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Gell-Mann’s Totalitarian Principle: 
“Everything not forbidden is compulsory”
So why are expected UV  divergences not occurring on 
schedule in maximal supergravity? 
Are miracles happening?



Ultraviolet Power Counting in Gravity

Simple power counting in gravity and supergravity theories 
leads to a naïve degree of divergence 

in D spacetime dimensions. So, for D=4, L=3, one expects  
Δ=8. In dimensional regularization, only logarithmic 
divergences are seen (1/ε poles,  ε=D-4), so 8 powers of 
momentum would have to come out onto the external lines of 
such a diagram.
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Figure 11. A sample diagram whose divergence
part would need to be evaluated in order to deter-
mine the ultra-violet divergence of a supergravity
theory. The lines represent graviton propagators
and the vertices three-graviton interactions.

ready been used to show that at least for the case
of maximally supersymmetric gravity the onset of
divergences is delayed until at least five quantum
loops [49,50].

4. STATUS OF LOOP CALCULATIONS

Before surveying the main advance since the
last ICHEP conference, it is useful to survey the
status of quantum loop calculations. Here we do
not discuss tree-level calculations which have also
seen considerable progress over the years.

4.1. Status of one-loop calculations
In 1948 Schwinger dealt with one-loop three-

point calculations [18] such as that of the anoma-
lous magnetic moment of leptons described in
Section 2. It did not take very long be-
fore Karplus and Neuman calculated light-by-
light scattering in QED in their seminal 1951
paper [51]. In 1979 Passarino and Veltman pre-
sented the first of many systematic algorithms for
dealing with one-loop calculations with up to four
external particles, leading to an entire subfield de-
voted to such calculations. Due to the complexity
of non-abelian gauge theories, however, it was not
until 1986 that the first purely QCD calculation
involving four external partons was carried out in
the work of Ellis and Sexton [52].

The first one-loop five-particle scattering am-
plitude was then calculated in 1993 by Lance
Dixon, David Kosower and myself [53] for the
case of five-gluon scattering in QCD. This was
followed by calculations of the other five-point
QCD subprocesses [54], with the associated phys-

ical predictions of three-jet events at hadron col-
liders appearing somewhat later [55,56]. A num-
ber of other five-point calculations have also been
completed. One example of a state-of-the-art five-
point calculation was presented in a parallel ses-
sion by Doreen Wackeroth [57], who described the
calculation of pp → t̄tH at next-to-leading order
in QCD [58]. This process is a useful mode for
discovering the Higgs boson as well as measure-
ment of its properties. Other examples are NLO
calculations for e+e− → 4 jets [59,60,61], Higgs
+ 2 jets [62], and vector boson + 2 jet produc-
tion [59,63], which is also important as a back-
ground to the Tevatron Higgs search, if the jets
are tagged as coming from b quarks.

Beyond five-external particles, the only calcu-
lations have been in special cases. By making
use of advanced methods, for special helicity con-
figurations of the particles, infinite sequences of
one-loop amplitudes with an arbitrary number
of external particles but special helicity configu-
rations have been obtained in a variety of the-
ories [39,40]. For the special case of maximal
supersymmetry, six-gluon scattering amplitudes
have been obtained for all helicities [40]. There
has also been a recent calculation of a six-point
amplitude in the Yukawa model [64], as well as re-
cent papers describing properties of six-point in-
tegrals [65]. These examples suggest that that the
technical know-how for computing general six-
point amplitudes is available, though it may be
a rather formidable task to carry it through. An
efficient computer program for dealing with up to
three jets at hadron colliders now exists [56], sug-
gesting that it would be possible add one more
jet, once the relevant scattering amplitudes are
calculated. This would then give a much bet-
ter theoretical handle on multi-jet production at
hadron colliders.

4.2. Status of Higher Loop Computations
Over the years, an intensive effort has gone

into calculating higher loop Feynman diagrams.
A few samples of some impressive multi-loop cal-
culations are:

• The anomalous magnetic moment of lep-
tons, already described in Section 2.

D = (D�2)L+2
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It has been recognized since the earliest days of supergravity 
that counterterms would have to be invariant under local 
supersymmetry. The dangerous counterterms are those that do 
not vanish subject to the classical equations of motion.

