Comments about Higher-Spin and Duality. Part II:

 Mixed-Symmetry Fields and Unfolding
Dmitry Ponomarev

University of Mons
Moscow, May 29, Ginzburg Conference'2012

```
N. Boulanger, P. P. Cook, D. P. [arXiv:1205.2277[hep-th]],
N. Boulanger, D. P. [arXiv:1205.????[hep-th]].
```


Overview and Key Ingredients. Mixed-Symmetry Fields.

- Massless mixed-symmetry field in Minkowski space:

- Frame-like formulation:

Generalisation of Cartan formulation of gravity in terms of frame field e and spin-connection ω

- Unfolding:

Unfolding $=$ Frame-like + Integrability.

Overview and Key Ingredients. Dualisation

- Duality:

On-shell representation is given by a tensor of the Wigner little group $S O(d-2)$. Hodge duality maps $h_{i} \rightarrow d-2-h_{i}$.

- Parent action approach:

Parent: $\quad S$ (initial fields, dual fields)

Children: $\quad S$ (initial fields) $\quad S$ (dual fields)

Motivation

- Bargmann-Wigner-Fierz-Pauli programm: fields are not traceless fields on-shell.
- Transformation, relating child theories through the parent action can be implemented in the path integral, thus establishing equivalence at the quantum level
[Fradkin, Tseytlin '85]
- Different fields dual to gravity appear in the context of Kac-Moody algebra E_{11}
[West '01], [Ricconi, West '06]
- The duality between an exotic $6 d(4,0)$ superconformal theory and the strong coupling limit of maximally supersymmetric $\mathcal{N}=8$ supergravity in $5 d$ was conjectured. The dual and the double dual gravitons appear via dimensional reduction of $6 d$ theory.
[Hull '00,'01]

Plan

- Frame-like massless mixed symmetry fields in Minkowski space
- Dualisation generalities
- Frame-like parent action dualisation of
- gravity \rightarrow dual gravity
- dual gravity \rightarrow double-dual gravity
- General Massless Mixed Symmetry field

Massless Mixed-Symmetry Fields in Minkowski space

Unitary irreducible representation of $\operatorname{ISO}(d-1,1)$ is induced from a tensorial irreducible representation of Wigner's little group $S O(d-2)$. Irreducibility under $S O(d-2)$ requires symmetry and trace constraints. Symmetry constraints: Young diagrams

$$
\mathbf{Y}\left[h_{1}, h_{2}, h_{3}, h_{4}\right]=\mathbf{Y}\left(s_{1}, s_{2}, s_{3}, s_{4}\right)=\begin{array}{|l|l|l|l}
h_{1} h_{2} h_{3} & h_{4} \\
\hline & & & \\
\hline
\end{array}
$$

For example \square and \square denote sym. and antisym. rank 2 tensors.

Trace constraints: Tracelessness. $h_{1}+h_{2}>d$ are not allowed for $S O(d)$.

Frame-Like Gravity

$g_{\mu \nu} \longrightarrow(e, \omega)$,
$e_{1}{ }^{a}$ - frame field, provides tangent fiber space basis with flat metric $\eta_{a b}$; 1-form valued in $\mathrm{Y}[1]$-shaped fiber tensors. $\omega_{1}{ }^{a b}$ - spin-connection, defines parallel transport in fiber space; 1-form valued in $\mathrm{Y}[2]$-shaped fiber tensors.

$$
\begin{gathered}
T_{2}^{a}=d e_{1}^{a}+\omega_{1}^{a} b e_{1}^{b}, \quad R_{2}^{a b}=d \omega_{1}^{a b}+\omega_{1}^{a} \omega_{1}^{c b} \\
S=\int R_{2}^{a_{1} a_{2}} e_{1}^{a_{3}} \ldots e_{1}^{a_{d}} \varepsilon_{a_{1} \ldots a_{d}} \\
\frac{\delta S}{\delta \omega} \propto T=0, \quad \frac{\delta S}{\delta e} \propto \operatorname{Tr}[R]=0
\end{gathered}
$$

Unfolded Linear Gravity

Linearization around the flat background: $e \rightarrow h+e, \omega \rightarrow \varpi+\omega$.

