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(  Phys.Rep. 338, p.1 (2000) - ) , Advances Cond. Mat. Phys. (2010) - ; M.L.K B1E. G. Maksimov, M.L.K., O. V. Dolgov B2 .



CUPRATES → YBCO – prototype of HTSC material 

; 93 KcT 2 3 7YBa Cu O
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Fe-based superconductors → LaOFFeAs – prototype for ferro-pnictides 
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Inelastic magnetic neutron scattering  against SFI mechanism 
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92.5 cT K

Big Change in  but Small Change in  !

Ph. Bourges et al. (1999)
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SFI-theory assumes too large (0.7 1) ! sfg eV



How Im ( , ) behaves with increase of ?Q  

Inelastic X-ray scatt., N.Le. Tacon (2011)

Im ( 0.3, )  peak at =250 meV ! q  

Neutron scatt. M. Fujita et al (2012)
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What about phonons and EPI?
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ARPES in 4-layered HTSC against SFI 

2 3 4 8 1 2Ba ( )Ca Cu O O F 

Y. Chen et al. (2006)
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Failure of DFT for Phonon spectra in cuprates  

Cuprates: DFT underestimates phonon line-widths by factor 10-20!  

Bond-stretching  
(longitudinal) mode 

      

2

2

Ph ( )~ ( ) Ronon shift: e ( ) 

Line ( )~ ( ) I-width m ( , ):





ep c

ep c

g

g

  

 

q q q,

q q q
`0

Sum-rule: 

strongly co, 1
Im ( , ) (1 )

,              

rrelated

LDA-DFT

( 1) - 

1

doping



 

 
   






  c

q

d q N
N

   






 effects (due to ) very important! Many body U W



ARPES kink at the nodal (N) -point 
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In fact all phonons contribute to  !cT

D. Shimada eta al. (1997, 2007)



Tunneling vs phonon Raman spectra in LASCO films 

H. Shim et al. (2008)



Constraints on EPI imply strong q-dependence 
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Experiment  EPI must be strongly momentum dependent 
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Failure of DFT for Phonon spectra in Fe-based 
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Giant magneto-elastic effects 
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(?)  - many body effectStrong EPI due to large As polarizability 

Strong EPI: 4 ( 40 ) ( 1 2 ) !LDA

ep p epV V eV V eV   

 giant magneto-elastic effects

M.L.K., A. A. Haghighirad, EPL(2008)

. Sawatzky et al. EPL(2009), arXiv:0808.1390G



Magneto-elastic coupling effects 
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 First order phase transition

M.L.K., A. A. Haghighirad, EPL(2008)



Contribution of EPI to superconductivity  

M.L.K., A. A. Haghighirad, EPL(2008)
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Cuprates and Fe-based SC as "two-band" superconductors
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Robustness of Cuprates and Fe-based SC in presence of nonmagnetic impurities
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Multi-band structure of typical Fe-based SC  
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Five d-orbital model – Violation of Anderson‘s theorem for s+-  !! 
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Coexistence of SC (s++ and s+-) and SDW 
Problem similar to HTSC (M.L.K et al. (1995))
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