Local supersymmetry implies that the pure-curvature part of 
such a D=4, 3-loop divergence candidate must be built from 
the square of the Bel-Robinson tensor
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The consequences of supersymmetry for the ultraviolet structure 
are not restricted to  the requirement that counterterms be 
supersymmetric invariants.
There exist more powerful “nonrenormalization theorems” in 
superspace (where ∫ dθ θ = 1, ∫ dθ = 0) the most famous of which 
excludes infinite renormalization of chiral invariants in D=4, N=1 
supersymmetry, given in N=1 superspace by holomorphic 
integrals over just half the superspace:                                           
(as compared to full superspace                       )   
However, extended SYM and supergravity theories do not all 
have formalisms with all supersymmetries linearly realized “off-
shell” in superspace. So the power of such nonrenormalization 
theorems is limited to the off-shell linearly realizable subalgebra.
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The degree of “off-shell” supersymmetry is the maximal  
supersymmetry for which the algebra can close without use of the 
equations of motion.

Knowing the extent of this off-shell supersymmetry is tricky, and 
may involve formulations (e.g. harmonic superspace) with infinite 
numbers of auxiliary fields.

For maximal N=4 Super Yang-Mills and maximal N=8 
supergravity, the off-shell realizable supersymmetry has been 
believed since the 1980’s, based upon a linearized analysis, to be 
at least half the full supersymmetry of the theory. So at that time 
the first generally allowed counterterms were expected to have 
“1/2 BPS” structure as compared to the full supersymmetry of the 
theory.
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Of course, there are other symmetries in supergravity beside 
diffeomorphism invariance and supersymmetry. In particular, 
D=4, N=8 supergravity also has a rigid nonlinearly realized E7 

symmetry. At leading order, this symmetry is realized by 
constant shifts of the 70 scalars, which take their values in the 
coset space E7/SU(8).

The 1/2 BPS R⁴ candidate satisfies at least the minimal 
requirement of invariance under such constant shifts of the 70 
scalars because, at the leading 4-particle order, the integrand 
may be written such that every scalar field is covered by a 
derivative.
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The calculational front has made substantial progress since the 
late 1990s.

These have led to unanticipated and surprising cancellations at 
the 3- and 4-loop orders, yielding new lowest possible orders 
for the super Yang-Mills and supergravity divergence onset.

                                                      plus 46 more topologies

Unitarity-based calculations

Max. SYM first divergences, 
current lowest possible orders 
(for spacetime dimensions ∈ ℤ).

Max. supergravity first 
divergences, current lowest 
possible orders (for spacetime 
dimensions ∈ ℤ).

Bern, Carrasco, Dixon, 
Johansson, Roiban et al. 
2007 ... 2011
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Blue: known divergences
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The construction of supersymmetric invariants is isomorphic to 
the construction of cohomologically nontrivial closed forms in 
superspace:                          (where     is a pull-back to a section of 
the projection map down to the purely bosonic “body” subspace 
M0) is invariant if       is a closed form in superspace, and it is 
nonvanishing only if       is nontrivial.
Using the BRST formalism, one can handle all gauge symmetries 
including space-time diffeomorphisms by the nilpotent BRST 
operator s. The invariance condition for        is
                                ,  where      is the usual bosonic exterior 
derivative. Since              and s anticommutes with     , one obtains 
using Poincaré’s lemma                                       , etc.                                 

Algebraic Renormalization and Ectoplasm
Dixon; Howe, Lindstrom & White; Piguet & Sorella; Hennaux; Stora;
Baulieu & Bossard; Voronov 1992; Gates, Grisaru, Knut-Whelau, & Siegel 1998
Berkovits and Howe 2008; Bossard, Howe & K.S.S. 2009
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Solving the BRST Ward identities thus becomes a 
cohomological problem. Note that the supersymmetry ghost is 
a commuting field.  One needs to study the cohomology of the 
nilpotent operator                   , whose components              are 
(D-q) forms with ghost number q, i.e. (D-q) forms with q 
spinor indices. The spinor indices are totally symmetric since 
the supersymmetry ghost is commuting.