$$
T_{2 b g}^{a}=d h_{1}^{a}+\varpi_{1 b}^{a} h_{1}^{b}=0, \quad R_{2 b g}^{a b}=d \varpi_{1}^{a b}+\varpi_{1}^{a}{ }_{c} \varpi_{1}^{c b}=0 .
$$

Linearized action is

$$
S=\int\left(d e_{1}^{a_{1}}+\frac{1}{2} \omega_{1}^{a_{1}}{ }_{b} h_{1}^{b}\right) \omega_{1}^{a_{2} a_{3}} h_{1}^{a_{4}} \ldots h_{1}^{a_{d}} \varepsilon_{a_{1} \ldots a_{d}} \equiv\left\langle\left. d e+\frac{1}{2} \omega h \right\rvert\, \omega\right\rangle .
$$

Equations of motion are

$$
T^{a}=d e_{1}^{a}+\omega_{1 b}^{a} h_{1}^{b}=0, \quad \operatorname{Tr}\left[d \omega_{1}^{a b}\right]=0 .
$$

the 2-nd equation can be rewritten
$0=d \omega_{1}^{a b}+h_{1 c} h_{1 d} C_{0}^{a b c d}, \quad$ where $C_{0}^{a b c d}$ is $\mathrm{Y}[2,2]$ - shaped Weyl tensor.

Unfolded Linear Gravity

One can continue by writing differential equations for Weyl tensor $0=d C_{0}^{a b c d}+\Pi\left(h_{1 e} C_{0}^{a b c d e}\right), \quad$ where $C_{0}^{a b c d e}$ is $\mathbf{Y}[2,2,1]-$ shaped tensor, $0=d C_{0}^{a b c d e}+\Pi\left(h_{1 e} C_{0}^{a b c d e f}\right), \quad$ where $C_{0}^{a b c d e f}$ is $\mathbf{Y}[2,2,1,1]$-shaped tensor.

Summarizing the result, unfolded equations for linear gravity are

$$
0=d W_{\mathbf{p}^{i}}^{\mathbf{Y}^{i}}+\sigma_{-}\left(h_{\mathbf{1}}\right) W_{\mathbf{p}^{i+1}}^{\mathbf{Y}^{i+1}} \equiv d W^{i}+\sigma_{-} W^{i+1}
$$

where i is the grade enumerating fields, $\sigma_{-}\left(h_{1}\right)$ is defined uniquely by p^{i+1}, \mathbf{Y}^{i+1}, p^{i} and $\mathbf{Y}^{i}, \sigma_{-}^{2}=0 \Leftrightarrow$ integrability. Gauge symmetries

$$
\begin{gathered}
W_{\mathbf{p}^{i}}^{\mathbf{Y}^{i}} \rightarrow \varepsilon_{\mathbf{p}^{i}-1}^{\mathbf{Y}^{i}} \rightarrow \bar{\varepsilon}_{\mathbf{p}^{i}-2}^{\mathbf{Y}^{i}} \quad \rightarrow \quad \ldots \\
S=\left\langle\left. d W^{1}+\frac{1}{2} \sigma_{-} W^{2} \right\rvert\, W^{2}\right\rangle .
\end{gathered}
$$

Unfolded Massless Mixed-Symmetry Fields

Massless spin-Y field on-shell describes $S O(d-2)$ traceless Y -shaped tensor

Then

[Skvortsov '08]

Dualisation Generalities and "Pure Traces"

Given spin- $\mathbf{Y}\left[h_{1}, h_{2}, \ldots\right]$ field on-shell we can perform:

- The first column dualisation: $\mathbf{Y}\left[h_{1}, h_{2}, \ldots\right] \rightarrow \mathbf{Y}^{\prime}\left[d-2-h_{1}, h_{2}, \ldots\right]$,

$$
\begin{aligned}
& h_{1} \geq h_{2} \quad \Leftrightarrow \quad\left(d-2-h_{1}\right)+h_{2} \leq d-2 \\
& h_{1}+h_{2} \leq d-2 \quad \Leftrightarrow \quad d-2-h_{1} \geq h_{2} .
\end{aligned}
$$

The dual diagram is allowed.

