Dual variables: a description of collective phenomena in correlated media

A.N. Rubtsov
Lomonosov Moscow State University

in cooperation with A.I. Lichtenstein, M.I Katsnelson

DMFT

W. Metzner, D. Vollhardt (1989) G. Kotliar, A. Georges (1993)

EDMFT
 P.Sun, G. Kotliar (2004)

$S=\sum_{r} S_{a t}\left[c_{r}^{\dagger}, c_{r}\right]+\sum_{r, R \neq 0, \omega, \sigma} \varepsilon_{R} c_{r \omega \sigma}^{\dagger} c_{r}+R \omega \sigma+\sum_{r, R \neq 0, \Omega} V_{R \Omega} \rho_{r \Omega}^{*} \rho_{r+R \Omega}$
$S_{a t}=-\sum_{\omega \sigma}(i \omega+\mu) c_{\omega \sigma}^{\dagger} c_{\omega \sigma}+U \int_{0}^{\beta} c_{\uparrow}^{\dagger} c_{\uparrow} c_{\downarrow}^{\dagger} c_{\downarrow} d \tau$

$$
\begin{aligned}
G_{r \tau} & =-<c_{r \tau} c_{r=0, \tau=0}^{\dagger}> \\
X_{r \tau} & =-<\rho_{r \tau} \rho_{r=0, \tau=0}^{*}>
\end{aligned}
$$

Impurity problem

EDMFT Green's functions

Self-consistency

$$
\begin{aligned}
g_{\omega} & =\sum_{k} \mathcal{G}_{\omega k}, \\
\chi_{\Omega} & =\sum_{k} \mathcal{X}_{\Omega k}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{G}_{\omega k} & =\frac{1}{g_{\omega}^{-1}+\Delta_{\omega}-\epsilon_{k}} \\
\mathcal{X}_{\Omega k} & =\frac{1}{\chi_{\Omega}^{-1}+\Lambda_{\Omega}-V_{k}}
\end{aligned}
$$

Difficulties of EDMFT

Local polarization operator

$$
\chi_{\Omega}=\sum_{k} \mathcal{X}_{\Omega k} \quad \mathcal{X}_{\Omega k}=\frac{1}{\chi_{\Omega}^{-1}+\Lambda_{\Omega}-V_{k}}
$$

Does not work for collective modes

Charge conservation:

$$
X_{\Omega K}=\frac{1}{\left(X_{\Omega(\mathbb{K}}^{0}\right)^{-1}-V_{K}}
$$

$$
X_{\Omega K}^{0} \equiv<n n>_{\Omega K}=\frac{K^{2}}{\Omega^{2}}<j j>_{\Omega K}
$$

Random phase approximation

$X_{K \Omega}=\frac{1}{\left(X_{K \Omega}^{0}\right)^{-1}-V_{K}}$
Is conservative...

$$
X_{R P A}^{0}(K=0)=-\sum_{\omega k} \frac{1}{i \omega-\epsilon_{k}} \frac{1}{i(\omega-\Omega)-\epsilon_{k}}=-\left(\sum_{\omega k} \frac{1}{i \omega-\epsilon_{k}}-\frac{1}{i(\omega-\Omega)-\epsilon_{k}}\right) \frac{1}{i \Omega}
$$

but only for uncorrelated electrons:

$$
-\left(\sum_{\omega k} \frac{1}{i \omega-\epsilon_{k}-\Sigma_{\omega}}-\frac{1}{i(\omega-\Omega)-\epsilon_{k}-\Sigma_{\omega-\Omega}}\right) \frac{1}{i \Omega+\Sigma_{\omega-\Omega}-\Sigma_{\omega}}
$$

Difficulties of EDMFT - II:

Superexchange in Hubbard model

Magnon dispersion
$\chi_{\Omega}=\sum_{k} \frac{1}{\chi_{\Omega}^{-1}+\Lambda_{\Omega}-J_{k}}$
$\chi=<s s>$
$S_{i m p}=S_{a t}+\sum_{\omega} \Delta_{\omega} c_{\omega}^{\dagger} c_{\omega}+\sum_{\Omega} \Lambda_{\Omega} \rho_{\Omega}^{*} \rho_{\Omega}$
0

$$
J_{i j}=\frac{t^{2}}{U}
$$

In EDMFT, superexchange should be introduced ad hoc

From bosonic field to bosonic modes

Desired theory:

$$
\begin{aligned}
& \chi_{\Omega}=\sum_{k} \mathcal{X}_{\Omega k} \quad X_{\Omega K}=\frac{1}{\chi_{\Omega}^{-1}+\Lambda_{\Omega}-V_{K}-\Pi_{\Omega K}^{\prime}} \\
& S_{i m p}=S_{a t}+\sum_{\omega} \Delta_{\omega} c_{\omega}^{\dagger} c_{\omega}+\sum_{\Omega} \Lambda_{\Omega} \rho_{\Omega}^{*} \rho_{\Omega}
\end{aligned}
$$

Dual bosons

$$
\begin{aligned}
& S=\sum_{r} S_{i m p}\left[c_{r}^{\dagger}, c_{r}\right]+\sum_{\omega, k, \sigma}\left(\varepsilon_{k}-\Delta_{\omega \sigma}\right) c_{\omega k \sigma}^{\dagger} c_{\omega k \sigma}+\sum_{\Omega, k, j, j^{\prime}}\left(V_{\Omega k}^{j j^{\prime}}-\Lambda_{\Omega}^{j j^{\prime}}\right) \rho_{\Omega k j}^{*} \rho_{\Omega k j^{\prime}} \\
& \int D\left[c^{\dagger}, c\right] e^{c^{\dagger} E c}=\int D\left[c^{\dagger}, c\right] \operatorname{det}\left(\alpha_{f}^{-1} E \alpha_{f}^{-1}\right) \int D\left[f^{\dagger}, f\right] e^{\left\{-f^{\dagger} \alpha_{f} E^{-1} \alpha_{f} f+f^{\dagger} \alpha_{f} c+c^{\dagger} \alpha_{f} f\right\}} \\
& \int D\left[\rho^{*}, \rho\right] e^{\rho^{*} W \rho}=\int D\left[\rho^{*}, \rho\right] \operatorname{det}\left(\alpha_{b} W^{-1} \alpha_{b}\right) \int D\left[\eta^{*}, \eta\right] e^{\left\{-\eta^{*} \alpha_{b} W^{-1} \alpha_{b} \eta+\eta^{*} \alpha_{b} \rho+\rho^{*} \alpha_{b} \eta\right\}}, \\
& S=-\sum_{\omega k} \tilde{\mathcal{G}}_{\omega k}^{-1} f_{\omega k}^{\dagger} f_{\omega k}-\sum_{\Omega k} \tilde{\mathcal{X}}_{\Omega k}^{-1} \eta_{\Omega k}^{*} \eta_{\Omega k}+\sum_{i} \tilde{U}\left[\eta_{i}, f_{i}, f_{i}^{\dagger}\right] \\
& \tilde{\mathcal{G}}_{\omega k}^{-1}=g_{\omega}^{-1}\left(\varepsilon_{k}-\Delta_{\omega}\right)^{-1} g_{\omega}^{-1}-g_{\omega}^{-1} \\
& \tilde{\mathcal{X}}_{\Omega k}^{-1}=\chi_{\Omega}^{-1}\left(V_{k}-\Lambda_{\Omega}\right)^{-1} \chi_{\Omega}^{-1}-\chi_{\Omega}^{-1} \\
& \tilde{U}\left[\eta, f, f^{\dagger}\right]=\sum_{\omega \Omega}\left(\lambda_{\omega \Omega} \eta_{\Omega}^{*} f_{\omega+\Omega}^{\dagger} f_{\omega}+\lambda_{\omega \Omega}^{*} \eta_{\Omega} f_{\omega}^{\dagger} f_{\omega+\Omega}\right)+\frac{1}{4} \sum_{\omega \omega^{\prime} \Omega} \gamma_{\omega \omega^{\prime} \Omega} f_{\omega+\Omega}^{\dagger} f_{\omega^{\prime}-\Omega}^{\dagger} f_{\omega} f_{\omega^{\prime}}+\ldots . \\
& \gamma_{\omega \omega^{\prime} \Omega}=\frac{\left\langle c_{\omega+\Omega} c_{\omega^{\prime}-\Omega} c_{\omega}^{\dagger} \omega_{\omega^{\prime}}^{\dagger}>{ }_{i m p}-g_{\omega} g_{\omega^{\prime}}\left(\delta_{\Omega+\omega-\omega^{\prime}}-\delta_{\Omega}\right)\right.}{g_{\omega+\Omega} g_{\omega^{\prime}-\Omega} g_{\omega} g_{\omega^{\prime}}} \quad \lambda_{\omega \Omega}=\frac{-\left\langle c_{\omega+\Omega} c_{\omega}^{\dagger} \rho_{\Omega}>_{i m p}-<\rho>_{i m p} g_{\omega} \delta_{\Omega}\right.}{g_{\omega} g_{\omega+\Omega} \chi_{\Omega}}
\end{aligned}
$$

