),
W (x , `3) are just ~ = 0 approximation of the correct quantum functions which
contain correction terms of the higher order in ~

V (x , `3) → Ṽ (x , `3, ~) = V + ~V1 + ~2V2 + . . . ,

W (x , `3) → W̃ (x , `3, ~) = W + ~W1 + ~2W2 + . . . .

Then we require that the Nahm equations (with the Dirac brackets being
replaced by the Moyal ones) are still satisfied with these modified Weyl
symbols ṽ± and ṽ3:

[p, ṽa]M = −∂ṽa

∂x
= 1

2 εabc [ṽb, ṽc ]M . (7)

Thus we propose to correct the quantum operators in higher orders in the
expansion in ~, in such a way that the full operator Nahm equations are
satisfied, while the limit ~→ 0 still yields the classical system.

In this setting, the Moyal-Nahm equations (7) for the modified Weyl symbols
of v̂±, v̂3 amount to the equations for the coefficient functions Vn(x , `3) and
Wn(x , `3). Solving these equations, we can find the complete solutions for the
quantum operators. This recursion procedure is self-consistent and yields the
correct quantum supercharges and Hamiltonian as power series in ~.



Special multi-center case
There exists a potential with few centers for which the original spin variables
va are linear in `a in both the classical and the quantum cases. It reads:

Ũ =
g
k

arcoth

(
|~v + ~k |+ |~v − ~k |

2k

)
, ~k = (0, 0, k).

This potential satisfies the Laplace equation ∆Ũ = 0. Besides the two poles
at ~v = ±~k , it possesses the third pole at ~v = 0 .

We split va into the “radial variable” x and the spin ones `a as

v1 = f1(x) `1 , v2 = f2(x) `2 , v3 = f3(x) `3 ,

f1 = f2 =
k

g sinh(kx/g)
, f3 =

k
g

coth(kx/g) .

The Dirac brackets of p, x and va induce the following ones for p, x , `a

[x , p]D = 1 , [`a, x ]D = 0 , [`a, p]D = 0 , [`a, `b]D = εabc`c ,

whereas the constraint x − Ũ ≈ 0 becomes the 2-sphere condition

`a`a = g2 .



The passing to the quantum case is straightforward:

`a ⇒ ˆ̀a , [ˆ̀a, ˆ̀b] = i~ εabc ˆ̀c , g2 ⇒ ~2 n(n + 1) , 2n∈N .

The quantum Nahm equations for v̂a(x̂ , ˆ̀b) are satisfied as a consequence of
the fact that the functions f1, f2 and f3 satisfy the Euler equations

f ′1 = −f2f3 , f ′2 = −f1f3 , f ′3 = −f1f2 .

The explicit form of the quantum supercharges and Hamiltonian is as follows

Q̂ i = p̂ χ̂i + ik
g sinh−1( kx̂

g )
[

ˆ̀1 σ
ik
1 χ̂k + ˆ̀2 σ

ik
2 χ̂k

+
(

cosh( kx̂
g ) ˆ̀3 + cg

k sinh( kx̂
g )
)
σik

3 χ̂k

]
,

ˆ̄Qi = p̂ ˆ̄χi − ik
g sinh−1( kx̂

g )
[

ˆ̀1 σ1 ik ˆ̄χk + ˆ̀2 σ2 ik ˆ̄χk

+
(

cosh( kx̂
g ) ˆ̀3 + cg

k sinh( kx̂
g )
)
σ3 ik ˆ̄χk

]
,

Ĥ = 1
4 p̂2 + k2

4g2 sinh−2( kx̂
g )

[
(ˆ̀1)2 + (ˆ̀2)2 +

(
cosh( kx̂

g ) ˆ̀3 + cg
k sinh( kx̂

g )
)2
]

+ k2

g2 sinh−2( kx̂
g )
[
cosh2( kx̂

g )
(

ˆ̀1χ̂iσ
ik
1 ˆ̄χk + ˆ̀2χ̂iσ

ik
2 ˆ̄χk

)
+ ˆ̀3χ̂iσ

ik
3 ˆ̄χk

]
In the limit k → 0, the one-monopole N = 4 model is reproduced.



Summary and outlook

I We presented new versions of N= 4 mechanics, which couple a
dynamical (“coordinate”) (1,4,3) multiplet to a semi-dynamical (“spin”)
(3,4,1) multiplet. An on-shell constraint involving a harmonic potential
on R3 leaves only two independent bosonic fields in the spin multiplet.
They parametrize some two-dimensional fuzzy surface in R3.

I For the one-center potential and the special multi-center potential, the
spin variables generate an SU(2) algebra and parametrize the fuzzy
two-sphere. These quantum models are formulated in a closed form,
while the one with a general two-center potential is given in terms of a
power series expansion in ~ .

I Most remarkable feature is the occurrence of the Nahm equations for
the three-vector spin variable as a consequence of the Dirac brackets of
the constraints, with the bosonic field of the dynamical multiplet playing
the role of the evolution parameter.

I We discovered a strict correspondence between these Nahm equations
and the presence of N= 4 supersymmetry in the model, classically and
quantum mechanically. The Nahm equations guarantee extended
supersymmetry.



Some further problems to be explored:

I It would be interesting to study the general multi-center solution of the
Laplace equation ∆U = 0 for the basic potential U(v). For this case
one may expect the spin variables to parametrize some fuzzy Riemann
surface and form a nonlinear deformed algebra.

I In our particular models the supersymmetry generators are linear in the
fermionic variables. In the more general case of N= 4 supersymmetry
generators cubic in the fermions the Nahm equations might get
supplemented by additional relations to ensure full extended
supersymmetry.

I Finally, it remains to investigate other combinations of dynamical and
semi-dynamical N= 4 multiplets for describing spin variables, utilizing
for instance the nonlinear (3,4,1) multiplet (E.I., Lechtenfeld, 2003; E.I.,
Krivonos, Lechtenfeld, 2004).

I Relations to branes, black holes, AdS/CFT, integrable structures in
N = 4 SYM?



THANK YOU FOR YOUR KIND ATTENTION!
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