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Atmospheres of compact stars

Radii: RWD ∼ 103 km, RNS ∼ 10 km.

Scale heights: HNS ∼ 1− 10 cm, HWD ∼ 104 − 105 cm.

Strong magnetic �elds:

BNS ∼ 107 − 1014G, BWD ∼ 106 − 109G.

Photospheric number densities:

NNS ∼ 1016cm−3, NWD ∼ 109cm−3.

Photospheric temperatures:

TNS ∼ 50− 1000eV, TWD ∼ 1− 5eV.

Strong domination of scattering over absorption in the outer layers:

Pabs

Psc
=
νe�
γ
∼ 10−8 − 10−4.
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Cyclotron lines observations for compact stars
Is spectral redistribution important in 1D case?

Spectral redistribution is important for the line formation in atmospheres of
main-sequence stars (3D case) [Mihalas, 1980].
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Approximations

Rari�ed plasma: |n1,2 − 1| � 1.

All electrons on the ground Landau level.

Isothermal atmosphere with constant temperature T , which
corresponds to the Maxwellian distribution of electrons over
longitudinal (with respect to the magnetic �eld) velocities

f (β) =

(
c2

2πmT

)1/2

exp

(
− β2

2β2T

)
, (1)

where β = v/c is the dimensionless longitudinal velocity,
βT = (T/(mc2))1/2 the thermal velocity.

Plane-parallel atmosphere:

H =
2kT

mpg
� R.
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Spectral redistribution of radiation
A photon with a given frequency ω and propagation angle θ with respect to
magnetic �eld is scattered resonantly by electrons whose longitudinal
velocities are β:

ω′(1− β cos θ′) = ω(1− β cos θ).

The cross section of this process is [Wang, Wasserman, Salpeter, 1980]

σsc =
3

8

γ

πωB

σT(1 + cos2 θ)[
1− β cos θ − ωB

ω
√

1− β2
]2

+
(
γ
ωB

)2 , (2)

where ωB = eB/(mc) is the cyclotron frequency, σT � Thomson
scattering cross section, γ = 2e2ω2

B/(3mc3) � radiative cyclotron line
width, κ = ~ωB/(2mc2) � recoil parameter (typically κ � βT ).
The probability to scatter on the electrons with velocity in the interval (β,
β + dβ) is

P(β) ∼ f (β)σscdβ, Λ ∼ | cos θ| exp
(
β2∗
2β2T

)
.
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Resonance condition. Nonrelativistic
approximation. Quasicoherent scattering
(Zheleznykov, Litvinchuk, 1987)

ω(1− β cos θ) = ωB .

β∗ = (ω − ωB)/(ω cos θ)

(ω, θ)⇐⇒ (
ω − ωB
ω cos θ

, θ).

Mildly relativistic approximation

ω(1− β cos θ +
β2

2
) = ωB .

Two resonance velocities:

β1,2 = cos θ ±
√

cos2 θ − 2

(
1− ωB

ω

)
.



Escape due to �relativistic jumps�

The probability to increase the mean free path of a photon in q times due
to relativistic jumps

Pjump ≈
βT

q
√

8 ln q
.
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Finite line width e�ects
Conservation laws for the scattering event

ω(1− β cos θ) = ω′(1− β cos θ′).

Resonance conditions before and after the scattering event

ω(1− β1 cos θ +
β2
1

2
) = ωB , (3)

ω′(1− βx cos θ′ +
β2x
2

) = ωB . (4)

Resonance velocities βx after the scattering

β2
x

2

− βx cos θ
′ +

[
1−

(1− β cos θ′)

(1− β cos θ)

(
1− β1 cos θ +

β2
1

2

)]
= 0. (5)

If | cos θ′| � β then

βx − β = (β1 − β)
cos θ

cos θ′
. γ ln(βT/γ)

cos θ

βT
. (6)
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Escape from the cyclotron line core
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Photon escape probabilities in a single scattering versus optical depth: the
solid, dashed, and dash-dotted lines indicate the total escape probability
PΣ, the escape probability due to relativistic jumps Pjump , and the escape
probability related to the �nite natural line width Pγ , respectively. The
parameters βT = 0.02 and γ/ωB = 10−6.
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Semiin�nite atmosphere with absorption

Relative fraction of photons emitted at optical

depth τ in the emergent spectra. Solid line �

with redistirbution e�ects; dashed �� without

(quasicoherent scattering). Atmospheric

parameters: T = 50 eV, γ/ωB = 10
−6,

Pabs/Psc(τ = 1) = 10
−6.
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Semiin�nite atmosphere with absorption

