Reparametrization path integral in AdS

and the holographic Schwinger effect

Yuri Makeenko (ITEP, Moscow)

Based on:

- J. Ambjørn, Y. M. Phys. Rev. D 85, 061901 (2012) [arXiv:1112.5606]
- C. Kristjansen, Y.M. to appear

Extending to SYM the previous applications of the reparametrization path integral to QCD/string

Y. M., Poul Olesen

- Phys. Rev. Lett. 102, 071602 (2009) [arXiv:0810. 4778 [hep-th]]
- Phys. Rev. D 80, 026002 (2009) [arXiv:0903.4114 [hep-th]]
- Phys. Rev. D 82, 045025 (2010) [arXiv:1002.0055 [hep-th]]
- JHEP 08, 095 (2010) [arXiv:1006.0078 [hep-th]]
- Phys. Lett. B 709, 285 (2012) [arXiv:1111.5606 [hep-th]]
P. Buividovich, Y.M.
- Nucl. Phys. B 834, 453 (2010) [arXiv:0911.1083 [hep-th]]
Y. M.
- Phys. Rev. D 83, 026007 (2011) [arXiv:1012.0708 [hep-th]]
- Phys. Lett. B 699, 199 (2011) [arXiv:1103.2269 [hep-th]]

Contents of the talk

- circular Wilson loop in AdS/CFT
- the Poisson formula in the Lobachevsky plane
- Douglas' integral for circular loop in $A d S$
- accounting for semiclassical fluctuations about the minimal surface
- reparametrization path integral
- IIB superstring in $A d S_{5} \times S^{5}$
- application to the Schwinger effect in $\mathcal{N}=4$ SYM
- shifting the critical electric field at strong coupling

AdS/CFT for Wilson Loops

Wilson loop in $\mathcal{N}=4$ SYM $=\mathrm{IIB}$ open superstring in $A d S_{5} \times S^{5}$

$$
W_{\mathrm{SYM}}(C)=\sum_{S: \partial S=C} \mathrm{e}^{-A_{I I B} \text { on } A d S_{5} \otimes S^{5}}
$$

$$
C=\left(x^{\mu}(\sigma), \int^{\sigma} \mathrm{d} \sigma|\dot{x}| n^{i}\right)
$$

- loop in the boundary of $A d S_{5} \otimes S^{5}$
e.g. $n^{i}=(1,0,0,0,0,0) \Rightarrow 4 D$ contour $x^{\mu}(\sigma)$

Circular loop:
AdS (supergravity)
Berenstein, Corrado, Fischler, Maldacena (1998)
Drukker, Gross, Ooguri (1999)
CFT (exact)

Minimal surface in AdS for circular loop

Upper half-plane (UHP) parametrization of the surface:
$z=x+\mathrm{i} y(y>0)$ is customary in string theory.
Standard embedding space coordinates $Y_{-1}, Y_{0}, Y_{1}, Y_{2}, Y_{3}, Y_{4}$ obey

$$
\begin{equation*}
Y \cdot Y \equiv-Y_{-1}^{2}-Y_{0}^{2}+Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{2}+Y_{4}^{2}=-1 \tag{1}
\end{equation*}
$$

The Euler-Lagrange equations in the embedding Y-space are

$$
(-\Delta+2) Y_{i}=0, \quad \Delta=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)
$$

and the "mass" 2 arises because of the presence of the Lagrange multiplier which is used to implement Eq. (1).

Solution for the minimal surface in $A d S$ for circular boundary:

$$
Y_{1}=\frac{1-x^{2}-y^{2}}{2 y} \quad Y_{2}=\frac{x}{y} \quad Y_{-1}=\frac{1+x^{2}+y^{2}}{2 y} \quad Y_{4}=Y_{0}=Y_{3}=0
$$

Minimal surface in AdS for circular loop (cont.)

On the Poincare patch

$$
\begin{aligned}
Z & \equiv \frac{R}{Y_{-1}-Y_{4}}=\frac{2 y R}{1+x^{2}+y^{2}} \\
X_{1} & \equiv Z Y_{1}=\frac{1-x^{2}-y^{2}}{1+x^{2}+y^{2}} R \quad X_{2} \equiv Z Y_{2}=\frac{2 x R}{1+x^{2}+y^{2}}
\end{aligned}
$$

is a sphere $X_{1}^{2}+X_{2}^{2}+Z^{2}=R^{2}$ with a circular boundary for $Z=0$.

