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Conservative route to quantum gravity

‘Quantization’:

◮ The mechanical Hamilton–Jacobi equation leads to the
Schrödinger equation;

◮ the gravitational Hamilton–Jacobi equation (Peres 1962)
leads to the Wheeler–DeWitt equation.



Quantum geometrodynamics

◮ Question: what is the quantum wave equation that immediately
gives Einstein’s equations in the semiclassical limit?

◮ Answer: the Wheeler–DeWitt equation

ĤΨ = 0

Constraints of this type also occur in loop quantum gravity



Semiclassical (Born–Oppenheimer) approximation

Ansatz:
|Ψ[hab]〉 = C[hab]e

im2
PS[hab]|ψ[hab]〉

and expansion with respect to the Planck-mass squared.

Highest order: One evaluates |ψ[hab]〉 along a solution of the
classical Einstein equations, hab(x, t), corresponding to a
solution, S[hab], of the Hamilton–Jacobi equations;

ḣab = NGabcd

δS

δhcd
+ 2D(aN b)



∂

∂t
|ψ(t)〉 :=

∫
d3x ḣab(x, t)

δ

δhab(x)
|ψ[hab]〉

This leads to a functional Schrödinger equation for quantized
matter fields in the chosen external classical gravitational field:

i~
∂

∂t
|ψ(t)〉 = Ĥm|ψ(t)〉

Ĥm :=

∫
d3x

{
N(x)Ĥm

⊥(x) +Na(x)Ĥm
a (x)

}

Ĥm: matter-field Hamiltonian in the Schrödinger picture,
parametrically depending on (generally non-static) metric
coefficients of the curved space–time background.

WKB time t controls the dynamics in this approximation



Quantum gravitational corrections

The next order in the Born–Oppenheimer approximation gives

Ĥm → Ĥm +
1

m2
P

× (various terms)

(C. K. and T. P. Singh (1991); A. O. Barvinsky and C. K. (1998))

Example: Quantum gravitational correction to the trace
anomaly in de Sitter space:

δǫ ≈ − 2G~2H6
dS

3(1440)2π3c8

(C.K. 1996)



Observations

Does the anisotropy spectrum of the cosmic background
radiation contain information about quantum gravity?

C.K. and M. Krämer, Phys. Rev. Lett., 108, 021301 (2012); see also our

first-prize winning essay for the Gravity Research Foundation.



Minisuperspace background

Wheeler–DeWitt equation for small fluctuations in a flat
Friedmann–Lemaı̂tre universe with scale factor a ≡ exp(α) and
inflaton field φ

Choose the simplest potential:

V(φ) = 1

2
m2φ2 ;

any other potential obeying at the classical level the slow-roll
condition φ̇2 ≪ |V(φ)| should lead to similar results.



Minisuperspace Wheeler–DeWitt equation

H0Ψ0(α, φ) ≡
e−3α

2

[
1

m2
P

∂2

∂α2
− ∂2

∂φ2
+ e6αm2φ2

]
Ψ0(α, φ) = 0

◮ ~ = c = 1

◮ mP =
√

3π/2G ≈ 2.65 × 1019 GeV
◮ φ→ φ/

√
2π

◮ assume in the following ∂2Ψ0/∂φ
2 ≪ e6αm2φ2Ψ0 and

substitute mφ by mPH, where H is the quasistatic Hubble
parameter of inflation (Born–Oppenheimer approximation)



Introduction of inhomogeneities

φ→ φ(t) + δφ(x, t)

Perform a decomposition into Fourier modes with wave vector
k, k ≡ |k|,

δφ(x, t) =
∑

k

fk(t) e
ik·x .

The Wheeler-DeWitt equation including the fluctuation modes
then reads (Halliwell and Hawking 1985)

[
H0 +

∞∑

k=1

Hk

]
Ψ
(
α, φ, {fk}

∞

k=1

)
= 0

with

Hk =
1

2
e−3α

[
− ∂2

∂f2k
+

(
k2 e4α +m2 e6α

)
f2k

]



Hk =
1

2
e−3α

[
− ∂2

∂f2k
+

(
k2 e4α +m2 e6α

)
f2k

]

Ansatz:

Ψ
(
α, φ, {fk}

∞

k=1

)
= Ψ0(α, φ)

∞∏

k=1

Ψ̃k(α, φ, fk) .

The components Ψk(α, φ, fk) := Ψ0(α, φ)Ψ̃k(α, φ, fk) obey

1

2
e−3α

[
1

m2
P

∂2

∂α2
+ e6αm2

PH
2 − ∂2

∂f2k
+Wk(α)f

2
k

]
Ψk(α, φ, fk) = 0

with

Wk(α) := k2 e4α +m2 e6α ,



Born–Oppenheimer approximation

Following the general scheme, we make the ansatz

Ψk(α, fk) = eiS(α,fk)

and expand S(α, fk) in terms of powers of m2
P,

S(α, fk) = m2
P S0 +m0

P S1 +m−2
P S2 + . . .

We insert this ansatz into the full Wheeler–DeWitt equation and
compare consecutive orders of m2

P.



