WITTEN INDEX OF SUPERSYMMETRIC 3D THEORIES REVISITED

Ginzburg conference, Moscow, May 28, 2012
based on
JHEP 1001:086(2010) [arXiv:0910.0803];
JHEP 1205:103(2012) [arXiv:1202.6566]

MOTIVATION

- Widely known : Maldacena duality

$$
A d S_{5} \times S^{5} \leftrightarrow \mathcal{N}=44 \mathrm{~d} \mathrm{SYM}
$$

- New duality (Bagger + Lambert, 07;

Aharony + Bergman + Jafferis + Maldacena, 08)

$$
\begin{aligned}
& A d S_{4} \times S^{7} \text { or } A d S_{4} \times C P^{3} \leftrightarrow \\
& \mathcal{N}=8 \text { or } \mathcal{N}=63 \mathrm{~d} \text { SCS }
\end{aligned}
$$

DYNAMICS?

THE SIMPLEST VARIANT

$$
\mathrm{N}=13 \mathrm{~d} \mathrm{SYM}+\mathrm{CS}
$$

$$
S=\frac{1}{g^{2}} \operatorname{Tr} \int d^{3} x\left\{-\frac{1}{2} F_{\mu \nu}^{2}+i \bar{\lambda} \not D \lambda\right\}+
$$

$\kappa \operatorname{Tr} \int d^{3} x\left\{\epsilon^{\mu \nu \rho}\left(A_{\mu} \partial_{\nu} A_{\rho}-\frac{2 i}{3} A_{\mu} A_{\nu} A_{\rho}\right)-\bar{\lambda} \lambda\right\}$
$\lambda_{1,2}$ - Majorana fermion.

- A chiral gauge theory.
- mass scale $m=\kappa g^{2}$.
- Gauge invariance dictates for $k=4 \pi \kappa$ to be integer (the level).

Vacuum dynamics ?

Witten index

$$
I_{W}=\operatorname{Tr}\left\{(-1)^{F} e^{-\beta H}\right\}=?
$$

The result
(Witten, 99)

$$
I(k, N)=(\operatorname{sgn}(k))^{N-1}\binom{|k|+N / 2-1}{N-1}
$$

- for $\operatorname{SU}(N)$ group
if $|k| \geq N / 2$.
- $I(k, N)=0$

$$
\text { if }|k|<N / 2 \text {. }
$$

- Spontaneous SUSY breaking at $|k|<N / 2$.

Witten's derivation

- Consider the theory in a $L A R G E$ spatial box, $g^{2} L \gg 1$
- Integrate mentally over fermions. k is renormalized. For positive k,

$$
k \rightarrow k-\frac{N}{2} .
$$

- The coupling g^{2} is also renormalized. New higher derivative terms appear. Irrelevant at large volume!
- We obtain a pure CS theory with renormalized coupling.
- Topological theory, a finite number of states.
$\#_{\text {of vacuum states in }} \operatorname{SYMCS}(k)=\#_{\text {of states in } \operatorname{CS}}(k-N / 2)$.

Clever people can calculate the \# of states in pure CS using the correspondence
pure CS $\leftrightarrow 2 \mathrm{~d}$ WZNW $\leftrightarrow 2 \mathrm{~d}$ conformal theories

- Number of states on the left equals number of conformal blocks on the right.
- This gives $(k>0)$

$$
\#_{C S}=\binom{N+k-1}{N-1} .
$$

canonical quantization
(Elitzur + Moore + Schwimmer + Seiberg, 89; Labastida + Ramallo, 89)
pure CS Lagrangian

$$
\mathcal{L}_{C S}=-\kappa \epsilon_{j k}\left[\operatorname{Tr}\left\{A_{j} \dot{A}_{k}\right\}+\operatorname{Tr}\left\{A_{0} F_{j k}\right\}\right]
$$

Canonical momenta

$$
\Pi_{j}^{a}=\frac{\kappa}{2} \epsilon_{j k} A_{k}^{a}
$$

$\Pi_{j}^{a} \rightarrow-i \delta /\left(\delta A_{j}^{a}\right)$ as usual.
$G_{j}^{a}=\Pi_{j}^{a}-(\kappa / 2) \epsilon_{j k} A_{k}^{a}=0$ are second class constraints.

Only a half of them can be implemented

$$
\left(\hat{G}_{1}^{a}+i \hat{G}_{2}^{a}\right) \Psi[A]=0 \quad \text { or } \quad\left(\hat{G}_{1}^{a}-i \hat{G}_{2}^{a}\right) \Psi[A]=0
$$

- WE calculate the index via the effective Hamiltonian in small finite volume, $g^{2} L \ll 1$. Similar to the index calculation for 4 d theories (Witten, 82).
- Consider the $4 d$ pure SYM theory.
- Small volume $g^{2}(L) \ll 1$
- Periodic b.c. $A_{j}(x+L, y, z)=A_{j}(x, y, z)$, etc.
- Expand in modes.