Interpretation

Hamiltonian action with local in time, but large (tall and beatiful) U

(troubles,troubles)

Non-Hamiltonian action with retarded
V , formally including all ordres of interaction (but negligible!)

(can be hidden in your pocket, not much food required)

Conservative theory

Conservation laws are related with gauge invariance:

$$
c_{r \tau} \rightarrow c_{r \tau} e^{i \Lambda_{r \tau}}
$$

DMFT is conservative, if the susceptibility is calculated self-consistently,

$$
\delta \epsilon_{\omega k} \rightarrow \delta \Delta_{\omega}, \delta g_{\omega} \quad \text { preserving } \quad g_{\omega}=\sum_{k} G_{\omega k}
$$

It gives (indices ω, ω^{\prime} are omitted!):

$$
\frac{1}{\mathrm{x}_{\Omega K}}-\frac{1}{\mathrm{x}_{\Omega}}=\frac{1}{\mathrm{x}_{\Omega K}^{0}}-\frac{1}{\mathrm{x}_{\Omega}^{0}} \quad \begin{array}{ll}
\mathrm{x}_{\Omega K}^{0, \omega} & =-\sum_{k} \mathcal{G}_{\omega k} \mathcal{G}_{\omega+\Omega k+K} \\
\mathrm{x}_{\Omega K}^{0, \omega} & =-g_{\omega} g_{\omega+\Omega}
\end{array}
$$

Thus calculated susceptibility should be used instead of RPA empty loop. In dual variables, it corresponds to the ladder summation

Local moment a case of large impurity vertex

Isolated atom

$$
\begin{aligned}
& g_{a t}=\frac{-i \omega}{\omega^{2}+(U / 2)^{2}} \\
& \gamma=\beta U^{2} \delta_{\Omega 0}
\end{aligned}
$$

Slow dynamics of the local moment is not reflected in the Green's function, but do contribute vertex part

Strong coupling limit

$$
\gamma=\gamma_{\Omega}
$$

$$
\begin{aligned}
& \chi_{\Omega}=\chi_{\Omega}^{(0)} \gamma_{\Omega} \chi_{\Omega}^{(0)} \\
& \lambda_{\Omega}=\left(\chi_{\Omega}^{(0)}\right)^{-1} \\
& \chi_{\Omega}^{(0)} \equiv-\sum_{\omega \sigma} g_{\omega} g_{\Omega+\omega}
\end{aligned}
$$

Ladder summation strong-coupling limit

Conclusions

For DMFT-based theories with bosons, dual ladder summation is a "minimal" conserving theory, similar to RPA for free electrons

The theory includes slow dynamics of local momenta (e.g. superexchange)