For gauge-invariant supersymmetric integrands, this establishes 
an isomorphism between the cohomology of closed forms in 
superspace (aka “ectoplasm”) and the construction of BRST-
invariant counterterms.

� = s + d0 LD�q,q
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Spinorial cohomology allows one to derive non-
renormalization theorems for counterterms: the cocycle 
structure of candidate counterterms must match that of the 
classical action.

For example, in maximal SYM, this leads to non-
renormalization theorems ruling out the F⁴ counterterm 
that was otherwise expected at L=4 in D=5.

Similar non-renormalization theorems exist in 
supergravity, but their study is complicated by local 
supersymmetry and the density character of counterterm 
integrands.

Cohomological non-renormalization
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Maximal supergravity has a series of duality symmetries 
which extend the automatic GL(11-D) symmetry obtained 
upon dimensional reduction down from D=11, e.g. E7 in the 
N=8, D=4 theory, with the 70=133-63 scalars taking their 
values in an E7/SU(8) coset target space.

The N=8, D=4 theory can be formulated in a manifestly  E7  

covariant (but non-manifestly Lorentz covariant) formalism. 
Anomalies for SU(8), and hence E7, cancel.

Combining the requirement of continuous duality invariance 
with the spinorial cohomology requirements gives further 
powerful restrictions on counterterms.

Duality invariance constraints

Marcus 1985

Bossard, Hillman & Nicolai 2010
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In a curved superspace, an invariant is constructed from the top 
(pure “body”) component in a coordinate basis:   

Referring this to a preferred “flat” basis and identifying        
components with vielbeins and gravitinos, one has, e.g. in D=4

Thus the “soul” components of the cocycle also contribute to 
the local supersymmetric covariantization.

Since the gravitinos do not transform under the D=4 E7 duality, 
the LABCD form components have to be separately duality 
invariant. 13

rigid E7(7), the measure will be E7(7) invariant whereas the integrand will necessarily transform
non-trivially with respect to E7(7). It would then follow that the ⌅6R4 invariant is not E7(7)

invariant, in agreement with the conclusion of the preceding section.

Note that this is not in contradiction with the existence of BPS duality invariants in higher
dimensions (such as R4 in D = 8, ⌅4R4 in D = 7 and ⌅6R4 in D = 6), since the BPS invariants
are not unique in dimensions D > 5.

The non-existence of harmonic measures for the 1/2 and the 1/4 BPS invariants is not in
contradiction with the existence of these non-linear invariants in the full non-linear theory.
Indeed as we will discuss in the next section, not all supersymmetry invariants can be written
as harmonic superspace integrals, and some are only described in terms of closed super-D-form.

Non-linear consequences of linear invariants

A more general approach to the construction of superinvariants is a�orded by the ectoplasm
formalism [28, 29, 30]. In D-dimensional spacetime, consider a closed super-D-form, LD, in the
corresponding superspace. The integral of the purely bosonic part of this form over spacetime
is then guaranteed to be supersymmetric by virtue of the closure property. Moreover, if LD is
exact it will clearly give a total derivative so that we are really interested in the Dth superspace
cohomology group. As we have seen in the preceding section, one cannot define a harmonic
measure for every invariant, and in particular, not for the 1/2 and 1/4 BPS invariants in N = 8
supergravity. However, according to the algebraic Poincaré Lemma, any supersymmetry invari-
ant necessarily defines a closed super-D-form.

In order to analyse superspace cohomology, it is convenient to split forms into their even and odd
parts. Thus a (p, q)-form is a form with p even and q odd indices, totally antisymmetric on the
former and totally symmetric on the latter. The exterior derivative can likewise be decomposed
into parts with di�erent bi-degrees,

d = d0 + d1 + t0 + t1 , (13)

where the bi-degrees are (1, 0), (0, 1), (�1, 2) and (2,�1) respectively. So d0 and d1 are basically
even and odd derivatives, while t0 and t1 are algebraic. The former acts by contracting an even
index with the vector index on the dimension-zero torsion and then by symmetrising over all of
the odd indices. The equation d2 = 0 also splits into various parts of which the most relevant
components are

t20 = 0; d1t0 + t0d1 = 0; d21 + t0d0 + d0t0 = 0 . (14)

The first of these equations allows us to define t0-cohomology groups, Hp,q
t [31], and the other two

allow us to introduce the spinorial derivative ds which maps Hp,q
t to Hp,q+1

t by ds[⇥p,q] = [d1⇥p,q],
where the brackets denote Ht cohomology classes, and which also squares to zero [32, 33].
The point of this is that one can often generate closed super-D-forms from elements of these
cohomology groups.