The induced metric

$$
\mathrm{d} \ell^{2} \equiv \mathrm{~d} Y \cdot \mathrm{~d} Y=\frac{\mathrm{d} X_{1}^{2}+\mathrm{d} X_{2}^{2}+\mathrm{d} Z^{2}}{Z^{2}}=\frac{\mathrm{d} x^{2}+\mathrm{d} y^{2}}{y^{2}}
$$

is the Poincare metric of the Lobachevsky plane.

Dirichlet Green function in $A d S$

Extension of Douglas' (1931) algorithm for finding minimal surfaces to the Lobachevsky plane:

- to construct the Dirichlet Green function on the Lobachevsky plane
- to derive the Poisson formula for the Lobachevsky plane.

This will reconstruct the minimal surface from its boundary value

- finding the minimal surface is reduced to minimizing a boundary functional with respect to reparametrizations.

Dirichlet Green function on the Lobachevsky plane depends on the (geodesic) distance between images of the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$:

$$
L^{2}=\frac{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}{4 y_{1} y_{2}}
$$

Acting by the operator $(-\Delta+2)$, we obtain the Legendre equation whose solution for the Dirichlet Green function is

$$
\begin{equation*}
G=-\frac{3}{4 \pi}\left(\frac{\left(x_{1}-x_{2}\right)^{2}+y_{1}^{2}+y_{2}^{2}}{4 y_{1} y_{2}} \ln \frac{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}+y_{2}\right)^{2}}+1\right) \tag{2}
\end{equation*}
$$

Poisson formula in $A d S$

Poisson formula reconstructs a harmonic function in the Lobachevsky plane from its boundary value. We take the normal derivative of Eq. (2) near the boundary at a certain minimal value $y_{2}=y_{\min }$ to regularize divergences:

$$
\left.\frac{\partial G\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)}{\partial y_{2}}\right|_{y_{2}=y_{\min }}=\frac{2 y_{1}^{2} y_{\min }}{\pi\left(\left(x_{1}-x_{2}\right)^{2}+y_{1}^{2}\right)^{2}}+\mathcal{O}\left(y_{\min }^{3}\right)
$$

Finally, we obtain

$$
\begin{equation*}
Y_{i}(x, y)=\int_{-\infty}^{+\infty} \frac{\mathrm{d} s}{\pi} \frac{2 Y_{i}(t(s)) y^{2} y_{\min }}{\left((x-s)^{2}+y^{2}\right)^{2}} \tag{3}
\end{equation*}
$$

where $Y_{i}(t(s))$ is the boundary value and $t(s)$ ($\mathrm{d} t / \mathrm{d} s \geq 0$) is a possible reparametrization of the boundary - crucial in Douglas' algorithm.

This extends the Poisson formula to the Lobachevsky plane.

Poisson formula in $A d S$ (cont.)

The above spherical solution is reproduced by Eq. (3) from the boundary values

$$
\begin{align*}
& Y_{1}(t)=\frac{1-t^{2}}{2 y_{\min }} \quad Y_{2}(t)=\frac{t}{y_{\min }} \quad Y_{-1}(t)=\frac{1+t^{2}}{2 y_{\min }} \\
& Y_{0}(t)=Y_{3}(t)=Y_{4}(t)=0 \tag{4}
\end{align*}
$$

for $t(s)=s$, which means that no reparametrization of the boundary is required for a circle, in analogy with flat plane.
This is because the coordinates in use are conformal for a circle.
Note that $y_{\min }$ is nicely canceled, when (4) in substituted in Eq. (3).

An extension of Douglas' functional to AdS

Douglas integral in flat space

$$
\begin{equation*}
S_{\mathrm{flat}}=\frac{1}{4 \pi} \int \mathrm{~d} s_{1} \int \mathrm{~d} s_{2} \frac{\left(x_{B}\left(t\left(s_{1}\right)\right)-x_{B}\left(t\left(s_{2}\right)\right)\right)^{2}}{\left(s_{1}-s_{2}\right)^{2}} \tag{5}
\end{equation*}
$$

to be minimized with respect to the functions $t(s)$, reparametrizing the boundary. The minimization is required for $X(x, y)$ to obey a conformal gauge, where the Nambu-Goto would coincide with the quadratic (Polyakov) action.