Born-Oppenheimer approach
slow variables: $C_{j}^{a=1, \ldots, r} \equiv A_{j}^{\operatorname{Cartan}(\overrightarrow{0})}$ and $\lambda_{\alpha}^{a=1, \ldots, r} \equiv$ $\lambda_{\alpha}^{\mathrm{Cartan}(\overrightarrow{0})}$.
fast variables: all the rest
to leading order
$H^{\mathrm{eff}}=\frac{1}{2}\left(P_{j}^{a}\right)^{2}, \quad a=1, \ldots, r$ (rank of the group)

- for $\mathrm{SU}(2)$, just 3 bosonic $\left(C_{j}\right)$ and 2 holomorphic fermion $\left(\lambda_{\alpha}\right)$ variables.

One sees four vacuum states: $C, C \lambda_{\alpha}, C \lambda_{\alpha} \lambda^{\alpha}$.

- But original wave functions are gauge invariant.

Ergo effective wave functions are Weyl invariant
(rotation by π around 2 -nd color axis),

$$
\Psi\left(-C_{j},-\lambda_{\alpha}\right)=\Psi\left(C_{j}, \lambda_{\alpha}\right)
$$

- Two bosonic Weyl invariant functions: C and $C \lambda_{\alpha} \lambda^{\alpha}$
- $I_{W}=2 . \quad I_{W}=N$ for $\operatorname{SU}(\mathrm{N})$.

SYMCS

assume $g^{2} L \ll 1$
Slow variables: $C_{j=1,2}^{a=1, \ldots, r} \equiv A_{j}^{\mathrm{Cartan}(\mathbf{0})}$ and $\lambda^{a=1, \ldots, r} \equiv$ $\lambda_{1-i 2}^{\mathrm{Cartan}(\mathbf{0})}$.

Leading order $(N=2)$
$H^{\mathrm{eff}}=\frac{g^{2}}{2 L^{2}}\left(P_{j}-\frac{\kappa L^{2}}{2} \epsilon_{j k} C_{k}\right)^{2}+\frac{\kappa g^{2}}{2}(\lambda \bar{\lambda}-\bar{\lambda} \lambda)$.

- Landau problem on a finite (dual !) torus,
$C_{j=1,2} \in(0,4 \pi / L)$
- Index $=$ magnetic flux $=2 k . \quad($ Dubrovin,

Krichever, Novikov, 76)
$S U(N): \quad H=\frac{g^{2}}{L^{2}}\left[\frac{\left(P_{j}^{a}+\mathcal{A}_{j}^{a}\right)^{2}}{2}+\frac{1}{2} \mathcal{B}^{a b}\left(\lambda^{a} \bar{\lambda}^{b}-\bar{\lambda}^{b} \lambda^{a}\right)\right]$,
where $\mathcal{B}^{a b}=\epsilon_{j k} \partial_{j}^{a} \mathcal{A}_{k}^{b}$.

- At the tree level,

$$
\mathcal{A}_{j}^{a}=-\frac{\kappa L^{2}}{2} \epsilon_{j k} C_{k}^{a}
$$

implying

$$
\mathcal{B}^{a b}=\kappa L^{2} \delta^{a b}
$$

- The index

$$
I=\frac{1}{(2 \pi)^{r}} \int_{T \times T} \prod_{j a} d A_{j}^{a} \operatorname{det}\left\|\mathcal{B}^{a b}\right\|=N k^{N-1}
$$

(Cecotti + Girardello, 82).

Vacuum wave functions, $\operatorname{SU}(2)$

- boundary conditions

$$
\begin{aligned}
& \Psi(x+1, y)=e^{-2 \pi i k y} \Psi(x, y) \\
& \Psi(x, y+1)=e^{2 \pi i k x} \Psi(x, y) \\
& \left(x=C_{1} L /(4 \pi), y=C_{2} L /(4 \pi)\right) . \\
& \Psi_{m} \sim e^{-\pi k \bar{z} z} e^{\pi k \bar{z}^{2}} Q_{m}^{2 k}(\bar{z}) \\
& \bullet \bar{z}= \\
& x-i y, \\
& Q_{m}^{2 k}(\bar{z})=\sum_{n=-\infty}^{\infty} \exp \left\{-2 \pi k\left(n+\frac{m}{2 k}\right)^{2}+4 \pi i k \bar{z}\left(n+\frac{m}{2 k}\right)\right\}, \\
& m=0, \ldots, 2 k-1 .
\end{aligned}
$$

- Weyl-invariant combinations

Figure 1: Maximal torus and Weyl alcove for $S U(3)$. a and \mathbf{b} - simple coroots. The points \square and \triangle - fundamental coweights.

