Pairing in Cuprates and Fe-based Superconductors: is it so simple as it is claimed - EPI vs Coulomb pairing mechanism?

M. L. Kulic,

Goethe University Frankfurt/Main, Germany

This talk is devoted to our unforgetable teachers and friends *Vitalii Lazarevich Ginzburg* and *Evgenii Grigorievich Maksimov*

OUTLINE

1. HTSC in cuprates and Fe - based

1986 : cuprates SC - $T_c \approx 100 \text{ K} (\text{YBa}_2\text{Cu}_3\text{O}_7) \Rightarrow \text{single - band metal Fermi surface}$

d - wave pairing $\Rightarrow \Delta_{d_{x^2-y^2}}(\boldsymbol{k},\omega) \approx \Delta^0(\omega)(\cos k_x - \cos k_y)$

2008 : Fe - based SC - $T_c \le 55 \text{ K} (\text{SmFeAsO}_{1-x} F_x) \Rightarrow$ multi - band metal Fermi surface i = 1, 2...

 s_{++} - or s_{\pm} - and d-wave pairing $\Rightarrow \Delta_1(\boldsymbol{k}, \omega) = \pm \Delta_2(\boldsymbol{k}, \omega)$?

2. Phonon (EPI) vs spin - fluctuation (SFI) mechanism of pairing

- similarty of phase diagrams in cuprates and Fe-based SC
- DFT (band-structure) claims EPI is unimportant!? $\lambda_{ep}^{Fe} \approx 0.2!$?
- DFT fails to explain magnetism, phonons, ARPES in both compounds!
- ARPES, tunneling, phonon line-widths, neutron scttering make limits on EPI and SFI!

3. Challenge for the pairing theory

- EPI "dominates" in small-q; Coulomb in large-q scattering in cuprates and Fe-based SC?
- Why robustness of SC in presence of nonmagnetic impurities in both SC?
 - 4. Conclusions

Pairing potential: $\begin{cases} CUPRATES \Rightarrow (small-q) \text{ phonons} + Coulomb(large-q) ?\\ Fe-BASED \Rightarrow equally?: \text{ phonons}(intraband) + Coulomb(interband) \end{cases}$

CUPRATES → YBCO – prototype of HTSC material

 $YBa_2Cu_3O_{6+x}$ - **AF** - **order and Mott** - **insulator** due to strong correlations d-wave pairing \Rightarrow importance of magnetism for pairing? **ionic** - **metallic** structure \Rightarrow importance of phonons! **HTSC** is due to phonons or Coulomb (spin - fluctuations) or both?

Fe-based superconductors \rightarrow LaOFFeAs – prototype for ferro-pnictides

SFI-theory assumes too large $g_{sf} = (0.7 - 1) eV!$

Ph. Bourges et al. (1999)

How Im $\chi(Q, \omega)$ behaves with increase of ω ?

What about phonons and EPI?

ARPES in 4-layered HTSC against SFI

Failure of DFT for Phonon spectra in cuprates

Cuprates: DFT underestimates phonon line-widths by factor 10-20!

Many – *body* effects (due to U >> W) very important!

ARPES kink at the nodal (N) -point

Puzzle: $\omega_{kink}^{(s)} = \omega_{kink}^{(n)}$ isotropic EPI theory predicts: $\omega_{kink}^{(s)} = \omega_{kink}^{(n)} + \Delta_{max}$ \rightarrow FSP in $\alpha^2 F(q, \omega)$!

A. Lanzara et al. (2001)

In fact all phonons contribute to T_c !

No.peak	$\omega [meV]$	λ_i	$\Delta T_c[K]$
P1	14.3	1.26	7.4
P2	20.8	0.95	11.0
P3	31.7	0.48	10.5
P4	35.1	0.28	6.7
P5	39.4	0.24	7.0
P6	45.3	0.30	10.0
P7	58.3	0.15	6.5
P8	63.9	0.01	0.6
P9	69.9	0.07	3.6
P10	73.7	0.06	3.3
<i>P</i> 11	77.3	0.01	0.8
P12	82.1	0.01	0.7
P13	87.1	0.03	1.8

D. Shimada eta al. (1997, 2007)

Tunneling vs phonon Raman spectra in LASCO films

H. Shim et al. (2008)

Constraints on EPI imply strong q-dependence

1. **d** - wave pairing $\Rightarrow \Delta(k, \omega) \approx \Delta^0(\omega)(\cos k_x - \cos k_y)$

2. high $T_c \approx 160 K$

3. rather **large EPI** coupling $\Rightarrow \lambda_{epi} = 1-2$

4. small
$$\lambda_{tr} \sim 0.4 - 0.6 \quad (\rho(T) \sim \lambda_{tr}T)$$

Assumption: pairing is due to $SFI \implies EPI$ is pair-breaking

Question - how large is the **bare** T_{co}^{sfi} ?