Douglas integral in AdS space $S_{\text {AdS }}=S_{\text {div }}+S_{\text {reg Ambjørn, Y.M. (2012) }}$

$$
\begin{gathered}
S_{\mathrm{reg}}=\frac{1}{2 \pi} \int \mathrm{~d} s_{1} \int \mathrm{~d} s_{2}\left(Y_{B}\left(t\left(s_{1}\right)\right)-Y_{B}\left(t\left(s_{2}\right)\right)\right)^{2} y_{\min }^{2}\left[\frac{1}{\left(s_{1}-s_{2}\right)^{4}}\right]_{\mathrm{reg}} \\
{\left[\frac{1}{\left(s_{1}-s_{2}\right)^{4}}\right]_{\mathrm{reg}}=} \\
{\left[\frac{1}{\left(\left(s_{1}-s_{2}\right)^{2}+4 y_{\min }^{2}\right)^{2}}+\frac{32 y_{\min }^{2}}{\left(\left(s_{1}-s_{2}\right)^{2}+4 y_{\min }^{2}\right)^{3}}\right.} \\
\\
\left.-\frac{384 y_{\min }^{4}}{\left(\left(s_{1}-s_{2}\right)^{2}+4 y_{\min }^{2}\right)^{4}}\right]
\end{gathered}
$$

This boundary functional to be minimized with respect to $t(s)$.

Regularization by shifting the boundary

Integral in Eq. (6) is like in Eq. (5), while the denominator in Eq. (6) is $\left(s_{1}-s_{2}\right)^{4}$ rather than $\left(s_{1}-s_{2}\right)^{2}$ as in Eq. (5). This results in the well-known UV divergences regularized by shifting the boundary from $y=0$ to $y=y_{\text {min }}$. In the dual language of D-branes this corresponds to the breaking

Maldacena (1998), Rey, Yee (1998) $U(N) \longrightarrow U(N-1) \times U(1)$ by assigning a finite mass to the $U(1)$ gauge boson. This mass is associated with shifting the boundary to the slice $Z=\varepsilon$, so that from Eq. (4)

$$
y_{\min }(t)=\frac{\varepsilon}{2 R}\left(t^{2}+1\right)
$$

The divergent part

$$
S_{\mathrm{div}}=2 \pi \frac{R-\varepsilon}{\varepsilon}
$$

comes from $\left(s_{1}-s_{2}\right) \sim y_{\text {min }}$ and does not depend on $t(s)$. The regularized part $S_{\text {reg }}$ now gives a finite contribution in view of the important formula

$$
\int \mathrm{d} s s^{2}\left[\frac{1}{s^{4}}\right]_{\mathrm{reg}}=0
$$

Reparametrization path integral in $\mathcal{N}=4$ SYM

Reparametrization path integral for the circular Wilson loop in $\mathcal{N}=4$ SYM

$$
\begin{equation*}
W(\text { circle })=\mathrm{e}^{-\sqrt{\lambda} S_{\text {div }} / 2 \pi} \int \mathcal{D}_{\text {diff }} t(s) \mathrm{e}^{-\sqrt{\lambda} S_{\text {reg }}[t] / 2 \pi} \tag{7}
\end{equation*}
$$

where

$$
S_{\mathrm{reg}}[t]=\frac{1}{2 \pi} \int \mathrm{~d} s_{1} \mathrm{~d} s_{2}\left(t\left(s_{1}\right)-t\left(s_{2}\right)\right)^{2}\left[\frac{1}{\left(s_{1}-s_{2}\right)^{4}}\right]_{\mathrm{reg}}
$$

since $S_{\text {div }}$ does not depend on the reparametrization.
The constant $\sqrt{\lambda}$ is prescribed by the AdS/CFT correspondence

$$
\sqrt{\lambda}=\frac{R_{A d S}^{2}}{\alpha^{\prime}}
$$

but we consider it as a parameter to be fixed by comparing with the $\mathcal{N}=4$ SYM Wilson loop.