In the context of curved superspace it is important to note that the invariant is constructed
from the top component in a coordinate basis,

I =
1

D!

�
dDx ⇤mD...m1 EmD

AD · · ·Em1
A1 LA1...AD(x, � = 0) . (15)
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One transforms to a preferred basis by means of the supervielbein EM
A. At ⇥ = 0 we can

identify Ea
m with the spacetime vielbein ema and Em

� with the gravitino field ⇤m
� (where �

includes both space-time �, �̇ and internal i indices for N = 8). In four dimensions, we therefore
have

I =
1
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⇥
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By definition, each component Labcd, Labc�, Lab�⇥ , La�⇥ ⇤ , L�⇥ ⇤⌅ is supercovariant at ⇥ = 0.
This is a useful formula because one can directly read o� the invariant in components in this
basis.

In N = 8 supergravity, all the non-trivial t0-cohomology classes lie in Ht
0,4. Invariants are

therefore completely determined by their (0, 4) components L�⇥ ⇤⌅, and all non-trivial L0,4 sat-
isfying [d1L0,4] = 0 in t0-cohomology define non-trivial invariants. Ht

0,4 is the set of functions
of fields in the symmetric tensor product of four 2 � 8 ⇥ 2 � 8 of SL(2,C) � SU(8) without
SU(8) contractions (since such functions would then be t0-exact). Because of the reducibility of
the representation, it will be convenient to decompose L�⇥ ⇤⌅ into components of degree (0, p, q)
(p+ q = 4) with p 2� 8 and q 2� 8 symmetrised indices.

We will classify the elements of Ht
0,4 into three generations.2 The first generation corresponds

to elements that lie in the antisymmetric product of four 2 � 8 ⇥ 2 � 8 of SL(2,C) � SU(8),
and can therefore be directly related to the top component L4,0 through the action of the
superderivatives. We will write M0,p,q for the corresponding components of a given L0,4. They
lie in the following irreducible representations of SL(2,C)� SU(8):

M0,4,0 : [0, 0|0200000]
M0,3,1 : [1, 1|1100001]
M0,2,2 : [2, 0|2000010]

M̄0,0,4 : [0, 0|0000020]
M̄0,1,3 : [1, 1|1000011]
M̄0,2,2 : [0, 2|0100002] .

(17)

In order to understand the constraints that these functions must satisfy in order for L0,4 to
satisfy the descent equation

[d1L0,4] = 0 , (18)

it is useful to look at the possible representations of d1L0,4 which define Ht
0,5 cohomology classes

in general, without assuming any à priori constraint. We will split d1 = d1,0 + d0,1 according to
the irreducible representations of SL(2,C)� SU(8). One computes that

[d1,0M0,4,0] : [1, 0|1200000]
[d0,1M0,4,0] : [0, 1|0200001]
[d1,0M0,3,1] : [0, 1|0200001]⇥ [2, 0|2100001]
[d0,1M0,3,1] : [1, 0|1100010]⇥ [1, 2|1100002]
[d1,0M0,2,2] : [1, 0|1100010]⇥ [3, 0|3000010]
[d0,1M0,2,2] : [2, 1|2000011]

[d0,1M̄0,0,4] : [0, 1|0000021]
[d1,0M̄0,0,4] : [1, 0|1000020]
[d0,1M̄0,1,3] : [1, 0|1000020]⇥ [0, 2|1000012]
[d1,0M̄0,3,1] : [0, 1|0100011]⇥ [2, 1|2000011]
[d0,1M̄0,2,2] : [0, 1|0100011]⇥ [0, 3|0100003]
[d1,0M̄0,2,2] : [1, 2|1100002] .

(19)

2We will avoid discussing the elements of Ht
0,4 of degree (0, 2, 2) in the [0, 0|0200020] representation, which do

not play any role.
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At leading order, the E7/SU(8) coset generators of E7 simply 
produce constant shifts in the 70 scalar fields, as we have seen. 
This leads to a much easier check of invariance than analyzing the 
full spinorial cohomology problem.

