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LCFT are used in describing:

Two-dimensional percolation and self-avoiding walks (central charge
c “ 0). Disordered critical points.

J. Cardy, Logarithmic correlations in quenched random magnets and polymers,
cond-mat/9911024.

V. Gurarie and A.W.W. Ludwig, Conformal Field Theory at central charge c “ 0 and

two-dimensional critical systems with quenched disorder, hep-th/0409105.

Transitions between plateaux in the integer quantum Hall effect or
spin quantum Hall effect.

M.R. Zirnbauer, Conformal field theory of the integer quantum Hall plateau transition,
arXiv:hep-th/9905054v2 (1999).

I.A. Gruzberg, A.W.W. Ludwig, and N. Read, Exact Exponents for the Spin Quantum

Hall Transition, Phys. Rev. Lett. 82, 45244527 (1999).

AdS/CFT correspondence (massless limit of nonlinear sigma models
with non-compact target spaces).

G. Götz, T. Quella and V. Schomerus, The WZNW model on PSUp1, 1|2q,

JHEP03(2007)003
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What is a LCFT?

Nondiagonalizable action of L0, and possibly of some other operators.

log: Whence?

Let L0 „ z
B

Bz
act nondiagonally:

zg 1pzq “ ∆gpzq,

zh1pzq “ ∆hpzq ` gpzq.

Solution:
gpxq “ B x∆,
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Typical feature of LCFTs: extended chiral algebras

Gaberdiel–Kausch model and its p1, pq generalizations.
p “ 3:

W´“ e´
?

6ϕ,

W 0 “
1

2
B3ϕ B2ϕ`

1

4
B4ϕ Bϕ`

3

2

c

3

2
B2ϕ B2ϕ Bϕ`
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3
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B3ϕ Bϕ Bϕ
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3
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Bϕ Bϕ Bϕ Bϕ Bϕ`

1

20
?
6
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Typical feature of LCFTs: extended chiral algebras

The pp1, pq series of models (FGST).

The simplest case p2, 3q:

Recent progress in understanding the (2,3) model:

Gaberdiel–Runkel–Wood

Semikhatov Braided Hopf Algebras as the Framework for Logarithmic Conformal Field Theories



Typical feature of LCFTs: extended chiral algebras

The pp1, pq series of models (FGST).

The simplest case p2, 3q:

W`
“

´

35
27

`

B
4ϕ

˘2
` 56

27
B

5ϕ B3ϕ` 28
27
B

6ϕ B2ϕ` 8
27
B

7ϕ Bϕ´ 280

9
?

3

`

B
3ϕ

˘2
B

2ϕ

´ 70

3
?

3
B

4ϕ
`

B
2ϕ

˘2
´ 280

9
?

3
B

4ϕ B3ϕ Bϕ´ 56

3
?

3
B

5ϕ B2ϕ Bϕ´ 28

9
?

3
B

6ϕ
`

Bϕ
˘2

` 35
3

`

B
2ϕq4 ` 280

3
B

3ϕ
`

B
2ϕ

˘2
Bϕ` 280

9

`

B
3ϕq2

`

Bϕ
˘2
` 140

3
B

4ϕ B2ϕpBϕ
˘2

` 56
9
B

5ϕ
`

Bϕ
˘3
´ 140?

3

`

B
2ϕ

˘3`
Bϕ

˘2
´ 560

3
?

3
B

3ϕ B2ϕ
`

Bϕ
˘2
´ 70

3
?

3
B

4ϕ
`

Bϕ
˘4

` 70
`

B
2ϕ

˘2`
Bϕ

˘4
` 56

3
B

3ϕ
`

Bϕq5 ´ 28?
3
B

2ϕ
`

Bϕ
˘6
`
`

Bϕq8 ´ 1

27
?

3
B

8ϕ
¯

e2
?

3ϕ

Recent progress in understanding the (2,3) model:

Gaberdiel–Runkel–Wood

Semikhatov Braided Hopf Algebras as the Framework for Logarithmic Conformal Field Theories



Typical feature of LCFTs: extended chiral algebras

The pp1, pq series of models (FGST).

The simplest case p2, 3q:

W´ “

´

217
192

`

B5ϕ
˘2
´ 2653

3456
B6ϕ B4ϕ´ 23

384
B7ϕ B3ϕ´ 11

1152
B8ϕ B2ϕ´ 1

768
B9ϕ Bϕ´ 1225

64
?