◮ O(m4
P): S0 is independent of fk

◮ O(m2
P): S0 obeys the Hamilton–Jacobi equation

[
∂S0
∂α

]2
− V (α) = 0 , V (α) := e6αH2

solved by S0(α) = ±e3αH/3

◮ O(m0
P): Write ψ(0)

k (α, fk) ≡ γ(α) ei S1(α,fk) and impose a
condition on γ(α) that makes it equal to the standard WKB
prefactor. After introducing the ‘WKB time’ according to

∂

∂t
:= − e−3α ∂S0

∂α

∂

∂α
,

one finds that each ψ(0)
k obeys a Schrödinger equation,

i
∂

∂t
ψ
(0)
k = Hkψ

(0)
k .



Quantum gravitational corrections

O(m−2
P ): decompose S2(α, fk) as

S2(α, fk) ≡ ς(α) + η(α, fk)

and demand that ς(α) be the standard second-order WKB
correction. The wave functions

ψ
(1)
k (α, fk) := ψ

(0)
k (α, fk) e

im−2
P η(α,fk)

then obey the quantum gravitationally corrected Schrödinger
equation

i
∂

∂t
ψ
(1)
k = Hkψ

(1)
k −

e3α

2m2
Pψ

(0)
k

[(Hk

)2

V
ψ
(0)
k + i

∂

∂t

(Hk

V

)
ψ
(0)
k

]
ψ
(1)
k



Solution of the uncorrected Schrödinger equation

Ansatz:
ψ
(0)
k (t, fk) = N (0)

k (t) e−
1
2
Ω

(0)
k

(t) f2
k

This leads to

Ṅ (0)
k (t) = − i

2
e−3α N (0)

k (t)Ω
(0)
k (t),

Ω̇
(0)
k (t) = i e−3α

[
−
(
Ω
(0)
k (t)

)2
+Wk(t)

]
.

Solution:

Ω
(0)
k (ξ) =

k3

H2ξ

1

ξ − i
+O

(
m2

H2

)

ξ(t) := k/(Ha(t))



Unperturbed power spectrum

In the slow-roll regime, the density contrast is given by

δk(t) ≈
δρk(t)

V0
=
φ̇(t) σ̇k(t)

V0
,

with

σ2
k(t) :=

〈
ψk|f2

k |ψk

〉
=

√
ℜeΩk

π

∞∫

−∞

f2
k e−

1

2
[Ω∗

k
(t)+Ωk(t)]f

2

k dfk =
1

2ℜeΩk(t)

δk(tenter) =
4

3

V0

φ̇2
δk(texit) =

4

3

σ̇k(t)

φ̇(t)

∣∣∣∣∣
t= texit

∆2
(0)(k) := 4πk3 |δk(tenter)|2 ∝ H4

∣∣φ̇(t)
∣∣2
texit

(approximately scale-invariant power spectrum)



Solution of the corrected Schrödinger equation

Ansatz:

ψ
(1)
k (t, fk) =

(
N (0)

k (t) +
1

m2
P

N (1)
k (t)

)

× exp

[
− 1

2

(
Ω
(0)
k (t) +

1

m2
P

Ω
(1)
k (t)

)
f2k

]

Inserting this into the corrected Schrödinger equation leads to

d
dξ

Ω
(1)
k (ξ) =

2 i ξ
ξ − i

Ω
(1)
k (ξ) +

3 ξ3

2

2ξ − i
(ξ − i)3

,

which can be solved analytically up to a numerical integration.



Modification of the power spectrum

Figure: Size of the corrections for H = 1014 GeV.

∆2
(1)(k) = ∆2

(0)(k)C
2
k

Ck :=

(

1−
43.56

k3

H
2

m2
P

)

−
3

2
(

1−
189.18

k3

H
2

m2
P

)

introduces scale dependence



Discussion

◮ Effect is most pronounced for large scales
◮ Accuracy is fundamentally limit by cosmic variance
◮ Suppression of power for large scales
◮ From the non-observation of this effect, one finds the

bound
H . 1.4× 10−2mP ∼ 4× 1017 GeV

◮ But there already exists a stronger constraint on this scale
from the bound on the tensor-to-scalar ratio r :

H . 10−5mP ∼ 1014 GeV



Comparison with loop quantum cosmology
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Figure: Primordial power spectrum for a certain model of loop
quantum cosmology (upper curve). The dotted line is the classical
case, and the solid line is the experimental upper bound. From:

M. Bojowald, G. Calcagni, and S. Tsujikawa, Phys. Rev. Lett., 107, 211302 (2011).

Loop quantum cosmology predicts an enhancement of power
at large scales.



Summary

◮ Concrete prediction from a conservative approach to
quantum gravity

◮ It is consistent with existing observational limits
◮ No additional trans-Planckian effects are needed to

understand these predictions
◮ In the present case, the effect is too small to be

observable, but maybe one can find testable predictions
along these lines

◮ Comparison with other approaches: loop quantum
cosmology predicts an enhancement at large scales, while
other approaches (non-commutative geometry,
string-inspired cosmology) seem to predict a suppression
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