Although the pure-body (4,0) component            of the R⁴       
counterterm has long been known to be shift-invariant at lowest 
order (since all 70 scalar fields are covered by derivatives), it is 
harder for the fermionic “soul” components to be so, since they are 
of lower dimension.

Thus, one finds that the maxi-soul (0,4)           component is not 
invariant under constant shifts of the 70 scalars. Hence the D=4, 
N=8, 3-loop R⁴ 1/2 BPS counterterm is not E7 duality invariant, so 
it is ruled out as an allowed counterterm.
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Labcd

Howe, K.S.S. & Townsend 1981

L↵���

Bossard, Howe & K.S.S. 2010



Similar duality & supersymmetry/ectoplasm analysis 
shows that the 1/4 BPS ∂⁴R⁴ candidate in D=4, L=5, as 
well as the 1/8 BPS ∂⁶R⁴ candidate in D=4, L=6 are 
ruled out.

D=4 3-loop R⁴ invariants in N=5 and N=6 
supergravities are similarly ruled out. 

Candidate divergences in D>4 dimensions are also 
ruled out, e.g. the 1/8 BPS ∂⁶R⁴ candidate in D=5, 
L=4, as confirmed by explicit calculation.

Some candidates are not ruled out, e.g. the D=8, L=1  
R⁴ candidate, which is found to occur by explicit 
calculation.
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Elvang & Kiermeier 2010;
Bossard, Howe & K.S.S 2010;
Beisert, Elvang, Freedman, Kiermaier, Morales & Stieberger 2010

Bern, Carrasco, Dixon, Johansson & Roiban 2009 



An unanticipated consequence of the counterterm studies 
has been the recognition that not all on-shell supergravity 
invariants have a natural expression in superspace at the 
full nonlinear level, either as a subsurface BPS type 
integral or as a full superspace integral.

For example, the R⁴ counterterm has a 1/2 BPS form at 
linearized order (with just 4-point terms), but attempts to 
generalize this to the full nonlinear level fail.

All invariants can be viewed as integrals over pull-backs 
of closed forms in superspace, however. The relevant 
question then is the structure of their cocycles and 
whether they respect duality invariances.

Linearized versus nonlinear invariants in superspace
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de Haro, Sinkovics & Skenderis 2003
Berkovits & Howe 2003



Another puzzling feature of full nonlinear invariants is the 
way the apparent BPS structure can differ between a 
linearized invariant and the full nonlinear invariant. The 
candidate ∂⁸R⁴ invariant at L=7, D=4 illustrates this.

At linearized order, this Δ = 16 invariant appears to be 
writable as a ∫ d³²θ full superspace integral. It also passes the 
linearized test for E7 invariance.

The question then arises which manifestly covariant and 
manifestly duality invariant expression this could be.

The natural L=7 suggestion would be the full volume of 
superspace,

 This is manifestly fully invariant under 
superdiffeomorphisms and under E7 duality 
transformations. 17

Z
d4xd32�E(x, �)

E7 invariant counterterms are 
long known to exist for L>7:
Howe & Lindstrom 1981
Kallosh 1981



The 7-loop situation, however, turns out to be more complex 
than anticipated: the superspace volume actually vanishes on-
shell.

Explicitly integrating out the volume                       using the 
superspace constraints implying the classical field equations 
would be an ugly task.

However, using an on-shell implementation of harmonic 
superspace together with a superspace implementation of the 
normal-coordinate expansion, one can nonetheless see that it 
vanishes on-shell for all D=4 supersymmetry extensions N:

                                                    on-shell

Vanishing Volume

Z
d4xd32�E(x, �)

Bossard, Howe, K.S.S. & Vanhove 2011
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1/8 BPS E7 invariant candidate notwithstanding
Despite the vanishing of the full N=8 superspace volume, one 
can nonetheless use the harmonic superspace formalism to 
construct a different manifestly E7 -invariant but 1/8 BPS 
candidate:

At the leading 4-point level, this invariant of generic ∂⁸R⁴           
structure can be written as a full superspace integral with 
respect to the linearized N=8 supersymmetry. It cannot, 
however, be rewritten as a non-BPS full-superspace integral at 
the nonlinear level.

