New Dualities in Three-dimensional
 Scattering
 Tristan McLoughlin
 AEI, Potsdam

Ginzburg Conference 2012

Based on work with A.Agarwal, T. Bargheer, N. Beisert, S. He, Y-t Huang, F. Loebbert.

Superconformal Chern Simons matter theories

- Such three-dimensional theories (for example $\mathcal{N}=6$ ABJM \& $\mathcal{N}=8$ BLG) describe the low energy dynamics of multiple M2-branes.
- $\mathcal{N}=6$ ABJM has many properties in common with 4D $\mathcal{N}=4$ SYM. Spectrum of anomalous dimensions is integrable in the planar limit \& it possesses a holographic dual string theory.
- Scattering amplitudes also share many features with $\mathcal{N}=4$ SYM however the $\mathcal{N}=6 \mathrm{ABJM}$ theories are less constrained by supersymmetry and provide interesting generalisations.
- Some evidence that onshell they are related to threedimensional supergravity in flat space e.g.

$$
" \mathcal{N}=8 \mathrm{BLG}{ }^{2} \equiv \mathcal{N}=16 E_{8(8)} \text { sugra }
$$

$\mathcal{N}=6 \mathrm{ABJM}$ theory

Onshell field content: four complex bosons and four fermions

$$
\phi^{\hat{I}}(p)_{\bar{A}}^{A} \quad \& \quad \psi_{\hat{I}}(p)_{\bar{A}}^{A} \quad \hat{I}=1, \ldots, 4
$$

transforming in bifundamental rep. of $U\left(N_{c}\right) \times U\left(N_{c}\right)$ gauge group.

Useful to introduce real* spinors for onshell momenta

$$
p^{\alpha \beta}=\lambda^{\alpha} \lambda^{\beta} \quad \alpha=1,2
$$

and Graßmann variables $\eta^{I}, I=1,2,3$ for onshell superfield

$$
\Phi=\phi^{4}+\eta^{I} \psi_{I}+\frac{1}{2} \epsilon_{I J K} \eta^{I} \eta^{J} \phi^{K}+\frac{1}{3!} \epsilon_{I J K} \eta^{I} \eta^{J} \eta^{K} \psi_{4}
$$

\& conjugate fermionic superfield

$$
\bar{\Phi}=\bar{\psi}^{4}+\ldots
$$

We can define colour ordered, planar amplitudes

$$
\left.\begin{array}{l}
\mathcal{A}\left(\bar{\Phi}\left(p_{1}\right)^{\bar{A}_{1}}{ }_{A_{1}}, \Phi\left(p_{2}\right)^{B_{2}}{ }_{{ }_{B}^{2}}\right.
\end{array}, \ldots, \Phi\left(p_{n}\right)^{B_{n}}{ }_{\bar{B}_{n}}\right)=1
$$

sum over all permutations of even and odd sites modulo cyclic permutations by two sites.

$$
\lambda_{n-1}^{\alpha}, \eta_{n-1}^{I} \lambda_{\lambda_{3}^{\alpha}, \eta_{3}^{I}}^{\lambda_{n}^{\alpha}, \eta_{n}^{I}, \eta_{2}^{I}}
$$

We can define colour ordered, planar amplitudes

$$
\begin{aligned}
& \mathcal{A}\left(\bar{\Phi}\left(p_{1}\right)^{\bar{A}_{1}}{ }_{A_{1}}, \Phi\left(p_{2}\right)^{B_{2}}{ }_{\bar{B}_{2}}, \ldots, \Phi\left(p_{n}\right)^{B_{n}}{ }_{\bar{B}_{n}}\right)= \\
& A(\overline{1}, 2, \ldots, n) \delta^{B_{2}}{ }_{A_{1}} \delta^{\bar{A}_{3}}{ }_{\bar{B}_{2}} \ldots \delta^{\bar{A}_{1}}{ }_{\bar{B}_{n}}+\ldots
\end{aligned}
$$

sum over all permutations of even and odd sites modulo cyclic permutations by two sites.