Vacuum wave functions, $\operatorname{SU}(\mathrm{N}=3)$

- Motion on $T \times T, T$ being the maximal torus formed by simple coroots $\mathbf{a}=(1,0)$ and $\mathbf{b}=(-1 / 2, \sqrt{3} / 2)$. They satisfy $\left.\exp \left\{4 \pi i a^{a} t^{a}\right\} \equiv \exp \left\{i L C^{a} t^{a}\right\}=1\right)$. Shifts along \mathbf{a} or \mathbf{b} are gauge transformations.
- boundary conditions

$$
\begin{aligned}
& \Psi(\mathbf{x}+\mathbf{a}, \mathbf{y})=e^{-2 \pi i k \mathbf{a y}} \Psi(\mathbf{x}, \mathbf{y}) \\
& \Psi(\mathbf{x}+\mathbf{b}, \mathbf{y})=e^{-2 \pi i k \mathbf{b y}} \Psi(\mathbf{x}, \mathbf{y}) \\
& \Psi(\mathbf{x}, \mathbf{y}+\mathbf{a})=e^{2 \pi i k \mathbf{a x}} \Psi(\mathbf{x}, \mathbf{y}) \\
& \Psi(\mathbf{x}, \mathbf{y}+\mathbf{b})=e^{2 \pi i k \mathbf{b x}} \Psi(\mathbf{x}, \mathbf{y})
\end{aligned}
$$

- zero energy eigenfunctions

$$
\begin{array}{r}
\Psi_{w}= \\
\sum_{\mathbf{n}} \exp \left\{-2 \pi k\left(\mathbf{n}+\mathbf{y}+\mathbf{w}_{n}\right)^{2}-2 \pi i k \mathbf{x y}-4 \pi i k \mathbf{x}\left(\mathbf{n}+\mathbf{w}_{n}\right)\right\}
\end{array}
$$ with $\mathbf{w}_{n} \mathbf{a}$ and $\mathbf{w}_{n} \mathbf{b}$ being integer multiples of $1 /(2 k)$.

- The \# of Weyl invariant states is counted as the $\#$ of the points \mathbf{w}_{n} in the Weyl alcove.

Figure 2: $S U(3)$: 15 vacuum states for $k=4$. The dotted line marks the boundary of the Weyl alcove for G_{2} (9 states).

This gives

$$
I_{S U(3)}^{\mathrm{tree}}(k>0)=\sum_{m=1}^{k+1} m=\frac{(k+1)(k+2)}{2}=\binom{k+2}{2}
$$

For any N, k,
$I_{S U(N)}^{\mathrm{tree}}($ any $k)=[\operatorname{sgn}(k)]^{(N-1)}\binom{N+|k|-1}{N-1}$.
Symplectic groups:

$$
I_{\mathrm{Sp}(2 r)}^{\mathrm{tree}}=(-1)^{r}\binom{|k|+r}{r} .
$$

G_{2} :
$I_{G_{2}}^{\text {tree }}(k)=\left\{\begin{array}{cc}\frac{(|k|+2)^{2}}{4} & \text { for even } k \\ \frac{(|k|+1)(|k|+3)}{4} & \text { for odd } k\end{array}\right\}$.
Coincides with the state counting in pure CS theory!

LOOP CORRECTIONS

(specific for $3 d$!)
1-loop renormalization
$k(>0) \rightarrow k-N / 2$ (fermions) $+N$ (gluons)

- known in infinite volume (Pisarski + Rao, 85; Kao + Lee + Lee, 96).
- True also in finite volume.
- No renormalization beyond one loop.
- substituting $k \rightarrow k-N / 2$ in the tree level index (taking into account only fermion corrections) gives Witten's result.
??? What about gluon loop corrections ???

Resolution of the paradox

Philosophical level

the shift $k \rightarrow k+N$ due to gluon loops is an immanent feature of pure CS (shows up in Wilson loop expectation values, etc.) and should not be counted twice.

Scientific level

- Take $N=2$.
- Extra fluxes brought about by fermion and gluon loops are concentrated in the corners of the dual torus,

$$
\begin{gathered}
C_{j}=(0,0) ; \quad C_{j}=(2 \pi / L, 0) \\
C_{j}=(0,2 \pi / L) ; \quad C_{j}=(2 \pi / L, 2 \pi / L)
\end{gathered}
$$

where the BO approximation breaks down.

- in the massless limit \rightarrow flux lines .
- Effective corner theory: non-Abelian SQM.

Accurate analysis:
matching the vacuum wave functions of two $H_{\text {eff }}$: (i) on the Abelian valley and (ii) in a corner.

- Dictates the valley wave functions that are not singular at the corners,
$\Psi_{m} \propto \prod_{n p}\left(\frac{z+n / 2+i p / 2}{\bar{z}+n / 2-i p / 2}\right)^{1 / 4} Q_{m}^{2 k-2}(\bar{z}) \sqrt{Q_{3}^{4}(\bar{z})-Q_{1}^{4}(\bar{z})}$
- The argument of the square root has 4 zeros in 4 corners.
- branchings in the corners are cancelled.
- $m=1, \ldots, 2 k-2$ giving finally k (rather than $k+1$) Weyl invariant states.