Expanding the reparametrizing function $t(s)=s+\frac{1}{\sqrt[4]{\lambda}} \beta(s)$ we have

$$
\begin{equation*}
\sqrt{\lambda} S_{\mathrm{reg}}=\frac{1}{2 \pi} \int \mathrm{~d} s_{1} \mathrm{~d} s_{2}\left(\beta\left(s_{1}\right)-\beta\left(s_{2}\right)\right)^{2}\left[\frac{1}{\left(s_{1}-s_{2}\right)^{4}}\right]_{\mathrm{reg}} \tag{8}
\end{equation*}
$$

Reparametrization path integral in $\mathcal{N}=4$ SYM (cont.)

The action is exact, but we expand in $1 / \sqrt[4]{\lambda}$ to quadratic order because the measure for integrating over subordinated functions with $\mathrm{d} t(s) / \mathrm{d} s \geq 0$ is highly nonlinear. Only to the quadratic order it can be substituted by the ordinary Lebesgue measure.

The integral (8) has three zero modes

$$
\beta_{1}(s)=1, \quad \beta_{2}(s)=s, \quad \beta_{3}(s)=s^{2}
$$

which is a consequence of three $S L(2, \mathbb{R})$ symmetries.

These result in a preexponential factor of $\lambda^{-3 / 4}$ in a full analogy with the string theory analysis

Drukker, Gross (2001)
We thus obtain from the ansatz (7) at large λ :

$$
W(\text { circle }) \propto \lambda^{-3 / 4} e^{\sqrt{\lambda}}
$$

reproducing the result
Erickson, Semenoff, Zarembo (2000)
for the $\mathcal{N}=4$ SYM perturbation theory, providing λ is identified with the 't Hooft coupling.

Mass-dependence of the effective action

We have consider so far the λ-dependence of the one-loop effective action rather than its dependence on the $U(1)$ boson mass

Maldacena (1998), Rey, Yee (1998)

$$
m=\frac{\sqrt{\lambda}}{2 \pi \varepsilon}
$$

The calculation is pretty much similar to that of Olesen, Y.M. (2010) for a $T \times R$ rectangle in flat space, where the Lüscher term was obtained from the reparametrization path integral In that case T / R was large, now R / ε is large.

The computation is performed by a mode expansion

$$
\beta(s)=\sum_{n} \beta_{n} f_{n}(s) \quad f_{-n}(s)=f_{n}^{*}(s)
$$

using a complete set of orthogonal (complex) basis functions $f_{n}(s)$ and then doing the Gaussian integrals over β_{n} 's.

Mass-dependence of the effective action (cont.)

Restricting ourselves by those modes for which the integral (8) has maximal "divergence" $\sim(R / \varepsilon)^{\nu}$, we obtain Ambjørn, Y.M. (2012)

$$
\prod_{n}\left(\frac{R}{\varepsilon}\right)^{-\nu / 2}=\left(\frac{R}{\varepsilon}\right)^{\nu / 2}=\mathrm{e}^{\frac{\nu}{2} \ln (R / \varepsilon)}
$$

where the product goes over those modes for which the integral (8) is $\sim(R / \varepsilon)^{\nu}$ and the product is understood via the ζ-function regularization.

The value of ν is determined by the Hausdorff dimension of typical trajectories in the reparametrization path integral which is zero

Buividovich, Y.M. (2010)
This corresponds to

$$
\nu=3
$$

Circular loop and the Schwinger effect

Saddle-point (Euclidean) action determining the exponent of the production rate in a constant electric field is given by the minimum of

$$
S=2 \pi R m-\pi|e E| R^{2}-\ln W(\text { circle })
$$

with respect to the radius R of the circle. This effective action emerges after performing the path integral over (pseudo) particle trajectories, representing the vacuum-to-vacuum amplitude in an external constant electric field.

In the path integral, first the integral over the proper time has a saddle point, and then the saddle-point trajectory is a circle of (large) radius $R=m /|e E|$

Affleck, Alvarez, Manton (1982)
The circle lies in the μ, ν-plane, when the constant electric field E is the μ, ν-component of the field strenght $F_{\mu \nu}$.
The existence of this saddle point is justified for small $|e E|$, when the logarithm of the Wilson loop on the right-hand side is subleading at weak couplings and contributes only to the preexponential.