Quasicoherent approximation works well only to the left from the solid line.
Redistribution e�ects become important in the right zone. Dots represent
some known white dwarfs and neutron stars.
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Conclusions related to the spectral redistribution

Statistically, the redistribution of photons out of the cyclotron line results
in a boosted probability of their escape from a large optical depth. As our
simulations show, the emerging radiation is gathered over a large interval of
optical depths, spanning one or two orders of magnitude. Potentially, this
causes all sorts of inhomogeneities to show up in the resulting spectrum in
a more pronounced way, and the radiation transfer equation in these
situations should be solved over a range of optical depths su�ciently large
to capture the origin of the major part of outgoing photons.
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Cyclotron wind in the atmospheres of compact stars
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Radiation transfer in the atmospheres of compact stars

The model of radiation diskon
[Zheleznyakov, Bespalov 1990]

Hot magnetic white dwarf or
neutron star

Cyclotron wind from the
photosphere due to cyclotron
radiation pressure

Extended plasma envelope

Polar jets along the magnetic axis

Observational appearence:

Wide and deep depression band in spectra
Bipolar plasma outfow
Quasiperiodic oscillations of radiation �ux
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Vacuum polarisation

Dielectric and magnetic permittivities

ε
(vac)
ik = δik(1− 2a) + 7a

BiBk

B2
,

µ
−1(vac)
ik = δik(1− 2a)− 4a

BiBk

B2
,

also it is assumed that a� 1, where

a =
1

45π

e2

~c

(
B

Bcr

)2

, Bcr = m2c3/~e ' 4.4 · 1013G.
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Dielectric permittivity of mildly relativistic plasma

εxx = εyy = 1 + i(b− + b+), εxy = −εyx = b− − b+,

εxz = εzx = −iεyz = iεzy = c−,

εzz = 1−
ω2

L

ω2(1 + iγ/ω)
+ d−,

b+ =
iω2

L

2ω2(1 + (ωB + iγ)/ω)
, b− =

√
πω2

L

2ω2β2T
× $(ξ1)−$(ξ2)

ξ2 − ξ1
,

c− = i

√
π

2

ω2

L sin θ

ωωBβT
× ξ1$(ξ1)− ξ2$(ξ2)

ξ2 − ξ1
,

d− =
ω2

L sin2 θ

ω2

B

× ξ1(1 + i
√
πξ1$(ξ1))− ξ2(1 + i

√
πξ2$(ξ2))

ξ2 − ξ1
,

ξ1,2 =
1√
2βT

cos θ ±

√
cos2 θ − 2

(
1− ωB(1− κ sin2 θ)

ω + iγ

) ,

$(Z ) =
i

π

∞∫
−∞

e
−u2

du

Z − u
.



Normal waves. In�uence of vacuum polarization

Dependence of opacity coe�cients Imn1,2 on electron number density. Left �gure

is for ω = 0.96ωB , cos θ = 0.5, B = 2.56× 10
11G, T = 1keV, right one is for

ω = 1.04ωB , cos θ = 0.5,B = 2.56 · 1011G, T = 1 keV. Solid lines � solution

with vacuum polarization, dashed � pure plasma without vacuum polarization.

Top curves re�ers for the extraordinary waves, bottom for the ordinary ones.
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Opacity coe�cients

Ðèñ.: Spectral dependence of opacity coe�cients Imn1,2: (a) � extraordinary
wave, (b) � ordinary wave. Right �gure corresponds to
Ne = 10

18cm−3, cos θ = 0.05,B = 2.56 · 1011G, T = 1 keV, left �gure
corresponds to Ne = 10

21cm−3, cos θ = 0.05,B = 2.56 · 1011G, T = 1 keV. Solid
lines show calculations with relativistic e�ects included, dashed without
(quasicoherent approximation).
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Transfer equations. General view

The intensity vector J:

J =
1

2


I + Q

I − Q

2U

2V

 . (7)

The evolution of intensity vector is described by transfer equations:

dJ

ds
= −M · J+ Sem + Ssc, (8)

where s is the coordinate along the ray. Source functions Sem and Ssc
describe emission of plasma and rescattering respectively. M is the transfer
matrix, which describes absorption, scattering and evolution of polarization.
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The transfer matrix for mildly relativistic plasma

M =
1 + ε

2


2Im ς11 0 Im ς12 −Re ς12

0 2Im ς22 −Im ς12 −Re ς12
−2Im ς12 2Im ς12 Im (ς11 + ς22) Re (ς11 − ς22)
−2Re ς12 −2Re ς12 Re (ς22 − ς11) Im (ς11 + ς22)