$$Z(\omega)\Delta(k,\omega) = \int d^{3}q \int \frac{d\Omega}{\Omega} V_{sfi}(k - q, \Omega)\Delta(q, \omega)th \frac{\xi(q)}{2T_{c}} \implies \ln \frac{T_{c}}{T_{c0}^{sfi}} = \Psi(\frac{1}{2}) - \Psi(\frac{1}{2} + \frac{\Gamma_{epi}}{2\pi T_{c}})$$

$$\Delta(k, \omega) = \Delta(\omega)[\cos k_{x} - \cos k_{y}] \quad \text{and} \quad Z(\omega) \approx 1 + i\Gamma_{epi}$$

$$- \text{ for } T_{c} \approx 160 \ K \implies T_{c0}^{sfi} \approx (400 - 1100) \ K \ !$$

Way out \Rightarrow forward scattering peak (**FSP**) in EPI $\lambda_{epi}(q)$

Experiment EPI must be strongly momentum dependent

Experiments \Rightarrow EPI strongly *k*-dependent Theory: strong correlations \Rightarrow EPI peaked at small *k*!

ARPES in LiFeAs with $T_c = 18 \text{ K} \rightarrow \lambda_{epi} > 1 !?$

$$\begin{split} \lambda_{ep} &= 2 \int_{0}^{\infty} \frac{\alpha^{2} F(\omega)}{\omega} d\omega = \sum_{\kappa=1}^{3} \lambda_{ep}^{(\kappa)} \approx 1.38 \\ \lambda_{ep}^{(1,2,3)} &= 0.75; \ 0.25; \ 0.38 \\ \text{- it is not sufficient to explain } T_{c} \ ? \\ \text{- additional coupling is needed } ? \end{split}$$

Failure of DFT for Phonon spectra in Fe-based

 $BaFe_2As_2$

Giant magneto-elastic effects

- at critical pressure P_c : orthorhombic+SDW ($m \neq 0$) \Rightarrow collapsed tetragonal (m = 0)

Strong (?) EPI due to large As polarizability - many body effect

G. Sawatzky et al. EPL(2009), arXiv:0808.1390

Fig. 1: Schematic picture of the polarization of the As electronic cloud due to charge fluctuations (n) on the Fe-ions. The tiny arrow on the As-ion describes the induced electronic dipole moment on As.

Strong EPI:
$$V_{ep} = 4V_p (\approx 40 \ eV) \gg V_{ep}^{LDA} (\approx 1-2 \ eV)$$
 !

$$\hat{H}_{ep}^{(pol)} = V_{ep} \sum_{\mathbf{R}_{Fe}} \hat{\varphi}_{\mathbf{R}_{Fe}} (\hat{n}_{\mathbf{R}_{Fe}} - \lambda \hat{\mathbf{S}}_{\mathbf{R}_{Fe}}^2)$$

$$\hat{\varphi}_{\mathbf{R}_{Fe}} = \frac{1}{Zd} \sum_{\mathbf{R}_{As} \in n.n.\mathbf{R}_{Fe}} \mathbf{n}_{As} \cdot (\hat{\mathbf{u}}_{\mathbf{R}_{As}} - \hat{\mathbf{u}}_{\mathbf{R}_{Fe}})$$

$$\mathbf{n}_{As} = (\mathbf{R}_{Fe}^0 - \mathbf{R}_{As}^0)/d_{As-Fe}$$

 \rightarrow giant magneto-elastic effects

 $V_p \approx \sum_{\mathbf{R}_{As} \in n.n.\mathbf{R}_{Fs}} \frac{\alpha_{As} e^2}{\left|\mathbf{R}_{Fe} - \mathbf{R}_{As}\right|^4}$

M.L.K., A. A. Haghighirad, EPL(2008)

Magneto-elastic coupling effects

$$G(S_Q,\varepsilon,P)\approx \frac{\varepsilon^2}{2\kappa_{eff}} + P\varepsilon - \frac{a(\varepsilon)}{2}S_Q^2 + \frac{b}{4}S_Q^4 + \frac{c}{6}S_Q^6$$

 $\varepsilon(\equiv \delta V/V) = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} \quad a(\varepsilon) = U^{(sc)}(\varepsilon) - \chi_0^{-1}(Q, \varepsilon, T) \quad \chi_0(Q) = N(0)f(Q)$