3
B4ϕ

`

B3ϕ
˘2

´ 13475
576
?

3

`

B4ϕ
˘2
B2ϕ` 2695

64
?

3
B5ϕ B3ϕ B2ϕ` 2555

192
?

3
B5ϕ B4ϕ Bϕ´ 2891

576
?

3
B6ϕ

`

B2ϕ
˘2
´ 1351

192
?

3
B6ϕ B3ϕ Bϕ

´ 103
192
?

3
B7ϕ B2ϕ Bϕ´ 13

384
?

3
B8ϕ

`

Bϕ
˘2
` 3535

32

`

B3ϕ
˘2`
B2ϕ

˘2
´ 735

16

`

B3ϕ
˘3
Bϕ´ 3395

54
B4ϕ

`

B2ϕ
˘3

` 245
24
B4ϕ B3ϕ B2ϕ Bϕ` 12635

576

`

B4ϕ
˘2`
Bϕ

˘2
` 245

12
B5ϕ

`

B2ϕ
˘2
Bϕ` 105

32
B5ϕ B3ϕ

`

Bϕ
˘2

´ 2443
288

B6ϕ B2ϕ
`

Bϕ
˘2
´ 19

96
B7ϕ

`

Bϕ
˘3
´ 13405

144
?

3

`

B2ϕ
˘5
` 8225

24
?

3
B3ϕ

`

B2ϕq3 Bϕ´ 105
?

3
4

`

B3ϕ
˘2
B2ϕ

`

Bϕ
˘2

` 665
24
?

3
B4ϕ

`

B2ϕ
˘2`
Bϕ

˘2
` 245

2
?

3
B4ϕ B3ϕ

`

Bϕ
˘3
´ 245

8
?

3
B5ϕ B2ϕ

`

Bϕ
˘3
´ 91

24
?

3
B6ϕ

`

Bϕ
˘4

` 16205
144

`

B2ϕ
˘4`
Bϕ

˘2
` 385

4
B3ϕ

`

B2ϕ
˘2`
Bϕ

˘3
` 525

8

`

B3ϕ
˘2`
Bϕ

˘4
` 35

3
B4ϕ B2ϕ

`

Bϕ
˘4
´ 7 B5ϕ

`

Bϕ
˘5

` 665
3
?

3

`

B2ϕ
˘3`
Bϕ

˘4
` 105

?
3

2
B3ϕ B2ϕ

`

Bϕ
˘5
´ 35

3
?

3
B4ϕ

`

Bϕ
˘6
` 455

6

`

B2ϕ
˘2`
Bϕ

˘6
` 5 B3ϕ

`

Bϕ
˘7

` 25?
3
B2ϕ

`

Bϕ
˘8
`

`

Bϕ
˘10
´ 1

13824
?

3
B10ϕ

¯

e´2
?

3ϕ

Recent progress in understanding the (2,3) model:

Gaberdiel–Runkel–Wood

Semikhatov Braided Hopf Algebras as the Framework for Logarithmic Conformal Field Theories



Typical feature of LCFTs: extended chiral algebras

The pp1, pq series of models (FGST).

The simplest case p2, 3q:

W´ “

´

217
192

`

B5ϕ
˘2
´ 2653

3456
B6ϕ B4ϕ´ 23

384
B7ϕ B3ϕ´ 11

1152
B8ϕ B2ϕ´ 1

768
B9ϕ Bϕ´ 1225

64
?

3
B4ϕ

`

B3ϕ
˘2

´ 13475
576
?

3

`

B4ϕ
˘2
B2ϕ` 2695

64
?

3
B5ϕ B3ϕ B2ϕ` 2555

192
?

3
B5ϕ B4ϕ Bϕ´ 2891

576
?

3
B6ϕ

`

B2ϕ
˘2
´ 1351

192
?

3
B6ϕ B3ϕ Bϕ

´ 103
192
?

3
B7ϕ B2ϕ Bϕ´ 13

384
?