Holographic Schwinger effect in $\mathcal{N}=4$ SYM

Holographic description of the Schwinger effect in SYM:
In the gravity approximation the minimal surface does not fluctuate, so the classical action reads

$$
\sqrt{\lambda} S_{\mathrm{Cl}}=\sqrt{\lambda} \pi\left(\cosh \rho-1-\frac{|e E|}{m^{2}} \sinh ^{2} \rho\right)
$$

where $\sinh \rho=R / \varepsilon=2 \pi m R / \sqrt{\lambda}$. This formula is applicable for $|e E| \lesssim m^{2}$, when the minimization of S_{cl} with respect to ρ gives

$$
\begin{equation*}
\cosh \rho_{0}=\frac{2 \pi m^{2}}{|e E| \sqrt{\lambda}} \tag{9}
\end{equation*}
$$

This equation has no solution for ρ_{0} when Semenoff, Zarembo (2011) $|e E|>2 \pi m^{2} / \sqrt{\lambda}$, which implies the existence of a critical electric field like in string theory.

How fluctuations about the minimal surface affect this very interesting result?

Schwinger effect in $\mathcal{N}=4$ SYM (cont.)

For the sum of S_{cl} plus the contribution from fluctuations about the minimal surface in the quadratic approximation we have

$$
\begin{equation*}
\sqrt{\lambda} S_{\text {cl }+1 \text { loop }}=\sqrt{\lambda} \pi\left(\cosh \rho-1-\frac{|e E|}{m^{2}} \sinh ^{2} \rho\right)-\frac{\nu}{2} \ln \cosh \rho \tag{10}
\end{equation*}
$$

The negative sign in the second line of this formula is like for the Lüscher term in string theory.

The minimum of the effective action (10) is now reached for

$$
\begin{equation*}
\frac{1}{\cosh \rho_{0}}=\frac{\sqrt{\lambda}}{\nu}\left(1-\sqrt{1-\frac{\nu|e E|}{\pi m^{2}}}\right) \tag{11}
\end{equation*}
$$

so the solution (9) is only slightly modified by quantum fluctuations. They shift the critical value of the constant electric field to

$$
\left|e E_{c}\right|=\pi m^{2}\left(\frac{2}{\sqrt{\lambda}}-\frac{\nu}{\lambda}\right)
$$

where $\nu=3$. Thus the quantum fluctuations about the minimal surface result in a $1 / \sqrt{\lambda}$ correction at large λ, as it might be expected.

Fluctuations of open superstring in $A d S_{5} \times S^{5}$

Fluctuations about the minimal surface result at one loop in the ratio of the determinants

$$
Z_{\text {AdS }}^{(1)}=\frac{\operatorname{det}\left(-\Delta_{i j}^{g h}+\delta_{i j}\right)_{\text {ghost }}^{1 / 2}}{\operatorname{det}\left(-\Delta_{i j}+\delta_{i j}\right)_{\text {long. }}^{1 / 2}} \frac{\operatorname{det}\left(-\widehat{\Delta}+R^{(2)} / 4+1\right)_{\text {Fermi }}^{8 / 2}}{\operatorname{det}(-\Delta+2)_{\text {Bose }}^{3 / 2} \operatorname{det}(-\Delta)_{\text {Bose }}^{5 / 2}}
$$

The ratio of ghost to longitudinal dets is generically not 1 because of different boundary conditions.

The strategy is to assume $Z_{\text {flat }}^{(1)}=1$ and calculate the ratio
$\frac{Z_{\text {AdS }}^{(1)}}{Z_{\text {flat }}^{(1)}}=\frac{\operatorname{det}(-\Delta)}{\operatorname{det}\left(-\Delta_{i j}+\delta_{i j}\right)^{1 / 2}}\left(\frac{\operatorname{det}\left(-\widehat{\Delta}+R^{(2)} / 4+1\right)}{\operatorname{det}\left(-\widehat{\Delta}+R^{(2)} / 4\right)}\right)^{8 / 2}\left(\frac{\operatorname{det}(-\Delta)}{\operatorname{det}(-\Delta+2)}\right)^{3 / 2}$
of massive to massless dets noting that the ghost dets are the same.

Fluctuations of open superstring in $A d S_{5} \times S^{5}$ (cont.)