For small strain $\varepsilon \ll 1$ $a(\varepsilon) \approx a_0 + (\gamma_k + \gamma_p)\varepsilon$,

$$\begin{split} a_0 &= \left[U^{(sc)} - \chi_0^{-1}(Q,0,T) \right] \\ \gamma_k &= \chi_0^{-1}(Q,0) d \ln \chi_0(Q,\varepsilon) / d\varepsilon \\ \gamma_p &= V_{ep} / r \end{split}$$

$$\epsilon_d = (\delta d_{Fe-As}/d_{Fe-As}) = 0.01$$

 $\epsilon_d \approx \epsilon/r \text{ with } r \sim 3-4.$

First order phase transition at
$$P_c$$

 $P_c = \frac{1}{(\gamma_k + \gamma_p)\kappa_{eff}} \left(a_0 + \frac{3b_{ren}^2}{16c} \right)$
 $\gamma_k \equiv \gamma_{LDA}, \ b_{ren} = b - \kappa_{eff} (\gamma_k + \gamma_p)^2 / 2$
 $\gamma_p \approx 10 \ \gamma_{LDA} \Longrightarrow P_c$ is due to many body effects!

M.L.K., A. A. Haghighirad, EPL(2008)

Contribution of EPI to superconductivity

FIG. 19: (color online) Top panel shows two Arsenic cpolarized A_g modes, which are in-phase and out-of-phase with respect to As and La motions along c-axis. The bottom panel shows the mode energies for non-magnetic tetragonal (P4/nmm), non-magnetic orthorhombic distorted lattices (P2/c), and SDW magnetic configuration (Pbmb).

M.L.K., A. A. Haghighirad, EPL(2008)

 \Rightarrow Coulomb (interband) und phonons (intraband) constructively increase $T_c!$

Robustness of Cuprates and Fe-based SC in presence of nonmagnetic impurities

(I) **Two-band** (toy) model with $\Delta_{++}(k) = -\Delta_{--}(k)$

$$\rho^{-1}(T) = \frac{1}{4\pi} \sum_{i=1,2} \frac{\omega_{pl,i}^2}{\Gamma_i(T)}, \quad \Gamma_i(T) (= \Gamma_{ii} + \Gamma_{ij}) = \gamma_i^{(imp)} + \gamma_i^{(inel)}(T)$$

- experiments in Fe-based $\Rightarrow \gamma_{++}^{(imp)} \approx \gamma_{--}^{(imp)} \approx \gamma_{+-}^{(imp)} \sim 200 - 300 \ K \ !$
 \Rightarrow kills intraband gapless unconventional pairing !

$$\hat{G}^{-1} = \hat{G}_0^{-1} - \hat{\Sigma}_{imp}(i\omega_n), \ \hat{\Sigma}_{imp} = n_{imp}\hat{T}(i\omega_n)$$
$$\hat{T}(i\omega_n) = [1 - \hat{v}\hat{G}_{loc}(i\omega_n)]\hat{v}$$

M.L.K. S. Drechsler, O.V.Dogov, (2008) M.L.K., O. V.Dogov, (1999) **Inter - and Intra - Band** Scattering: $v_{++} = v_{--} \neq 0$, $v_{+-} = v_{-+} \neq 0$

$$\ln \frac{T_c}{T_{c0}} = \psi(\frac{1}{2}) - \psi(\frac{1}{2} + \frac{\Gamma_{pb}}{2\pi T_c})$$

$$\Gamma_{pb} = \Gamma_u \sigma_{pb}, \ \Gamma_u = n_{imp} N^{-1}(0), \ \sigma_{pb} = \frac{v_{+-}^2}{[1 + (\frac{v_{++} + v_{+-}}{2})^2][1 + (\frac{v_{++} - v_{+-}}{2})^2]}$$

*For $(v_{++} / v_{+-}) = 1$ and unitary limit $v_{++} \to \infty \implies \Gamma_{pb} \to \Gamma_u$ *For $(v_{++} / v_{+-}) \neq 1$ and unitary limit: $v_{++}, v_{+-} \to \infty \implies \Gamma_{pb} \to 0$ (also for $v_{++} = 0$)

22

Multi-band structure of typical Fe-based SC

DFT in Fe-based: good qualitative but bad quantitative predictions!

- DFT overestimates magnetism: $\mu_{DFT} \sim 2\mu_B$; $\mu_{exp} \sim 0.4\mu_B$ (in LaFeAsO)
- (• DFT underestimates magnetism in cuprates: $\mu_{DFT} \ll \mu_{exp}$)
- DFT for $\mu = \mu_{exp} \implies$ "bad" optimized structure

(a)

- Fermi surface of arsenides $Ba(Fe_{1.94}Co_{0.06})_2As_2$ e - h nesting \Rightarrow SDW instability - peack in $\chi_s(Q)$ \Rightarrow "quasinesting" in SC compounds $\Rightarrow s_{\pm}$ pairing due to SFI !?
- *electron* pocket
- *hole* pocket

Fermi surface of *selenides* $K_{0.8}Fe_2Se_2$ NO hole pocket \Rightarrow no e-h nesting \Rightarrow no s_{\pm} pairng !? Tight binding model for *arsenide* $BaFe_2As_2$: five d-orbital model

e - h nesting \Rightarrow SDW instability - peack in $\chi_s(Q)$

- \Rightarrow "quasinesting" in SC compounds
- \Rightarrow s_± pairing due to SFI !?

Orbital fluctuations compete with spin fluctuations - H.Kontani(2009) EPI increase orbital fluctuations giving rise to $s_{++} - pairing!$ No sign change! - H.Kontani(2009) Assumption: SC due to orbital and spin fluctuations, EPI in first order neglected

$$\lambda_{\rm E} \Delta_{ll'}(k) = \frac{T}{N} \sum_{k',m_4} W_{lm_1,m_4l'}(k-k') \\ \times G_{m_1m_2}(k') \Delta_{m_2m_3}(k') G_{m_4m_3}(-k')$$

$$\hat{W}(q) = -\frac{3}{2}\hat{\Gamma}^s\hat{\chi}^s(q)\hat{\Gamma}^s + \frac{1}{2}\hat{\Gamma}^c\hat{\chi}^c(q)\hat{\Gamma}^c + \frac{1}{2}(\hat{\Gamma}^s - \hat{\Gamma}^c)$$

multiorbital susceptibility $\chi^{c}(q)$ may be significantly increased even by small EPI ! \Rightarrow favors s_{++} !

Transition from
$$s_{t}$$
 to s_{t+} in the presence of impurities \Rightarrow multiorbital fluctuations are important!

$s_{\pm}~vs~s_{{\scriptscriptstyle ++}}$ pairing

 s_{\pm} very fragile against impurities

 s_{\pm} and s_{++} show magnetic resonance but s_{\pm} is **sharper**

Five d-orbital model – Violation of Anderson's theorem for s+- !!

S.Onari & H.Kontani, PRL 103, 177001 (2009)

For **5 d** - **orbitals** $|\alpha\rangle$: $\langle \alpha | \hat{T}(i\omega_n) | \beta \rangle = \langle \alpha | [1 - \hat{I}\hat{G}_{loc}(i\omega_n)]^{-1}\hat{I} | \beta \rangle$ In the **band** basis: $\hat{T}_{k,q} = \hat{I}_{k,q} + (1/N) \sum_p \hat{I}_{k,p} \hat{G}_p \hat{T}_{p,q}$

Coexistence of SC (s++ and s+-) and SDW

Problem similar to HTSC (M.L.K et al. (1995))

(a) - SDW order
$$h_{ex}(\mathbf{r}) = h_{ex}^0 \cos(\mathbf{Qr}), \ \mathbf{Q} = (\pi, \pi)$$

- s-wave SC with $\Delta = \text{const}$

- density of states
$$N(E) \approx N(0) \left(\frac{n_{ex}}{v_F Q}\right) \frac{E}{\Delta}$$

- power law behavior $P(T) \sim T^n$

Μ

sign change of $F_{\uparrow\downarrow}(\boldsymbol{k},\omega)$

Х

(b) - **SDW order** $h_{ex}(\mathbf{r}) = h_{ex}^0 \cos(\mathbf{Q}\mathbf{r}), \ \mathbf{Q} = (\pi, \pi)$ - **d** - wave SC with $\Delta(\mathbf{k}) = -\Delta(\mathbf{k} + \mathbf{Q})$ (also holds for \mathbf{s}_{\pm} !) sign change of $F_{\uparrow\downarrow}(\mathbf{k}, \omega)$

- standard d-wave nodes $\Delta(\mathbf{k}) = 0$
- no accidental nodes in $\Delta(\mathbf{k})$
- s_{\pm} and d-wave SC coexist much easier with SDW

CONCLUSIONS

Pairing in cuprates and Fe-based SCis due to
 constructive interference (CI) between EPI and Coulomb

2. In cuprates EPI is important ingredient in pairing

* d-wave is due to inteplay between EPI and Coulomb

- * small-q ("intraband") scattering dominated by EPI
- * large-q ("interband") scattering dominated by Coulomb

3. In Fe-based SC EPI dominates in intraband pairing

- * intraband (small-q) scattering due to EPI
- * interband (large-q) scattering is probably dominated by Coulomb
- 4. **CI** phenomenon is prerequisite for higher T_c ?