Ex. Four-points tree-level

$$
A_{4}\left(\bar{\Phi}_{1}, \Phi_{2}, \bar{\Phi}_{3}, \bar{\Phi}_{4}\right)=\frac{\delta^{(3)}(P) \delta^{(6)}(Q)}{\langle 12\rangle\langle 23\rangle}
$$

[Bargheer, Loebbert, Meneghelli]

Lorentz invariants: $\langle i j\rangle=\lambda_{i}^{\alpha} \epsilon_{\alpha \beta} \lambda_{j}^{\beta}$
(Super)momenta:

$$
P^{\alpha \beta}=\sum_{a=1}^{n} \lambda_{a}^{\alpha} \lambda_{a}^{\beta}, \quad Q^{I \alpha}=\sum_{a=1}^{n} \eta_{a}^{I} \lambda_{a}^{\alpha}
$$

Symmetries

Amplitudes have $\mathcal{N}=6$ superconformal symmetry i.e. $\operatorname{OSp}(6 \mid 4)$

$$
J^{A} A_{n}=0, \quad J^{A}=\sum_{a \in \operatorname{legs}} J_{a}^{A}
$$

e.g. $S_{\alpha}^{I}=\eta^{I} \partial_{\alpha}$. N.B. "anomalies" on multi-collinear configurations.

Yangian symmetries: $\quad J^{(1) A}=f_{B C}^{A} \sum_{a<b} J_{a}^{B} J_{b}^{C} \quad \begin{gathered}\text { [Bargheer, Loebbert, } \\ \text { Meneghelli] }\end{gathered}$

Can interpret part of the Yangian as dual conformal symmetry with dual space:

$$
\begin{aligned}
& x_{a, a+1}=x_{a}-x_{a+1}=\lambda_{a} \lambda_{a} \\
& \theta_{a, a+1}=\lambda_{a} \eta_{a}, \quad y_{a, a+1}^{I J}=\eta_{a}^{I} \eta_{a}^{J}
\end{aligned}
$$

\geq dual R-sym coords

- BCFW recursion relations generates all tree-level amplitudes (in principle) and proves Yangian symmetry to all tree-level amplitudes. [Gang, Huang, Koh, Lee, \& Lipstein]

Orthogonal Graßmannian formulation. [Lee]

- Four point tree and one-loop amplitudes in the mass-deformed version which preserves all susy and the symmetry algebra have

$$
S L(2, \mathbb{R}) \ltimes P S U(2 \mid 2)^{2} \ltimes \mathbb{R}^{3}
$$

been calculated. [Agarwal, Beisert,TMcL]

- Dual to $\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$ type-IIA string theory
- evidence of classical integrability
- integrable spectrum (ABA \& TBA/Y-system) [Gromov \& Vieira] [Gromov, Kazakov, Vieira][Bombardelli, Fioravanti and Tateo]
- In $\mathcal{N}=4$ SYM dual superconformal symmetry is related to the self-duality of $\mathrm{AdS}_{5 \times 5}{ }^{5}$ under a combination of bosonic and fermionic T-dualities. [Berkovits\&Maldacena] [Beisert, Ricci, Tseytlin \&Wolf]
- Maps planar amplitudes to polygonal, light-like (super)-Wilson loops. [Alday\&Maldacena]
- Simplest case: MHV amplitudes to bosonic Wilson loops.

- For $\mathrm{N}^{\mathrm{k}} \mathrm{MHV}$ amplitudes we need to consider super-Wilson loops. [Mason \& Skinner] [Caron-Huot]
- ABJM has no notion of chirality, no MHV subsector.
- In ABJM what is five sided Wilson loop dual to?
- T-dualities (bosonic and fermionic) are singular in $\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$.
- Nonetheless \exists evidence for some form of the duality in ABJM
- At four points: one-loop amplitude vanishes as does bosonic Wilson loop, two-loops matches.
- n-pt bosonic Wilson loop vanishes at one-loop and matches functional form of $\mathcal{N}=4$ SYM answer at two-loops.
[Agarwal, Beisert \& TMcL], [Henn, Plefka,Wiegandt],[Chen\&Huang],[Bianchi et al], [Wiegandt]
- ABJM has no notion of chirality, no MHV subsector.
- In ABJM what is five sided Wilson loop dual to?
- T-dualities (bosonic and fermionic) are singular in $\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$.
- Nonetheless \exists evidence for some form of the duality in ABJM
- At four points: one-loop amplitude vanishes as does bosonic Wilson loop, two-loops matches.
- n-pt bosonic Wilson loop vanishes at one-loop and matches functional form of $\mathcal{N}=4$ SYM answer at two-loops.
[Agarwal, Beisert \& TMcL], [Henn, Plefka,Wiegandt],[Chen\&Huang],[Bianchi et al], [Wiegandt]

Need to consider higher point amplitudes.

Six-point one-loop amplitude

All one-loop amplitudes can be written as linear combination of scalar triangle integrals:

$$
A_{n}^{(1)}=\sum_{i} d_{i} \mathcal{I}_{3, i}
$$

We can find coefficient by calculating maximal cuts:

e.g.

$$
d_{1}=\frac{1}{2} \sum_{\text {sol }} \int \prod d^{3} \eta_{i} A_{4}^{(0)}(\overline{1}, 2,-\overline{\mathrm{b}}, \mathrm{a}) A_{4}^{(0)}(\overline{3}, 4,-\overline{\mathrm{c}}, \mathrm{~b}) A_{4}^{(0)}(\overline{5}, 6,-\overline{\mathrm{a}}, \mathrm{c})
$$

Six-point one-loop amplitude

Final result [Bargheer, Beisert, Loebbert,TMcL]:

$$
A_{6}^{(1)}(\overline{1}, 2, \overline{3}, 4, \overline{5}, 6)=\frac{\pi}{4} c_{6}(\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}) A_{6}^{(0)}(\overline{6}, 1, \overline{2}, 3, \overline{4}, 5)
$$

where

$$
c_{6}(\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6})=\operatorname{sgn}\langle 12\rangle \operatorname{sgn}\langle 34\rangle \operatorname{sgn}\langle 56\rangle+\operatorname{sgn}\langle 61\rangle \operatorname{sgn}\langle 23\rangle \operatorname{sgn}\langle 45\rangle
$$

- Answer is proportional to Yangian invariants, however there are additional discontinuities when two particles become collinear.
- Consistent with predictions of "anomalous" symmetries.
- Also found in a Feynman graph calculation. [Bianchi,Leoni, Mauri, Penati, Santambrogio]
- Doesn't match bosonic Wilson loop, more akin to N=4 SYM NMHV amplitude. Optimistic conclusion:

Need a new super-Wilson loop.

SCS as a three-algebra theory

Can express the ABJM theory by rewriting the $\mathrm{U}\left(\mathrm{N}_{\mathrm{c}}\right) \times \mathrm{U}\left(\mathrm{N}_{\mathrm{c}}\right)$ color structure as a three-algebra [Bagger \& Lambert]:

Complex vector space with basis $T^{\mathrm{a}}, \mathrm{a}=1, \ldots, \mathrm{~N}_{\mathrm{c}}{ }^{2}$ and trilinear bracket

$$
\left[T^{a}, T^{b} ; \bar{T}^{c}\right]=f_{d}^{a b \bar{c}} T^{d} \quad \text { s.t. } \quad f_{d}^{a b \bar{c}}=-f_{d}^{b a \bar{c}}
$$

Additionally one has a trace form and a reality condition

$$
h^{\bar{a} b}=\operatorname{Tr}\left(\bar{T}^{a}, T^{b}\right) \quad \& \quad f^{a b \bar{c} \bar{d}}=f^{* \bar{c} \bar{d} a b}
$$

Key property is fundamental identity (c.f. Jacobi identity)

$$
f^{e f \bar{g}}{ }_{b} f^{* \bar{a} \bar{d} c b}+f^{f e \bar{a}}{ }_{b} f^{* \bar{g} \bar{d} c b}+f^{e c \bar{d}_{b} f^{* \bar{g} \bar{a} f b}+f^{c f \bar{d}_{b}} f^{* \bar{g} \bar{a} e b}=0.00 .}
$$

SCS as a three-algebra theory

Can express the ABJM theory by rewriting the $\mathrm{U}\left(\mathrm{N}_{\mathrm{c}}\right) \times \mathrm{U}\left(\mathrm{N}_{\mathrm{c}}\right)$ color structure as a three-algebra [Bagger \& Lambert]:

Enhanced $\mathcal{N}=8$ susy (BLG-theory) when vector space is real and structure constants are totally antisymmetric

$$
\left[T^{a}, T^{b}, T^{c}\right]=f_{d}^{a b c} T^{d} \quad \text { s.t. } \quad f^{a b c d}=f^{[a b c d]}
$$

Only one finite dimensional example.

SCS as a three-algebra theory

Superfields transform as fundamental representations of three-alg. Four point amplitudes:

$$
\begin{array}{ll}
\mathcal{N}=6: & \mathcal{A}(\overline{1}, 2, \overline{3}, 4)=\frac{4 \pi i}{k} \frac{\delta^{(3)}(P) \delta^{(6)}(Q)}{\langle 12\rangle\langle 23\rangle} f^{a_{2} a_{4} \bar{a}_{1} \bar{a}_{3}} \\
\mathcal{N}=8: & \mathcal{A}(1,2,3,4)=\frac{4 \pi i}{k} \frac{\delta^{(3)}(P) \delta^{(8)}(Q)}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} f^{a_{1} a_{2} a_{3} a_{4} \quad \text { [Huang }} \quad \text { Lipstein] }
\end{array}
$$

In general is written as a sum of quartic graphs:

$$
\mathcal{A}_{n} \propto \sum_{i \in \text { graphs }} \frac{n_{i} c_{i}}{\prod_{\alpha_{i}} \ell_{\alpha_{i}}^{2}}
$$

$$
c_{i}: f^{a_{n} a_{2} \bar{a}_{1}} b_{1} f^{* \bar{a}_{3} \bar{a}_{5} b_{1}} \bar{b}_{2} \ldots
$$

$$
\ell_{i}^{2}: \text { inverse propagators }
$$

n_{i} : kinematic numerators

Color-kinematics duality

Claim: there exists a duality between color and kinematics analogous to that in YM [Bern, Johansson \& Carrasco]:

$$
\mathcal{A}_{n} \propto \sum_{i \in \text { graphs }} \frac{n_{i} c_{i}}{\prod_{\alpha_{i}} \ell_{\alpha_{i}}^{2}}
$$

Different color structures are related by Fundamental identity:

$$
c_{s}+c_{t}+c_{u}+c_{v}=0
$$

There exists numerators satisfying the same relations:

$$
n_{s}+n_{t}+n_{u}+n_{v}=0
$$

[Bargheer,
Evidence: four points (trivial) and six points (non-trivial)

- Implies non-trivial relations between color ordered amplitudes

Doubling to Supergravity

Given numerators satisfying the fundamental identities we can replace the color structures with another copy of the numerators:

$$
\mathcal{M}_{n}=\sum_{i \in \text { graphs }} \frac{n_{i} n_{i}}{\prod_{\alpha_{i}} \ell_{i}^{2}}
$$

This defines the scattering amplitudes for a theory with a spectrum given by the square of gauge theory (c.f. KLT, BCJ)

- $\mathcal{N}=8$ BLG case gives a theory with 128 bosons +128 fermions and $\mathcal{N}=16$ supersymmetry.
- Only has amplitudes with even numbers of external legs.
- This theory will have a hidden three-algebra structure in its kinematics!

$\mathcal{N}=16$ Supergravity

- Maximally supersymmetric 3D supergravity constructed by Marcus and Schwarz has 128 bosons and 128 fermions transforming as $\mathrm{SO}(16)$ spinors \Rightarrow correct spectrum and no odd-point amplitudes.
- Can be found by dimensional reduction and duality transformation of 4D $\mathcal{N}=$ 8 supergravity:

$$
\begin{aligned}
& D=4 \\
& D=3
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
A_{\tilde{\mu}}^{I}(56) \\
\downarrow \\
A_{\mu}^{I} \\
{ }_{\mu}
\end{array} \varphi^{I} \\
& \varphi^{A}(128) \quad E_{8(8)} / S 0(16) \text { coset }
\end{aligned}
$$

using

$$
\triangle^{2} F_{\mu \nu}=\epsilon_{\mu \nu \lambda} \partial^{\lambda} \varphi
$$

$\mathcal{N}=16$ Supergravity

- Maximally supersymmetric 3D supergravity constructed by Marcus and Schwarz has 128 bosons and 128 fermions transforming as $\mathrm{SO}(16)$ spinors \Rightarrow correct spectrum and no odd-point amplitudes.
- Can be found by dimensional reduction and duality transformation of $4 \mathrm{D} \mathcal{N}=$ 8 supergravity.
- Four-point amplitude is the square of BLG four-point:

$$
\mathcal{M}_{4}=\frac{i \kappa^{2}}{4} \frac{\delta^{(3)}(P) \delta^{(16)}(Q)}{(\langle 12\rangle\langle 23\rangle\langle 31\rangle)^{2}}
$$

- Six-point is:

$$
\mathcal{M}_{6}=\sum_{i \in \text { graphs }} \frac{n_{i} n_{i}}{\prod_{\alpha_{i}} \ell_{i}^{2}}
$$

where the numerators are those of the SCS theory and the sum is over the same quartic graphs.

Conclusions \& Outlook

-. F. Provided evidence for tree-level color-kinematics in ABJM (and BLG) theories when written as three-algebra theories.
-f. Provided evidence that one can, á la BCJ, "double" BLG theory into $\mathcal{N}=16$ E_{8} supergravity and hence for a hidden three-algebra structure in 3 D supergravity.

* Does this color-kinematics duality persist to higher points? Loop integrands?
* Is $\mathcal{N}=163 \mathrm{D}$ supergravity finite?