Every ratio of massive to massless dets is computable either by the Seeley coefficients (modulo a constant) Drukker, Gross, Tseytiin (2000) or by direct computation of 1D×angular dets Kruczenski, Tirziu (2008)

The structure that appears in the log of the ratio is like

$$
\ln \frac{\operatorname{det}\left(-\Delta+\mu^{2}\right)}{\operatorname{det}(-\Delta)}=-\mu^{2} \frac{1}{4 \pi} \int \sqrt{g} \ln \sqrt{g}=\mu^{2} \frac{1}{2 \pi \varepsilon}(\ln \wedge \varepsilon+1)+\text { const. }
$$

with the total coefficient (extracted from the Seeley coefficients) 2×1 (longitudinal) $+3 \times 2$ (transversal) -8×1 (GS fermions) $=0$

Therefore $Z_{\text {AdS }}^{(1)}=$ const. does not depend on ε.
Like in the flat space the Liouville field $\varphi(x, y)\left(g_{a b}=\mathrm{e}^{\varphi} \delta_{a b}\right)$ decouples in the bulk, while its boundary value is related to the reparametrizing function $t(s)$ as

$$
\frac{\mathrm{d} t(s)}{\mathrm{d} s}=\mathrm{e}^{\varphi(s, 0) / 2}
$$

We are thus left with the same boundary action as previously discussed (= AdS Douglas' integral), reproducing the same effective action.

Fluctuations of open superstring in $A d S_{5} \times S^{5}$ (cont.)

const. is calculable by the Gel'fand-Yaglom method:

$$
\frac{\operatorname{det}\left(-\partial^{2}+V_{1}(x)\right)}{\operatorname{det}\left(-\partial^{2}+V_{2}(x)\right)}=\frac{\Psi_{1}(\infty)}{\Psi_{2}(\infty)} \quad \Psi_{i}(\varepsilon)=0, \quad \Psi_{i}^{\prime}(\varepsilon)=1
$$

Straight line:

$$
\begin{align*}
& \frac{\operatorname{det}^{8 / 2}(\text { AdS Fermi })}{\operatorname{det}^{8 / 2}(\text { free Fermi })}=\prod_{\omega}\left(\frac{1+\frac{1}{2 \varepsilon \omega}}{-2 \varepsilon \omega \mathrm{e}^{-2 \varepsilon \omega} \operatorname{Ei}(-2 \varepsilon \omega)}\right)^{4}=\mathrm{e}^{\frac{4}{\varepsilon} \ln (\Lambda \varepsilon)+\ldots} \\
& \frac{\operatorname{det}^{3 / 2}(\text { AdS Bose })}{\operatorname{det}^{3 / 2}(\text { free Bose })}=\prod_{\omega}\left(1+\frac{1}{\varepsilon \omega}\right)^{3}=\mathrm{e}^{\frac{3}{\varepsilon} \ln (\Lambda \varepsilon)+\ldots} \\
& \frac{\operatorname{det}^{1 / 2}(\text { Iongitudinal })}{\operatorname{det}(\text { free Bose })}=\prod_{\omega}\left(1+\frac{1}{\varepsilon \omega}+\frac{1}{2 \varepsilon^{2} \omega^{2}}\right)=\mathrm{e}^{\frac{1}{\varepsilon} \ln (\Lambda \varepsilon)+\ldots} \quad(12 \tag{12}\\
& \frac{Z_{\text {AdS }}^{(1)}}{Z_{\mathrm{flat}}^{(1)}}=\mathrm{e}^{(4-3-1) \frac{1}{\varepsilon} \ln (\Lambda \varepsilon)+\ldots}
\end{align*}
$$

Same results for the most singular part for the circle

Conclusion and Outlook

- Douglas' algorithm for constructing minimal surfaces can be extended to AdS
- explicitly elaborated for circular loop
- reparametrization path integral accounts for semiclassical fluctuations about the minimal surface at one loop - same results as for IIB open superstring in $A d S_{5} \times S^{5}$
- reparametrization path integral may describe exact effective action of IIB open superstring in $A d S_{5} \times S^{5}$ like in flat space
- the results are applicable to the Schwinger effect in $\mathcal{N}=4$ SYM - shifting of the critical electric field at strong coupling
- another potential application: polygonal light-like Wilson Ioops ($=$ scattering amplitudes in $\mathcal{N}=4$ SYM)
- reparametrization path integral is crucial for consistency of off-shell string both in flat and AdS space