- The i-th column dualisation $(i \neq 1)$, $\mathrm{Y}\left[h_{1}, \ldots, h_{i}, \ldots\right] \rightarrow \mathbf{Y}^{\prime \prime}\left[d-2-h_{i}, h_{1}, \ldots\right]$,

$$
\begin{aligned}
& h_{1} \geq h_{i} \quad \Leftrightarrow \quad h_{1}+\left(d-2-h_{i}\right) \geq d-2 . \\
& h_{1}+h_{i} \leq d-2, \quad \Leftrightarrow \quad h_{1} \leq d-2-h_{i}
\end{aligned}
$$

The dual diagram is not allowed. This implies that traceless tensor maps to pure trace tensor of the form $\eta \ldots \eta C$ with traceless C.

Dualisation Generalities and "Pure Traces"

Examples of on-shell dualisation.

- Gravity on-shell is given by the traceless symmetric rank 2 tensor $h_{i j}$. Dual graviton is defined on-shell

$$
C^{m[d-3]}{ }_{p}=\varepsilon^{m[d-3] n} h_{n p}
$$

C is traceless $\mathrm{Y}[d-3,1]$-shaped tensor.

- The second dualisation of gravity

$$
\begin{gathered}
Y^{m[d-3], n[d-3]}=\varepsilon^{m[d-3] p} C^{n[d-3]}{ }_{p}=\varepsilon^{m[d-3] p^{n} \varepsilon^{n[d-3] r} h_{p r}} \\
Y^{m[d-3],}{ }_{n[d-3]}=\sigma(d-2)!\delta_{n[d-3] p}^{m[d-3] r} h_{r}^{p_{r}}= \\
\sigma(d-2)!\left(\frac{1}{d-2} \delta_{n[d-3]}^{m[d-3]} \delta_{p}^{r} h_{r}^{p}-\frac{d-3}{d-2} \delta_{[n[d-4]}^{[m[d-4]} h_{n]}^{m]}\right)
\end{gathered}
$$

Y is $(d-4)$-fold pure-trace.

Dualisation of Linear Gravity. Parent Action

The parent action for the first dualisation is

$$
S=\int\left[\left(d e_{1}^{a_{1}}+\frac{1}{2} h_{1}^{b} \omega_{1}^{a_{1}} b+t_{2}^{a_{1}}\right) \omega_{1}^{a_{2} a_{3}} h_{1}^{a_{4}} \ldots h_{1}^{a_{d}} \varepsilon_{a_{1} \ldots a_{d}}+t_{2 a} d \tilde{e}_{\mathrm{d}-3}^{a}\right],
$$

t_{2}^{a} is torsion-like field, \tilde{e}_{d-3}^{a} is frame-like dual field.
Gauge symmetries are

$$
\begin{gathered}
\delta e_{\mathbf{1}}^{a}=d \xi_{\mathbf{0}}^{a}+h_{b} \lambda_{\mathbf{0}}^{a b}-\psi_{\mathbf{1}}^{a}, \quad \delta \xi_{\mathbf{0}}^{a}=\bar{\psi}_{\mathbf{0}}^{a}, \\
\delta \omega_{\mathbf{1}}^{a[2]}=d \lambda_{\mathbf{0}}^{a[2]}, \\
\delta t_{\mathbf{2}}^{a}=d \psi_{\mathbf{1}}^{a}, \quad \delta \psi_{\mathbf{1}}^{a}=d \bar{\psi}_{\mathbf{0}}^{a}, \\
\delta \tilde{e}_{\mathbf{d}-\mathbf{3}}^{a}=d \tilde{\xi}_{\mathbf{d}-\mathbf{4}}^{a}-h_{[[d-3]}\left(* \lambda_{\mathbf{0}}^{a l}\right)^{a /[d-3]}, \quad \delta \tilde{\xi}_{\mathbf{d}-\mathbf{4}}^{a}=d \overline{\tilde{\xi}}_{\mathbf{d}-\mathbf{5}}^{a},
\end{gathered}
$$

Child Actions

$$
S=\left\langle\left. d e+\frac{1}{2} \sigma_{-} \omega+t \right\rvert\, \omega\right\rangle+t \cdot d \tilde{e} .
$$

- Equivalence to gravity

$$
\frac{\delta S}{\delta \tilde{e}}=0 \Rightarrow d t_{2}^{a}=0 \Rightarrow t_{2}^{a}=d \beta_{1}^{a}
$$

t_{2}^{a} can be gauged away by ψ_{1}^{a}-symmetry giving the linearised gravity child action.

- Dual gravity child action. We gauge away e by ψ-symmetry, $e=0$.

$$
\begin{gathered}
\frac{\delta S}{\delta \omega}=0 \Rightarrow d e_{1}^{a}+h_{b} \omega_{1}^{a b}+t_{2}^{a}=0, \quad \Rightarrow \quad t_{2}^{a}=-h_{b} \omega_{1}^{a b} . \\
S=\left\langle\left. d \tilde{e}+\frac{1}{2} \sigma_{-} \omega \right\rvert\, \omega\right\rangle \quad \text { which is Skvortsov's action for } \mathrm{Y}[d-3,1] .
\end{gathered}
$$

Unfolded equations for the dual theory has the same Weyl module

Dual Gravity \longrightarrow Gravity

More explicitly, the dual gravity action is

$$
S=\int\left(d e_{\mathbf{d}-3}^{a}+\frac{1}{2} h_{b[d-3]} \omega_{1}^{a b[d-3]}\right) \omega_{\mathbf{1}}^{c[d-2]} h^{\prime} \varepsilon_{a c[d-2]} /
$$

We can act in the similiar way: we add an auxiliary field t such that associated gauge symmetry acts algebraically on e and allows to gauge it away; we introduce the dual field via the term $t \cdot \tilde{e}$.
$S=\int\left[\left(d e_{\mathbf{d}-\mathbf{3}}^{a}+\frac{1}{2} h_{b[d-3]} \omega_{1}^{a b[d-3]}+t_{\mathbf{d}-2}^{a}\right) \omega_{1}^{c[d-2]} h^{\prime} \varepsilon_{a c[d-2] /}+t_{d-2}^{a} d \tilde{e}_{1}^{a}\right]$.
It leads back to linearized gravity.

Dual Gravity \longrightarrow Double-Dual Gravity

$$
\begin{aligned}
S= & \int\left[\left(d e_{\mathrm{d}-3}^{a}+\frac{1}{2} h_{b[d-3]} \omega_{1}^{a b[d-3]}+h_{b[d-4]} t_{2}^{a b[d-4]}\right) \omega_{1}^{c[d-2]} h^{\prime} \varepsilon_{a c[d-2]]}+\right. \\
& \left.(-1)^{d-1} t_{2 a[d-3]} d \tilde{\mathrm{e}}_{\mathrm{d}-3}^{a[d-3]}+(-1)^{d-1} \frac{\alpha}{2} t_{2 a[d-3]} h^{[[[d-5]} h_{c}(* t)_{2}^{a[2]] c}\right],
\end{aligned}
$$

α is arbitrary coefficient.
Equivalence to the dual gravity action:

$$
\frac{\delta S}{\delta \tilde{e}}=0 \quad \Rightarrow \quad d t_{2}^{a[d-3]}=0 \quad \Rightarrow \quad t_{2}^{a[d-3]}=d \beta_{1}^{a[d-3]} .
$$

Then $t_{2}^{a[d-3]}$ can be gauged away. We reproduce the dual gravity action.

Double-Dual Gravity

Unfolded equations:

$$
\begin{gathered}
T_{\mathbf{d}-\mathbf{2}}^{a}:=d e_{\mathbf{d}-\mathbf{3}}^{a}+h_{b[d-3]} \omega_{\mathbf{1}}^{a b[d-3]}+h_{b[d-4]} t_{\mathbf{2}}^{a b[d-4]}=0, \\
\tilde{T}_{\mathbf{d}-\mathbf{2}}^{a[d-3]}:=d \tilde{e}_{\mathbf{d}-\mathbf{3}}^{a[d-3]}+h^{[a[d-4]} h_{b}\left(* \omega_{\mathbf{1}}\right)^{a] b}+\alpha h^{[a[d-5]} h_{b}(* t)_{2}^{a[2[2] b}=0, \\
R_{2}^{a[d-2]}:=d \omega_{1}^{a[d-2]}+h_{b} h_{b} C_{\mathbf{0}}^{a[d-2], b[2]}=0, \\
\tau_{3}^{a[d-3]}:=d t_{2}^{a[d-3]}=0 \quad+\quad \text { eqs. for the Weyl module }
\end{gathered}
$$

Gauge symmetries

$$
\begin{gathered}
\delta e_{\mathbf{d}-\mathbf{3}}^{a}=d \xi_{\mathbf{d}-\mathbf{4}}^{a}+(-1)^{d-2} h_{b[d-3]} \lambda_{\mathbf{0}}^{a b[d-3]}+(-1)^{d-3} h_{b[d-4]} \psi_{\mathbf{1}}^{a b[d-4]}, \\
\delta \omega_{\mathbf{1}}^{a[d-2]}=d \lambda_{\mathbf{0}}^{a[d-2]}, \quad \delta t_{2}^{a[d-3]}=d \psi_{\mathbf{1}}^{a[d-3]} \\
\delta \tilde{e}_{\mathbf{d}-\mathbf{3}}^{a[d-3]}=d \tilde{\xi}_{\mathbf{d}-4}^{a[d-3]}+(-1)^{d-3} h^{[a[d-4]} h_{b}\left(* \lambda_{\mathbf{0}}\right)^{a] b}+ \\
(-1)^{d-4} \alpha h^{[a[d-5]} h_{b}(* \psi)_{\mathbf{1}}^{a[2]] b} .
\end{gathered}
$$

Double-Dual Gravity

As planned, $e_{\mathbf{d}-\mathbf{3}}^{a}$ can be gauged away by the algebraic $\psi_{1}^{a b[d-4]}$-symmetry.

- However, in contrast to the first dualisation, ξ-symmetry cannot be "gauged away" by the second order gauge symmtry $\bar{\psi}$

$$
\delta \xi_{\mathbf{d}-4}^{a}=d \bar{\xi}_{\mathbf{d}-\mathbf{5}}^{a}+h_{b[d-4]} \bar{\psi}_{\mathbf{0}}^{a b[d-4]}
$$

It acts on the double-dual graviton, producing divergence-like gauge symmetry.

- The second important difference is that auxiliary field t cannot be expressed in terms of the connection-like field ω and thus it cannot be excluded from the action.
- Note arbitrary parameter α.

The parent action given is the most economical form of the frame-like action for the double-dual gravity. Nonetheless, it is possible to write metric-like action that contains smaller set of fields.
[Boulanger, Cook, D.P. '12]

Dualisation of Arbitrary Mixed symmetry field

The parent action for i-th column dualisation is

$$
S=\left\langle\left. d e+\frac{1}{2} \sigma_{-} \omega+\Sigma_{-} t \right\rvert\, \omega\right\rangle+t \cdot d \tilde{e}+\alpha t^{2} .
$$

For spin- $\mathrm{Y}\left[h_{1}, h_{2}, \ldots, h_{i}, \ldots\right]$ field

- e is h_{1}-form valued in $\mathrm{Y}\left[h_{2}, \ldots, h_{i}, \ldots\right]$,
- ω is h_{2}-form valued in $\mathrm{Y}\left[h_{1}+1, \ldots, h_{i}, \ldots\right]$,
- t is $h_{i}+1$-form valued in $\mathrm{Y}\left[h_{1}, \ldots, h_{i-1}, h_{i+1} \ldots\right]$,
- \tilde{e} is $d-h_{i}-2$-form valued in $\mathrm{Y}\left[h_{1}, \ldots, h_{i-1}, h_{i+1} \ldots\right]$.
Σ_{-}is defined uniquely by its properties. αt^{2} contains all possible contractions bilinear in t. For the dualisation on the first column the αt^{2} terms are absent (cannot be constructed).

Conclusion

- Frame-like parent action principle for arbitrary massless mixed-symmtry fields has been built
- Dual theories describe proper degrees of freedom which is ensured by the unfolding machinery as well as by the parent action approach
- Some dualisations result in theories for fields not traceless on-shell. Actions for these theories has not been known before. We observed and studied peculiarities of these pure trace theories such as diveregence-like gauge transformations and free coefficients.
- Simple frame-like form of the action is suggestive for aplications and generalisations.

Thank you!

Unfolded equations

Generalized curvatures R^{α} for fields W^{α}

$$
\begin{aligned}
& R^{\alpha}(x) \stackrel{\text { def }}{=} d W^{\alpha}(x)+G^{\alpha}(W(x)), \\
& G^{\alpha}\left(W^{\beta}\right) \stackrel{\text { def }}{=} \sum_{n=1}^{\infty} f_{\beta_{1} \ldots \beta_{n}}^{\alpha} W^{\beta_{1}} \ldots W^{\beta_{n}} .
\end{aligned}
$$

Compatibility condition

$$
G^{\beta}(W) \frac{\delta^{L} G^{\alpha}(W)}{\delta W^{\beta}} \equiv 0 \quad \Rightarrow \quad d R^{\alpha} \equiv R^{\beta} \frac{\delta G^{\alpha}}{\delta W^{\beta}}
$$

Does not depend on the base space
Equations:

$$
R^{\alpha}(x)=0
$$

Gauge invariance

$$
\delta W^{\alpha}=d \varepsilon^{\alpha}-\varepsilon^{\beta} \frac{\delta^{L} G^{\alpha}(W)}{\delta W^{\beta}} .
$$

Examples

Zero curvature equation in YM theory
Field: 1-form $\hat{\Omega}_{0}=\Omega_{0}^{a} \hat{T}_{a} \in g, g-$ Lie algebra, $\hat{T}_{a}-$ generators.

$$
\hat{R} \stackrel{\text { def }}{=} d \hat{\Omega}_{0}+\hat{\Omega}_{0} \hat{\Omega}_{0}=0
$$

Let g be Poincare algebra $\left(\hat{P}_{a}, \hat{M}_{a b}\right)$

$$
\begin{gathered}
\hat{\Omega}_{0}=e_{0}{ }^{a} \hat{P}_{a}+\omega_{0}^{a b} \hat{M}_{a b}, \quad \hat{R}=R_{L}^{a b} \hat{M}_{a b}+T^{a} \hat{P}_{a} \\
R_{L}^{a b}=d \omega_{0}^{a b}+\omega_{0}^{a c} \omega_{0 c}^{b}=0 \\
T^{a}=d e_{0}^{a}+\omega_{0}^{a b} e_{0 b}=0
\end{gathered}
$$

Describes background geometry of Minkowski space.

Examples

Covariant constancy equation

Fields: set of p-forms $C^{i}, W=\Omega_{0}+C+\ldots$.

$$
R^{i} \stackrel{\text { def }}{=} d C^{i}+\Omega_{0}^{a}\left(T_{a}\right)^{i}{ }_{j} C^{j}=0 .
$$

Representation

$$
\hat{A}=A^{a} \hat{T}_{a} \quad \rightarrow \quad A_{j}^{i}=A^{a}\left(T_{a}\right)^{i}{ }_{j} .
$$

$C \in$ representation space,

$$
R^{i}=0 \quad \Leftrightarrow \quad D_{\Omega_{0}} C^{i}=0 .
$$

Examples

Massless scalar field
Cartesian coordinates

$$
e_{0 m}{ }^{a}=\delta_{m}^{a}, \quad \omega_{0 m}^{a b}=0, \quad D^{L}=d .
$$

Fields: 0-forms $C^{a(k)}, C_{b}^{b a(k-2)}=0$.
Curvatures:

$$
R^{a(k)} \stackrel{\text { def }}{=} d C^{a(k)}+e_{0}{ }^{b} C_{b}{ }^{a(k)} .
$$

The first and the second equations

$$
\begin{gathered}
\partial_{a} C(x)+C_{a}(x)=0, \\
\partial_{b} C_{a}(x)+C_{a b}(x)=0
\end{gathered}
$$

entail

$$
C_{b}^{b}(x)=0 \quad \Rightarrow \quad \partial^{a} \partial_{a} C(x)=0 .
$$

$\sigma_{-}-c o h o m o l o g y ~ t e c h n i c s ~$

Unfolded equations for p-forms C

$$
R \stackrel{\text { def }}{=}\left(d+\sum \sigma\right) C=0
$$

σ - algebraic operators.

$$
\begin{aligned}
& \delta C=\left(d+\sum \sigma\right) \varepsilon, \\
& I=\left(d+\sum \sigma\right) R \equiv 0
\end{aligned}
$$

- gauge symmetries and Bianchi identities.

How to analyse them? How to identify dynamical fields and dynamical equations?

$\sigma_{-}-$cohomology technics

The choice of dynamical fields is not unique!
Example

$$
\frac{\partial}{\partial x} B(x)+A(x)=0, \quad \frac{\partial}{\partial x} A(x)+B(x)=0
$$

Introduce \mathbb{Z}-grade \mathcal{G} : diagonalizable on the space of fields, bounded below.

$$
\begin{gathered}
R \stackrel{\text { def }}{=}\left(d+\sigma_{-}\right) C=0 \\
\delta C=\left(d+\sigma_{-}\right) \varepsilon \\
I=\left(d+\sigma_{-}\right) R \equiv 0
\end{gathered}
$$

σ_{-}- the only algebraic operator, lowers grade.
Compatibility conditions $\Rightarrow \quad\left(\sigma_{-}\right)^{2}=0$.

$\sigma_{-}-$cohomology technics.

Dynamical fields
Expressing fields in terms of fields of lower grade by means of

$$
\left(d+\sigma_{-}\right) C=0, \quad\left\{d C^{k-1}+\sigma_{-}^{1} C^{k}=0\right\}
$$

we get $C \notin \operatorname{Ker}\left(\sigma_{-}\right) \Rightarrow C$ - auxiliary.
Gauge transformation

$$
\delta C=\left(d+\sigma_{-}\right) \varepsilon
$$

allows to fix $C=0$ if $C \in \operatorname{Im}\left(\sigma_{-}\right)$.
Result: dynamical fields C_{d}

$$
C_{d} \in \frac{\operatorname{Ker}\left(\sigma_{-}\right)}{\operatorname{Im}\left(\sigma_{-}\right)}=H\left(\sigma_{-}\right) .
$$

$\sigma_{-}-$cohomology technics. The result

Dynamical fields C_{d}

$$
C_{d} \in \frac{\operatorname{Ker}_{p}\left(\sigma_{-}\right)}{\operatorname{Im}_{p}\left(\sigma_{-}\right)}=H_{p}\left(\sigma_{-}\right),
$$

Dynamical equations $R_{d}=0$

$$
R_{d} \in \frac{\operatorname{Ker}_{p+1}\left(\sigma_{-}\right)}{\operatorname{Im}_{p+1}\left(\sigma_{-}\right)}=H_{p+1}\left(\sigma_{-}\right),
$$

Differential gauge symmetries ε_{d} (cannot be fixed by algebraic gauge)

$$
\varepsilon_{d} \in \frac{\operatorname{Ker}_{p-1}\left(\sigma_{-}\right)}{\operatorname{Im}_{p-1}\left(\sigma_{-}\right)}=H_{p-1}\left(\sigma_{-}\right)
$$

where p - rank of C as a differential form.
[O.V. Shaynkman and M.A. Vasiliev '00]
$H\left(\sigma_{-}\right)$-analysis for massless scalar field

Curvatures:

$$
R^{a(k)} \stackrel{\text { def }}{=} d C^{a(k)}+e_{0}{ }^{b} C_{b}{ }^{a(k)} .
$$

Grade \mathcal{G} counts number of tensor indices, $\sigma_{-}-$contraction with frame e_{0}^{b}, $\left[\mathcal{G}, \sigma_{-}\right]=-\sigma_{-}$.

Dymanical field
only $C \in \operatorname{Ker}_{0}\left(\sigma_{-}\right), \operatorname{Im}_{0}\left(\sigma_{-}\right)=0 \Rightarrow C \in \mathrm{H}_{0}\left(\sigma_{-}\right)$.
Dynamical equation has the form $R_{d} \sim e_{0}^{a} t$, where t is 0 -form. Indeed, $e_{0}{ }^{b} e_{0 b} t=0, e_{0}^{a} t \notin \operatorname{Im}_{1}\left(\sigma_{-}\right) \Rightarrow e_{0}^{a} t \in \mathrm{H}_{1}\left(\sigma_{-}\right)$. Then $t \sim R_{m}{ }^{m}=\partial_{m} C^{m}=0$ yields dynamical equation.
[O.V. Shaynkman and M.A. Vasiliev '00]