3
B8ϕ

`

Bϕ
˘2
` 3535

32

`

B3ϕ
˘2`
B2ϕ

˘2
´ 735

16

`

B3ϕ
˘3
Bϕ´ 3395

54
B4ϕ

`

B2ϕ
˘3

` 245
24
B4ϕ B3ϕ B2ϕ Bϕ` 12635

576

`

B4ϕ
˘2`
Bϕ

˘2
` 245

12
B5ϕ

`

B2ϕ
˘2
Bϕ` 105

32
B5ϕ B3ϕ

`

Bϕ
˘2

´ 2443
288

B6ϕ B2ϕ
`

Bϕ
˘2
´ 19

96
B7ϕ

`

Bϕ
˘3
´ 13405

144
?

3

`

B2ϕ
˘5
` 8225

24
?

3
B3ϕ

`

B2ϕq3 Bϕ´ 105
?

3
4

`

B3ϕ
˘2
B2ϕ

`

Bϕ
˘2

` 665
24
?

3
B4ϕ

`

B2ϕ
˘2`
Bϕ

˘2
` 245

2
?

3
B4ϕ B3ϕ

`

Bϕ
˘3
´ 245

8
?

3
B5ϕ B2ϕ

`

Bϕ
˘3
´ 91

24
?

3
B6ϕ

`

Bϕ
˘4

` 16205
144

`

B2ϕ
˘4`
Bϕ

˘2
` 385

4
B3ϕ

`

B2ϕ
˘2`
Bϕ

˘3
` 525

8

`

B3ϕ
˘2`
Bϕ

˘4
` 35

3
B4ϕ B2ϕ

`

Bϕ
˘4
´ 7 B5ϕ

`

Bϕ
˘5

` 665
3
?

3

`

B2ϕ
˘3`
Bϕ

˘4
` 105

?
3

2
B3ϕ B2ϕ

`

Bϕ
˘5
´ 35

3
?

3
B4ϕ

`

Bϕ
˘6
` 455

6

`

B2ϕ
˘2`
Bϕ

˘6
` 5 B3ϕ

`

Bϕ
˘7

` 25?
3
B2ϕ

`

Bϕ
˘8
`

`

Bϕ
˘10
´ 1

13824
?

3
B10ϕ

¯

e´2
?

3ϕ

Recent progress in understanding the (2,3) model:

Gaberdiel–Runkel–Wood

Semikhatov Braided Hopf Algebras as the Framework for Logarithmic Conformal Field Theories



Long-lasting desire:

Find a dual, algebraic description:

identfy algebraic objects that capture essential pieces of LCFT models.

Feigin, Gainutdinov, AS, Tipunin,
Nagatomo–Tsuchiya,
. . .

More recent:

AS, Tipunin 1101.5810; AS 1109.1767, 1109.5919.

The dual objects are Nichols algebras.
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Nichols algebra

a braided linear space pX ,Ψq, where Ψ : X b X Ñ X b X such that

ΨsΨs`1Ψs “ Ψs`1ΨsΨs`1, “

The Nichols algebra BpX q:

BpX q “
à

ně0

BpX qpnq is a graded braided Hopf algebra such that

BpX qp1q “ X and

BpX qp1q coincides with the space of all primitive elements
PpX q “ tx P BpX q | ∆x “ x b 1` 1b xu

BpX qp1q generates all of BpX q as an algebra.

W. D. Nichols ’78, S.L. Woronowicz ’89, Lusztig ’93
N. Andruskiewitsch and M. Graña ’99,
N. Andruskiewitsch and H.-J. Schneider ’02, ’05
N. Andruskiewitsch, I. Heckenberger, and H.-J. Schneider ’08,
I. Heckenberger ’06, ’07, ’09, ’10, . . . ,
N. Andruskiewitsch, D Radford, and H.-J. Schneider ’10,
I. Heckenberger and H.-J. Schneider ’10,
I. Angiono 2008–. . . , . . . . . . . . . . . . . . . . . . . . .

Originally, main interest in Nichols algebras: Andruskiewitsch and
Schneider’s program of classification of pointed Hopf algebras.

When is BpX q finite dimensional?
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ně0

BpX qpnq is a graded braided Hopf algebra such that

BpX qp1q “ X and

BpX qp1q coincides with the space of all primitive elements
PpX q “ tx P BpX q | ∆x “ x b 1` 1b xu

BpX qp1q generates all of BpX q as an algebra.

W. D. Nichols ’78, S.L. Woronowicz ’89, Lusztig ’93
N. Andruskiewitsch and M. Graña ’99,
N. Andruskiewitsch and H.-J. Schneider ’02, ’05
N. Andruskiewitsch, I. Heckenberger, and H.-J. Schneider ’08,
I. Heckenberger ’06, ’07, ’09, ’10, . . . ,
N. Andruskiewitsch, D Radford, and H.-J. Schneider ’10,
I. Heckenberger and H.-J. Schneider ’10,
I. Angiono 2008–. . . , . . . . . . . . . . . . . . . . . . . . .

Originally, main interest in Nichols algebras: Andruskiewitsch and
Schneider’s program of classification of pointed Hopf algebras.
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W. D. Nichols ’78, S.L. Woronowicz ’89, Lusztig ’93
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N. Andruskiewitsch and H.-J. Schneider ’02, ’05
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I. Heckenberger and H.-J. Schneider ’10,
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Originally, main interest in Nichols algebras: Andruskiewitsch and
Schneider’s program of classification of pointed Hopf algebras.

When is BpX q finite dimensional?
The answer is known for diagonal braiding!
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Nichols algebras

Examples:

‚ q-deformed root systems at roots of unity (Lusztig’s book).

‚ And many more.

Alternative description (Woronowicz):

BpX q “
à

ně0

Xbn{ kerpSnq,

Sn : Xbn Ñ Xbn total braided symmetrizer

Particular cases:

symmetric and exterior algebras of a vector space.
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Nichols algebras with diagonal braiding

Ψ : X b X Ñ X b X such that

xi b xj ÞÑ qij xj b xi .

Classification: Kharchenko (Lyndon words) ùñ Heckenberger;
rederived by Angiono.

“Braiding matrix” pqijq;

Generalized Cartan matrix pai ,jq1ďi ,jďθ such that ai ,i “ 2 and

q
ai,j
i ,i “ qi ,jqj ,i or q

1´ai,j
i ,i “ 1 for each pair i ‰ j .

For any k , a Weyl reflection of the braiding matrix:

Rpkqpqi ,jq “ qi ,jq
´ak,j
i ,k q

´ak,i
k,j q

ak,iak,j
k,k

The new braiding matrix may or may not have the same generalized
Cartan matrix.

Weyl groupoid orbits are actually classified.
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Nichols algebras and LogCFT

Bold conjecture in extreme form:

Every finite-dimensional Nichols algebra with diagonal braiding
corresponds to a Logarithmic CFT.
The representation category of the extended symmetry algebra
reralized in a LogCFT model is equivalent to the category of
Yetter–Drinfeld BpX q-modules.

Plan of the talk:

1 From LogCFT to Nichols algebras
2 and back.

Conclusions:

Each LogCFT is naturally mapped into a Nichols algebra.
In simplest cases, representation categories are equivalent.
First steps of the reconstruction Nichols Ñ LogCFT are quite
encouraging.
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From LogCFT to Nichols algebras

dressed{screened vertex operators

ˆ ˆ ˝ ˆ “

ĳ

´8ăx1ăx2ă0

si1px1qsi2px2q Vαp0q

ż

0ăx3ă8

si3px3q

and just screening operators (multiple-integration contours)

ˆ ˆ ˆ “

¡

´8ăz1ăz2ăz3ă8

si1pz1qsi2pz2qsi3pz3q,

Braided vector spaces X and Y :
basis in X : the different species of the screenings
basis in Y : the different vertex operators at 0.

Next:

1 Define product and coproduct of multiple crosses
ùñ bialgebra structure

2 Define the action and coaction of the “algebra of crosses” on
punctured lines

ùñ bialgebra module–comodules.
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Coproduct and product of multiple crosses

Coproduct ∆ : ˆ ˆ ˆ ÞÑ

ˆ ˆ ˆ

"

` ˆ ˆ

"

ˆ

` ˆ

"

ˆ ˆ `

"

ˆ ˆ ˆ

Product

ˆ ... ˆ ˆ “

ˆ ˆ ˆ ` ˆ ˆ ˆ
��

` ˆ ˆ
%̂%

The Nichols algebra BpX q is whatever is generated by single crosses.
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Antipode S : BpX q Ñ BpX q

The antipode acts by half-twist,

e.g., S5 : Xb5 Ñ Xb5 is

S5 “ ´

All braided Hopf algebra axioms are satisfied.
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The Nichols algebra of screenings: (co)modules

Hopf bimodules of BpX q are spanned by ˆ ˆ ˆ ˝ ˆ ˆ

BpX q action and coaction:

left action ˆ ... ˝ ˆ is

ˆ b ˝ ˆ

Ñ

ˆ ˝ ˆ

`

ˆ ˝ ˆ

`

ˆ ˝ ˆ

“ pid`Ψ1 `Ψ2Ψ1qpX b Y b X q,

right action similarly

left action: again by deconcatenation

δL : ˆ ˆ ˝ ˆ ÞÑ b ˆ ˆ˝ ˆ ` ˆ b ˆ ˝ ˆ

` ˆ ˆ b ˝ ˆ ,

right coaction: similarly.
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Hopf bimodules of BpX q are spanned by ˆ ˆ ˆ ˝ ˆ ˆ

BpX q action and coaction:

left action ˆ ... ˝ ˆ is

ˆ b ˝ ˆ

Ñ

ˆ ˝ ˆ

`

ˆ ˝ ˆ

`

ˆ ˝ ˆ

“ pid`Ψ1 `Ψ2Ψ1qpX b Y b X q,

right action similarly

left action: again by deconcatenation

δL : ˆ ˆ ˝ ˆ ÞÑ b ˆ ˆ˝ ˆ ` ˆ b ˆ ˝ ˆ

` ˆ ˆ b ˝ ˆ ,

right coaction: similarly.
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Yetter–Drinfeld BpX q-modules

Left–left Yetter–Drinfeld modules are right coinvariants in Hopf bimodules:
just ˆ ˆ ˆ ˝

They carry the left adjoint action

�§ “

��
��� ��S	

and satisfy the axiom

� �
�§�
� 

“

� ��
� �§

Graphic notation:


 	 � � � �  �
product coproduct left action left coaction right action right coaction
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Yetter–Drinfeld BpX q-modules

More general Yetter–Drinfeld BpX q-modules:

—multivertex modules, e.g.,

ˆ ˝ ˆ ˆ ˆ ˝ or ˆ ˝ ˆ ˆ ˝ ˆ ˝

X b Y b Xb3 b Y X b Y b Xb2 b Y b X b Y

Summary:

Given a braided vector space X (“screenings”), we define

1 the Nichols algebra BpX q,

2 a category of Yetter–Drinfeld BpX q-modules.
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Yetter–Drinfeld BpX q-modules

More general Yetter–Drinfeld BpX q-modules:

—multivertex modules, e.g.,

ˆ ˝ ˆ ˆ ˆ ˝ or ˆ ˝ ˆ ˆ ˝ ˆ ˝

X b Y b Xb3 b Y X b Y b Xb2 b Y b X b Y

Summary:

Given a braided vector space X (“screenings”) and another braided vector
space Y (“vertex operators”), we define

1 the Nichols algebra BpX q,

2 a category of Yetter–Drinfeld BpX q-modules.

Semikhatov Braided Hopf Algebras as the Framework for Logarithmic Conformal Field Theories



Rank-1 Nichols algebra Bp

Primitive root of unity q “ e
iπ
p , p ě 2.

Bp is linearly spanned by

F prq “ ˆ ˆ ˆ (r crosses), 0 ď r ď p ´ 1,

with braiding ΨpF prq b F psqq “ q2rsF psq b F prq.

Product:

F prqF psq “
@

r`s
r

D

F pr ` sq,

where
@

r
s

D

“
xry!

xsy! xr ´ sy!
, xry! “ x1y . . . xry, xry “

q2r
´ 1

q2 ´ 1
.

Coproduct:

by deconcatenation.

Vertices:

V a with braiding ΨpV a b V bq “ q
ab
2 V b b V a.

Then category equivalence follows, 1109.5919

Yetter–Drinfeld Bp-modules ðñ modules of the triplet algebra Wp.
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Rank-1 Nichols algebra Bp

Bp is linearly spanned by
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From Nichols algebras to LogCFTs

Diagonal braiding, xi b xj ÞÑ qij xj b xi , 1 ď i , j ď θ.

