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Conservative route to quantum gravity

‘Quantization’:

» The mechanical Hamilton—Jacobi equation leads to the
Schrédinger equation;

» the gravitational Hamilton—Jacobi equation (Peres 1962)
leads to the Wheeler—DeWitt equation.



Quantum geometrodynamics

» Question: what is the quantum wave equation that immediately
gives Einstein’s equations in the semiclassical limit?

» Answer: the Wheeler—DeWitt equation

Constraints of this type also occur in loop quantum gravity



Semiclassical (Born—Oppenheimer) approximation

Ansatz: L
|‘Il[hab]> = C[hab]elmPS[hab} W}[habD

and expansion with respect to the Planck-mass squared.
Highest order: One evaluates |¢[hy)) along a solution of the

classical Einstein equations, hq;(x,t), corresponding to a
solution, S[hg], of the Hamilton—Jacobi equations;
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This leads to a functional Schrédinger equation for quantized
matter fields in the chosen external classical gravitational field:

0 .
ih— t = H"™]Y(
ihz (1)) ()
o / @2 { NGOHE(x) + N R (0}
H™: matter-field Hamiltonian in the Schrodinger picture,

parametrically depending on (generally non-static) metric
coefficients of the curved space—time background.

WAKB time ¢ controls the dynamics in this approximation



Quantum gravitational corrections

The next order in the Born—Oppenheimer approximation gives
rrm rm 1 .
H™ — H™ + —5 X (various terms)
mp
(C. K. and T. P. Singh (1991); A. O. Barvinsky and C. K. (1998))

Example: Quantum gravitational correction to the trace
anomaly in de Sitter space:
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(C.K. 1996)



Observations

Does the anisotropy spectrum of the cosmic background
radiation contain information about quantum gravity?

C.K. and M. Kramer, Phys. Rev. Lett., 108, 021301 (2012); see also our
first-prize winning essay for the Gravity Research Foundation.



Minisuperspace background

Wheeler-DeWitt equation for small fluctuations in a flat
Friedmann—Lemaitre universe with scale factor a = exp(«) and
inflaton field ¢

Choose the simplest potential:

1
V(p) = ) m2¢2 ;

any other potential obeying at the classical level the slow-roll
condition ¢? < |V(¢)| should lead to similar results.



Minisuperspace Wheeler—DeWitt equation

h=c=1

mp = /37/2G =~ 2.65 x 10 GeV

¢ — ¢/V2r

» assume in the following 92¥(/0¢? < e5*m2¢>¥, and
substitute m¢ by mp H, where H is the quasistatic Hubble
parameter of inflation (Born—Oppenheimer approximation)
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Introduction of inhomogeneities

¢ — o(t) + 00 (x,1)

Perform a decomposition into Fourier modes with wave vector
k, k = k|,
Sp(x,t) = > fu(t) e,
k

The Wheeler-DeWitt equation including the fluctuation modes
then reads (Halliwell and Hawking 1985)

Ho + Z Hi
k=1

V(s {fi},,) =0

with
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Ansatz:

U (e, b, fi) -

8

\Il(a, 0, {fk}:o:l) = Vo(a, ¢)

k=1

The Components \Ilk’(a) Qb, fk’) = \Ifo(Oé, gb){ijk(av ¢7 fk) Obey

Losa[ L O L baz 2 & Ly oy 2]wn(andn fi) =0
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with

Wk(a) = k‘2 e4oz + m2 e6a 3



Born—Oppenheimer approximation

Following the general scheme, we make the ansatz
Ui(a, fr) = €' S
and expand S(a, fx) in terms of powers of m#,
S(a, fx) = mp So +md Sy +mp> Sz + ...

We insert this ansatz into the full Wheeler—-DeWitt equation and
compare consecutive orders of m3.



O(m$): Sp is independent of f;,
O(m3): Sy obeys the Hamilton—Jacobi equation

[880

? 6a 772
%] —V(a) =0, V(a):=e"*H

solved by Sy(a) = +e3*H/3

O(md): Write 9\*) (v, i) = () ¢ $1(f) and impose a
condition on ~(«) that makes it equal to the standard WKB
prefactor. After introducing the ‘WKB time’ according to

9 3,05 0
ot

da da’

one finds that each w,g,o) obeys a Schrodinger equation,

.0 (0 0
'a%(f):%k%g)~



Quantum gravitational corrections

O(mp?): decompose Sa(a, fi,) as

S2(a> fk’) = C(Oé) + 77(% fk’)

and demand that ¢(«) be the standard second-order WKB
correction. The wave functions

v (a, fr) = 0O (@, fi) e M fk)

then obey the quantum gravitationally corrected Schrodinger
equation
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Solution of the uncorrected Schrodinger equation

Ansatz:
6Ot fi) = NO (1) 3% 0 7
This leads to
N0 = e MO @0 ),
A0 = e [-(00) + Wil
Solution:

k1 2
o = g e+ 7m)

§(t) := k/(Ha(t))



Unperturbed power spectrum

In the slow-roll regime, the density contrast is given by

(1)  92E(0) _ 90 9r(1)
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with
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(approximately scale-invariant power spectrum)



Solution of the corrected Schrodinger equation

Ansatz:
oW, f) = (N,£°> 0+ Né”(t))
mp
1 1
X exp [— 5 (Q,S” (t) + o Q,S’(t)) f%]

Inserting this into the corrected Schrédinger equation leads to

d ). 2i¢& 3¢ 26—
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which can be solved analytically up to a numerical integration.



Modification of the power spectrum

Ch.
without quantum gravitational corrections
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Figure: Size of the corrections for H = 10'* GeV.

B (k) = 2% (k) CF

43.56 H* H?
k3 md

Cl = <1 - -
k3 m3
introduces scale dependence

-3
) 2( ~ 189.18 H?



Discussion

v

Effect is most pronounced for large scales

v

Accuracy is fundamentally limit by cosmic variance
Suppression of power for large scales

From the non-observation of this effect, one finds the
bound

v

v

H<14x102mp ~ 4 x 10" GeV

v

But there already exists a stronger constraint on this scale
from the bound on the tensor-to-scalar ratio r :

H <10 °mp ~ 10! GeV



Comparison with loop quantum cosmology

Ps(0)/Ps(fo)

Figure: Primordial power spectrum for a certain model of loop
guantum cosmology (upper curve). The dotted line is the classical
case, and the solid line is the experimental upper bound. From:
M. Bojowald, G. Calcagni, and S. Tsujikawa, Phys. Rev. Lett., 107, 211302 (2011).

Loop quantum cosmology predicts an enhancement of power
at large scales.



Summary

» Concrete prediction from a conservative approach to
guantum gravity

» It is consistent with existing observational limits

» No additional trans-Planckian effects are needed to
understand these predictions

» In the present case, the effect is too small to be
observable, but maybe one can find testable predictions
along these lines

» Comparison with other approaches: loop quantum
cosmology predicts an enhancement at large scales, while
other approaches (non-commutative geometry,
string-inspired cosmology) seem to predict a suppression
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