 . (9)

ς11 = Exx + 2a,

ς12 = −ς21 = Exy ,

ς22 = Eyy + 2a + 4a sin2 θ,
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Rescattering source function

Ssc = Ne

(
e2

mc2

)2 ∫ ∫
dΩ′dω′

∫
dβf (β)R(k′ → k) · J(k′)

· δ(ω′(1− β cos θ′)− ω(1− β cos θ)), (10)

where ω is the frequency of a photon, dΩ the element of solid angle
(dΩ = 2πdφd cos θ), θ the angle with respect to magnetic �eld.
Apostrophed quantities correspond to the values before the scattering.
Scattering matrix R is

R(k′ → k) =


|a|2 |b|2 Re (ab) Im (ab)
|c |2 |d |2 Re (cd) Im (cd)

2Re (ac) 2Re (bd) Re (ad + bc) Im (ad − bc)
−2Im (ac) −2Im (bd) −Im (ad + bc) −Re (ad − bc)

 .
(11)
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Here

a = cos θ′ cos θC (e)(∆φ) + sin θ′ sin θ,

b = cos θS (e)(∆φ),

c = − cos θS (e)(∆φ),

d = C (e)(δφ),

where ∆φ = φ− φ′, φ is the asimuthal angle.

C
(e)(∆φ) =

1

2

(
ω′e i∆φ

ω′(1− β cos θ′
B

+ β2/2) − ωB(1− κ sin
2 θ′

B
) + iγ

+
ω′e−i∆φ

ω′ + ωB + iγ

)
,

S
(e)(∆φ) =

1

2i

(
ω′e i∆φ

ω′(1− β cos θ′
B

+ β2/2) − ωB(1− κ sin
2 θ′

B
) + iγ

− ω′e−iδφ

ω′ + ωB + iγ

)
.
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Emission

Source function due to emission is

Sem =
εk0Bω

2


Im ς11
Im ς22

0

−2Re ς12

 ,

where Bω = ~ω3/(4π3c2)(exp(~ω/T )− 1)−1 is the Planck function.
Parameter ε is the probability of absorption in the scattering event.
According to Pavlov, Panov, 1976; Nagel, Ventura, 1982; Potekhin, 2008

ε =
ν�

γ
, ν� =

4

3

√
2π

mT

Nee
4

~ω
(1− e

−~ω/T )Λ� . (12)
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Examples of calculated emergent spectra

Left �gure � typical spectrum of the emergent radiation in extraordinary wave for a hydrogen

white dwarf atmosphere. The dashed and solid lines represent solutions obtained without and

with frequency redistribution due to relativistic jumps, respectively. Parameters are T = 5eV,

B = 10
9G, M = 0.8M�. Right �gure � spectrum of the emergent radiation for a hydrogen

neutron star atmosphere. The dashed and solid lines represent solutions obtained without and

with vacuum polarization, respectively. Parameters are T = 500 eV, B = 1 · 1011 G, M = 1.4M�.
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Cyclotron wind in the atmospheres of white dwarfs

Pure hydrogen atmosphere.

M = 0.8M�, R ≈ 109 cm.

Vacuum polarization and
redistiribution of radiation

Ṁ = 4πR2Nscs

Points represent parameters of known white dwarfs (Kulebi et al., 2009;
Kawka et al., 2004). Candidates: EUVE J0317-855, SDSS
J100356.32+053825.6, HE 1043-0502, SDSS J234605.44+385337.7, GD
229
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Cyclotron winds in the atmospheres of neutron stars

Pure hydrogen atmosphere.

M = 1.4M�,
R = 1.2 · 106ñì.

Vacuum polarization and
redistiribution of radiation

Ṁ = 4πR2
Nscs

Candidates: RX J0821-43, 1E 1207.4-5209, CXOU J185238.6+004020 and
other ÑÑÎs
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Conclusions related to the cyclotron wind

Under LTE assumption, the cyclotron wind forms in atmospheres of
magnetic white dwarfs for T ∼ 2− 10 eV and B ∼ 108 − 109 G and in
atmospheres of neutron stars for T ∼ 200− 500 eV and
B ∼ 1010 − 1011 G. The value of a mass loss rate is up to 10−11M�/yr .
The out�owing plasma can freely move along the magnetic �eld lines under
the in�uence of radiation driven force. The motion across the �eld is
strongly limited. Some part of the ejected plasma forms two polar jets
along the open �eld lines. The rest of the wind is accumulated in the closed
domain of the magnetosphere and may appear as a dense plasma disk near
the magnetic equator.
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