1. Construct screenings in θ-boson representation:

Fj ” Fαj “

¿

eαj .ϕ with e iπαj .αj “ qj ,j ,

e2iπαk .αj “ qk,jqj ,k , k ‰ j ,

and find the Virasoro algebra Tξpzq “
1
2Bϕpzq.Bϕpzq ` ξ.B

2ϕpzq
such that the Fj indeed have dimension 1.

2. Recall the generalized Cartan matrix pai ,jq1ďi ,jďθ,

with ai ,i “ 2 and

q
ai,j
i ,i “ qi ,jqj ,i or q

1´ai,j
i ,i “ 1 for each pair i ‰ j ,

3. Impose conditions on scalar products:

ai ,jαi .αi “ 2αi .αj or p1´ ai ,jqαi .αi “ 2

ñ Virasoro central charge is invariant under Weyl groupoid action

Rpkqpqi ,jq “ qi ,jq
´ak,j
i ,k q

´ak,i
k,j q

ak,iak,j
k,k .
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Nichols algebras Ñ LogCFT beyond Virasoro. Rank 2

A list of 20` entries (Heckenberger)
The braiding matrix:

pqi,jq “

˜

e
2iπ
p p´1qje´

iπ
p

p´1qje´
iπ
p e

2iπ
p

¸

.

Let |p| ě 3 ðñ none of the screenings is fermionic.
Then necessarily m “ n “ 0 and the Virasoro central charge is

c “ 50´
24

k ` 3
´ 24pk ` 3q, where k ` 3 “ 1

p ´ j .

Presentation of the Nichols algebra:
BpX q “ T pX q{

`

rF1,F1,F2s, rF1,F2,F2s, F
p
1 , rF1,F2s

p, F p
2

˘

with Virasoro dimensions 3, 3, 2p ´ 1, 3p ´ 2, 2p ´ 1.
The highest dimension 3p ´ 2 is that of the “seed” field for a
multiplet algebra.
Elements F p

1 and F p
2 indicate the “positions” of long screenings

Eα “

¿

e´pα.ϕ, Eβ “

¿

e´pβ.ϕ
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The W3 field is
W3 “ BϕαBϕαBϕα `

3

2
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3

2
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´
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The highest dimension 3p ´ 2 is that of the “seed” field for a
multiplet algebra.
Elements F p

1 and F p
2 indicate the “positions” of long screenings

Eα “

¿

e´pα.ϕ, Eβ “

¿

e´pβ.ϕ

Semikhatov Braided Hopf Algebras as the Framework for Logarithmic Conformal Field Theories



Nichols algebras Ñ LogCFT beyond Virasoro. Rank 2

The braiding matrix:
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¸

.
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They produce an octuplet structure similar to Gaberdiel–Kausch’s
triplet structure.
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The octuplet algebra
Wpzq “ eppα`pβq.ϕpzq is a W3-primary with conformal dimension 3p ´ 2.

Wpzq

Eα

uu

Eβ
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Wαpzq

Eα

yy

Eβ
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Wβpzq
Eα

vv

Eβ

%%
0 Wβαpzq Wαβpzq

Eα

ww
Eβ

''
Eα

oo Eβ
//

0

Wαβαpzq
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yy

Eβ
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Wβαβpzq

Eα

uu

Eβ
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0 Wααββpzq
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%%

0

0 0
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The octuplet algebra
Other elements of the ideal are also hidden here.
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The octuplet algebra
A “logarithmic” extension of the W3 algebra
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The octuplet algebra

A “logarithmic” extension of the W3 algebra, whose representation
category is conjecturally equivalent to the category of Yetter–Drinfeld
BpX q modules. Wpzq
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Conclusions:

Each LogCFT is naturally mapped into a Nichols algebra.

In the simplest cases studied, the representation categories are
equivalent.

First steps of the reconstruction Nichols Ñ LogCFT are quite
encouraging.

Realistic (or semi-realistic) prospects.

How much of the LogCFT content can be extracted from Nichols algebras:

1 The spectrum of primary fields (simples in
BpX q
BpX qYD).

2 The space of torus amplitudes (center of
BpX q
BpX qYD).

3 Projective module structure (projectives in
BpX q
BpX qYD).

4 Modular transformations of characters and pseudocharacters
(Lyubashenko’s mapping class group action).

5 Fusion (monoidal structure of
BpX q
BpX qYD).
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Thank you.
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