Non-BPS full-superspace and manifestly E7 -invariant 
candidates exist in any case from 8 loops onwards.

I8 :=

Z
dµ(8,1,1) B↵�̇ B

↵�̇
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So far, things look(ed) pretty much under control from a 
purely field-theoretic analysis: what is prohibited does not 
occur, and what is not prohibited has occured, as far as one 
could see. So Gell-Mann should not be protesting, so far.

As far as one knows, the first acceptable D=4 counterterm for 
maximal supergravity still occurs at L=7 loops (Δ = 16). 

The current divergence expectations for maximal supergravity 
are consequently:

Current outlook: maximal supergravity

Blue: known divergences Green: anticipated divergences
20

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 6 7

BPS degree 0 0 1
2

1
4

1
8 0 1

8

Gen. form �12R4 �10R4 R4 �4R4 �6R4 �12R4 �8R4

D E11�D(11�D)(R) KD E11�D(11�D)(Z)
10A R+ 1 1
10B Sl(2,R) SO(2) Sl(2,Z)
9 Sl(2,R)⇥ R+ SO(2) Sl(2,Z)
8 Sl(3,R)⇥ Sl(2,R) SO(3)⇥ SO(2) Sl(3,Z)⇥ Sl(2,Z)
7 Sl(5,R) SO(5) Sl(5,Z)
6 SO(5, 5,R) SO(5)⇥ SO(5) SO(5, 5,Z)
5 E6(6)(R) USp(8) E6(6)(Z)
4 E7(7)(R) SU(8)/Z2 E7(7)(Z)
3 E8(8)(R) SO(16) E8(8)(Z)

�
� +

D � 4

D � 2
n(32�D � n)

⇥
fn(�) = 0 (1)

3



Puzzles
Not everything is perfect in this picture, however.           
A puzzle has appeared in an unexpected sector: D=4, N=4 
supergravity at L=3. The expected R⁴ divergence (Δ=8) 
does not occur in that case.
Yet, the L=7 candidate counterterm of N=8 supergravity 
has a natural 1/4 BPS  analogue here:

Expanding the content of this N=4 invariant at 
linearized level, one finds a leading R⁴ structure 
undressed by the                        complex scalar field: it 
is perfectly duality invariant.
Moreover, there is no known problem with the cocycle 
structure of this invariant.
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I4 =

Z
dµ(4,1,1) B↵�̇ B

↵�̇

SL(2,R)/U(1)
Bossard, Howe, K.S.S. & Vanhove 2011



Some aspects of this N=4 case:

There are anomalies in the U(1) R-symmetry. These destroy 
the SL(2,ℝ) duality symmetry. But this could only make 
matters worse, allowing                         full-superspace type 
invariants. But perhaps these start at amplitude point levels 
higher than 4, so Bern et al. would not have found them yet.

Genus-1 and genus-2 asymmetric-orbifold string analysis 
gives an explanation why R⁴ divergences should not appear 
in analogous N=4 supergravity models coupled to 4≤nᵥ≤22 
vector multiplets. However, such matter-coupled models 
are already divergent at L=1, so there are subdivergence 
subtractions to worry about.
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Perhaps what is going on is that Bern et al. are 
instructing us that one can achieve more off-shell 
supersymmetry than we realized. The N=1, D=10 
supergravity theory can be formulated off-shell at the 
linearized level with all 16 supersymmetries manifest.

Reducing this to D=4 gives N=4 supergravity coupled 
to 6 N=4 Maxwell multiplets.

However, one does not know how to formulate N=4 
super-Maxwell with all 16 supersymmetries off-shell, 
even in harmonic superspace.

Maybe, however, one can realize 6 of them off-shell. 
This could perhaps be done in harmonic superspace. 
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People may remember that Zvi Bern and I have had a 
series of bets on divergence onset orders, payable in 
bottles of wine. I have not done too well so far:
           Current bets are more modest:
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Bets

Classy Barolo, 
paid out for 
N=8, L=4 in 2009

or

Chapel Down Flint Dry
Tenterden

Chateau 
Le Grand Vostok
Anapa

so now:


