BRST-BV treatment of Vasiliev's four-dimensional higher-spin gravity

P. Sundell (Université de Mons)

Based on arXiv:1205.3339 with N. Boulanger and N. Colombo and arXiv:1102.2219 with N. B. and too a large extent also arXiv:1103.2360 with E. Sezgin arXiv:1107.1217 with C. lazeolla arXiv:1012.0813 with N. C.

Ginzburg Conference 2012

P. Sundell (UMons)

BRST-BV treatment of 4D HSGRA

Ginzburg Conference 2012 1 / 32

Outline

- Abstract and motivation
- Poisson sigma models on-shell
- Poisson sigma models off-shell
- BRST quantization
- Adaptation to Vasiliev's 4D higher-spin gravity
- Conclusions

Abstract

Vasiliev's 4D higher-spin gravities (HSGRA) are provided with a Batalin – Vilkovisky (BV) master action via an adaptation of the Alexandrov – Kontsevich – Schwarz – Zaboronsky (AKSZ) formalism to differential algebras on non-commutative manifolds.

- Vasiliev's equations for 4D HSGRAs can be derived (perturbatively) using the variational principle applied to a class of Poisson sigma models on non-commutative manifolds (NCPSM).
- (Standard) AKSZ procedure maps (classical) PSMs on commutative manifolds (CPSM) into (minimal) BV master actions.
- Thus, we have generalized the AKSZ procedure to the NCPSMs describing 4D HSGRAs.

Related series of works by Cattaneo, Felder; Grigoriev, Damgaard; Park; Hofman, Ma; Ikeda; Roytenberg; Zabzine; ... and in particular G., Barnich (how topological systems may contain local degrees of freedom) and Kotov, Strobl (geometries beyond fiber bundles), We expect that existence of a (new) class of non-trivial gauge theories is of physical importance once its (quantum) dynamics is interpreted properly. Vasiliev's equations set a benchmark for HSGRAs:

- Weak/weak coupling AdS/CFT correspondences
- New windows to (stringy?) de Sitter physics and cosmology
- New perspectives on the cosmological constant and dark matter
- Twistor formulation of (ordinary?) QFTs (if combined with HSSB)
- Generally covariant QFTs based on unfolded dynamics and PSMs

- A TE N - A TE N

Classical PSM: I. Quasi-free differential algebras

- Vasiliev's HSGRAs are diffeomorphic invariant field theories containing local degrees of freedom.
- Spacetimes and twistor spaces arise on various submanifolds of a correspondence space (a Poisson manifold).
- The fundamental fields are differential forms, X^{α} .
- On-shell, the X^α together with a set of central elements J^c (of positive form degree) generate a quasi-free-differential algebra with differential d and associative product *, *i.e.* there exists *-functions Q^α(X; J) such that

$$R^{lpha} := dX^{lpha} + Q^{lpha}(X;J) pprox 0, \quad dJ^{c} \equiv 0,$$

 $(Q^{\alpha}\partial_{\alpha})\star Q^{\beta}\equiv 0 \mod [J^{c},X^{\alpha}]_{\star}\equiv 0\equiv [J^{c},J^{c'}]_{\star},$

where \approx refers to equations that hold on-shell.

Classical PSM: II. Cartan integrability

• X^{α} defined locally (in charts) up to gauge transformations

$$\delta_\epsilon X^lpha \;=\; V^lpha_\epsilon \;, \quad V^lpha_\epsilon \;:=\; d\epsilon^lpha - (\epsilon^eta \partial_eta) \star Q^lpha \;,$$

for gauge parameters with compact support.

 The locally-defined solution spaces consist of gauge orbits over (non-linear) spaces of zero-form integration constants C and discrete moduli θ:

$$X^{lpha} \approx X^{lpha}_{C, heta;\lambda} := \left[\exp V^{eta}_{\lambda}\partial_{eta}\right] \star X^{lpha}\Big|_{X^{lpha}=X^{lpha}_{C, heta}},$$

- \blacktriangleright gauge functions λ^{α} have non-trivial values at chart boundaries
- ▶ particular solutions $X^{\alpha}_{C,\theta}$ obey $X^{\alpha}_{C,\theta}|_p = C^{\alpha}$ at a base point p
- zero-form integration constants C^α belong to non-linear cells (surrounded by walls of "critical field strengths")
- θ-moduli related to non-trivial flat connections on noncommutative submanifolds, *e.g.* projectors

Classical PSM: III. Fiber-bundle-like systems

- Choices of boundary conditions and transitions (between charts) → physically inequivalent globally-defined formulations
- In the case of CPSMs, fiber-bundle-like geometries arise by gluing together the X^α across overlaps using gauge transitions with parameters t^α obeying the compatibility condition

$$(t^{lpha}\partial_{lpha})\,\partial_{eta}\partial_{\gamma}Q^{\delta}\ \equiv\ 0\ ,$$

defining a generalized structure algebra.

- Similar geometries exist for NCPSMs containing 4D HSGRAs.
- \bullet Moduli spaces coordinatized by classical observables ${\cal O}$ obeying

$$\delta_t \mathcal{O} \equiv 0$$
, $\delta_\epsilon \mathcal{O} \approx 0$.

• *N.B.* In general, a given observable need only be well-defined in a subspace (of moduli space), defining a super-selection sector corresponding to some specific choice of representations for the gauge-transitions $\exp V_t^{\alpha} \partial_{\alpha}$ and data at ∂B .

Classical PSM: IV. Zero-form charges

Perturbative analysis in zero-form sector:

- The integration constant C^α, which parameterize masses, charges etc, belong to linearized representations of the Cartan gauge algebra (in degree zero).
- Letting Φ^{α} denote the zero-forms, zero-form charges

$$\mathcal{O} := \mathcal{I}[\Phi] = \oint_{\Sigma} \mathcal{J}[\Phi; J] , \quad d\mathcal{J} \approx 0$$

where Σ are suitable cycles (on which J have support) and \oint_C acts as a graded cyclic trace operation.

- On-shell, *I*[Φ; *J*] ≈ *I*[*C*; *J*] are gauge-equivariant (non-linearly invariant) functions of *C^α* which do not break any Cartan gauge symmetries.
- Off-shell formulation → deformed on-shell actions given by sums of suitable *I* thus interpretable as semi-classical contributions to entropy function in unbroken phases.

Classical PSM: V. Abelian charges

• Generalized soldering forms E^{lpha} of degrees $\geqslant 1$ defined by

$$\delta_t E^{\alpha} \equiv -\left(t^{\beta}\partial_{\beta}\right) \star Q^{\alpha}$$

• Abelian charges

$$\mathcal{O} = \mathcal{Q}[E, \Phi] := \oint_{\Sigma} \mathcal{J}(E, \Phi; J)$$

for globally-defined $\mathcal J$ obeying $d\mathcal J \approx 0$.

- Abelian charges break some Cartan gauge symmetries off-shell.
- Broken symmetries re-emerge on-shell with parameters forming sections → Q depend on λ^α|_{∂B} modulo shifts by t^α|_{∂B}.
- Off-shell formulation → suitable Q can be interpretable as contributions to entropy function in broken phases.

Off-shell CPSM: I. Classical action

Total action given by bulk piece plus deformations:

$$S_{ ext{tot}}^{ ext{cl}} = \int_{B} (\vartheta - \mathcal{H}(X, P)) + \sum_{i} \mu_{i} \oint_{\Sigma_{i}} \mathcal{V}^{i}(X, dX)$$

• Pre-symplectic form $\vartheta := P_{\alpha} dX^{\alpha}$

• Canonical momenta P_{lpha} (non-linear Lagrange multipliers)

$$\deg(P_\alpha) := \hat{p} - \deg(X^\alpha) , \quad \hat{p} := \dim(B) - 1 .$$

• Equations of motion:

$$egin{array}{rcl} \mathcal{R}^lpha &:= dX^lpha + \mathcal{Q}^lpha \,pprox 0 \;, & \mathcal{R}_lpha \;:= \; dP_lpha + \mathcal{Q}_lpha \,pprox 0 \;, \ & \mathcal{Q}^lpha \;:= \; (-1)^{\hat
ho} (lpha + 1)^{+1} \partial^lpha \mathcal{H} \;, & \mathcal{Q}_lpha \;:= \; (-1)^lpha \partial_lpha \mathcal{H} \;. \end{array}$$

The generalized Hamiltonian is assumed to obey

$$\{\mathcal{H},\mathcal{H}\}_{\mathrm{P.B.}}\ \equiv\ (-1)^{lpha}\partial_{lpha}\mathcal{H}\wedge\partial^{lpha}\mathcal{H}\ \equiv\ 0$$

Power-series expansion

$$\mathcal{H} = \sum_{r} P_{\alpha_1} \cdots P_{\alpha_r} \Pi^{\alpha_1 \cdots \alpha_r}(X)$$

 \rightsquigarrow rank-*n* poly-vector fields $\Pi_{(n)}$ in target space of degrees $1 + (1 - n)\hat{p}$ whose mutual Schouten brackets vanish, *viz*.

$$\{\Pi_{(n_1)}, \Pi_{(n_2)}\}_{S.B.} \equiv 0 \text{ for all } n_1, n_2 \ge 0.$$

Off-shell CPSM: III. Fiber-bundle-type models

The gauge variation of the bulk Lagrangian reads

$$\begin{split} \delta_{\varepsilon} \mathcal{L}^{\mathrm{cl}}_{\mathrm{bulk}} &\equiv \ \mathsf{dK}_{\varepsilon} \ ,\\ \mathsf{K}_{\varepsilon} \ := \ (-1)^{\hat{p}(\alpha+1)} \eta_{\alpha} \mathcal{R}^{\alpha} + \left((\overrightarrow{P}-1) \overrightarrow{\epsilon} + \overrightarrow{P} \overrightarrow{\eta} \right) \mathcal{H} \ ,\\ \end{split}$$
where $\overrightarrow{P} := P_{\alpha} \frac{\partial}{\partial P_{\alpha}}, \ \overrightarrow{\epsilon} := \epsilon^{\alpha} \frac{\partial}{\partial X^{\alpha}} \ \mathsf{and} \ \overrightarrow{\eta} := \eta_{\alpha} \frac{\partial}{\partial P_{\alpha}}. \end{split}$

Globally-defined formulations of fiber-bundle type requires:

• transition functions with parameters t^{α} obeying

$$(\overrightarrow{P}-1)\overrightarrow{t}\mathcal{H} = 0 \quad \Leftrightarrow \quad \overrightarrow{t}\Pi_{(n)} = 0 \quad \text{for } n \neq 1$$
,

boundary conditions

$$K_{arepsilon}|_{\partial B} \ \equiv \ 0 \ ,$$

which can be implemented by the following Dirichlet conditions:

$$\eta_{\alpha}|_{\partial B} \equiv 0 , \qquad P_{\alpha}|_{\partial B} \equiv 0 ,$$

provided that the "classical anomaly" $\Pi_{(0)} \equiv \mathcal{H}|_{P_{\alpha}=0} \equiv 0.$

- Globally-defined formulations of fiber-bundle type in target spaces $T^*[\hat{p}]N$ over \mathbb{N} -graded manifolds N equipped with Schouten-integrable structures:
 - (i) a vector field $Q := \Pi_{(1)} \equiv Q^{\alpha} \partial_{\alpha}$ of degree 1 that is nilpotent in the sense that $\mathcal{L}_Q Q = 2\{Q, Q\} \equiv 0$, referred to as the Q-structure;
- (ii) a tower of generalized Poisson structures $\Pi_{(n)}$ with $n \ge 2$ that are compatible with Q in the sense that $\mathcal{L}_Q \Pi_{(n)} \equiv 0$;
- (iii) if in addition $\Pi_{(n)} = 0$ for $n \ge 3$ then $\Pi_{(2)}$ is a Poisson structure equipping N with a Poisson bracket of intrinsic degree $1 \hat{p}$, referred to together with its compatible Q-structure as a QP-structure.

Off-shell CPSM: V. Topological vertex operators

Perturb bulk action by topological vertex operators obeying

$$\delta \mathcal{V}^i(X, dX) \equiv \delta X^{lpha} M^i_{lpha eta}(X, dX) R^{eta} + d(\delta X^{lpha} \mathcal{P}^i_{lpha}(X, dX)) \; ,$$

for some matrices $M^i_{\alpha\beta}$ (that need not be invertible):

• $\delta S_{\text{tot}}^{\text{cl}}$ thus consists of bulk terms which impose $\mathcal{R}^{\alpha} \approx 0 \approx \mathcal{R}_{\alpha}$ plus boundary terms that vanish on-shell (since $P_{\alpha}|_{\partial B} \equiv 0$, which holds off-shell, implies $\mathcal{R}^{\alpha}|_{\partial B} \equiv \mathcal{R}^{\alpha}|_{\partial B} \approx 0$).

• Hence $\delta \int_{\Sigma_i} \mathcal{V}^i \approx 0$ and the on-shell values

$$\mathcal{O}^i[X|\Sigma_i] \ := \ \int_{\Sigma_i} \mathcal{J}^i(X) \ , \qquad \mathcal{J}^i \ := \ \mathcal{V}^i(X^lpha, -Q^lpha) \ ,$$

are classical observables that are intrinsic in the sense that if δ_{Σ_i} denotes a small variation of Σ_i then

$$d{\cal J}^i \ pprox \ 0 \qquad \Rightarrow \qquad \delta_{\Sigma_i}{\cal O}^i \ pprox \ 0 \ .$$

Off-shell CPSM: VI. Ensembles and entropies

• The couplings μ_r are chemical potentials of a grand canonical ensemble with partition function

$$Z(\mu_r; w) = \left\langle \prod_i e^{\frac{i\mu_r}{\hbar} \int_{\Sigma_i} \mathcal{V}^i} \right\rangle ,$$

where w denotes the moduli hidden in the transition functions.

• Micro-canonical ensembles with fixed $\int_{\Sigma_i} \mathcal{V}^i = q^i$ have partition functions given by path integrals with fixed boundary observables, *viz.*

$$\widetilde{Z}(q;w) = \prod_{i} \int \frac{d\mu_{i}}{2\pi} e^{-\frac{iq^{i}\mu_{i}}{\hbar}} Z\{\mu;w\} = \left\langle \prod_{i} \delta\left(\int_{\Sigma_{i}} \mathcal{V}^{i} - q^{i}\right) \right\rangle$$

• *N.B.* "Regularized" closed PSMs can be obtained by "filling in" the boundary components.

BV formalism: I. Towers of ghosts

The first step in the gauge-fixing procedure is to exhibit all gauge-for-gauge symmetries:

extend the classical fields

$$(X^{lpha},P_{lpha})\equiv (X^{lpha,\langle 0
angle}_{[p_{lpha}]},P^{\langle 0
angle}_{lpha,[\hat{p}-p_{lpha}]})$$

with finite towers of ghosts, ghost-for-ghosts and so on:

$$(X^{lpha,\langle q
angle}_{[p_{lpha}-q]},P^{\langle q'
angle}_{lpha,[\hat{p}-p_{lpha}-q']})$$

with ghost numbers $q=1,\ldots,p_{lpha}$ and $q'=1,\ldots,\hat{p}-p_{lpha}$

 Recuperate original spectrum of classical observables as a cohomology group of a suitable BRST differential

$$s\phi^i = \delta_arepsilon \phi^i |_{arepsilon ext{-ghosts}} + \cdots, \qquad ext{gh}(s) := 1,$$

where the "fields" ϕ^i comprise the classical fields as well as ghost towers, and ε^i comprise all levels of gauge parameters.

BV formalism: II. Fields/anti-fields and BV bracket

Off-shell non-closure of gauge symmetries (as for PSMs) \rightsquigarrow natural to identify the BRST differential as the adjoint action generated by a "minimal" master action using a suitable bracket:

$$s\phi^i := (S,\phi^i), \quad S[\phi^i,\phi^+_i] := S_{\mathrm{cl}} + \int_B \phi^+_i \delta_{\mathrm{ghosts}} \phi^i + \cdots$$

• "anti-fields" ϕ_i^+ obey

$${
m gh}(\phi^i) + {
m gh}(\phi^+_i) = -1 \;, \qquad {
m deg}(\phi^i) + {
m deg}(\phi^+_i) = \; \hat{
ho} + 1$$

BV bracket

$$(A,A') := \int_{p\in B} (-1)^{\sigma_i} \delta_i(p) A \, \delta^i_+(p) A' , \qquad \operatorname{gh}(\cdot,\cdot) = 1$$

where $\delta_i(p)$ denotes the functional derivative with respect to ϕ^i at the point *p* idem $\delta^i_+(p)$ and σ_i is a suitable phase.

BV formalism: III. Classical and quantum master equation

- Gauge-fixing amounts to projecting to Lagrangian submanifold by eliminating ϕ_i^+ by means of a canonical transformation (CT).
- \bullet Demand gauge-fixed path-integral to be independent of the CT \Rightarrow

$$(S,S)+rac{i}{2}\hbar\Delta S~\equiv~0~,$$

where BV Laplacian Δ is slightly singular operator defined by

$$\Delta \ := \ \int_{oldsymbol{p}\in\mathcal{M}} \delta_i(oldsymbol{p}) \delta^i_\star(oldsymbol{p}) \ , \qquad \mathrm{gh}(\Delta) \ = \ 1 \ .$$

• Δ is formally nilpotent but does not act as a differential; rather

$$\Delta(AA') - \Delta(A)A' - (-1)^A A \Delta(A') \equiv (-1)^A (A, A') .$$

- The BRST differential is generated by a current only if ΔS = 0, *i.e.* if S obeys both the classical and quantum BV master equations.
- *N.B.* The latter is equivalent to that the BRST transformation is a CT, *i.e.* a formally manifest symmetry of the path-integral measure:

$$\delta_{\mathcal{E}}\phi^i := (\mathcal{E},\phi^i) , \quad \delta_{\mathcal{E}}\phi^*_i := (\mathcal{E},\phi^*_i) ,$$

 $\operatorname{gh}(\mathcal{E}) \;=\; -1 \;, \qquad \Delta \mathcal{E} \;=\; 0 \;,$

namely for $\mathcal{E}_{\mathrm{BRST}} = \epsilon S$ with $\mathrm{gh}(\epsilon) = -1$ and $d\epsilon = 0$.

画 ト イヨ ト イヨ ト う 日 う く つ

AKSZ formalism: I. Vectorial superfields

"Minimal" set of fields and anti-fields of a PSM can be arranged into (unconstrained) vectorial superfields:

$$\begin{split} \mathbf{X}^{\alpha} &:= \underbrace{X_{[0]}^{\alpha \langle p_{\alpha} \rangle} + X_{[1]}^{\alpha \langle p_{\alpha} - 1 \rangle} + \ldots + X_{[p_{\alpha}]}^{\alpha \langle 0 \rangle}}_{fields}}_{fields} \\ &+ \underbrace{P_{[p_{\alpha}+1]}^{\alpha \langle -1 \rangle} + P_{[p_{\alpha}+2]}^{\alpha \langle -2 \rangle} + \ldots + P_{[\hat{p}+1]}^{\alpha \langle p_{\alpha} - \hat{p} - 1 \rangle}}_{antifields}}, \\ \mathbf{P}_{\alpha} &:= \underbrace{P_{\alpha}^{\langle \hat{p} - p_{\alpha} \rangle} + P_{\alpha}^{\langle \hat{p} - p_{\alpha} - 1 \rangle} + \ldots + P_{\alpha}^{\langle 0 \rangle}}_{fields} \\ &+ \underbrace{X_{\alpha}^{\langle -1 \rangle} + Y_{\alpha}^{\langle -2 \rangle}_{\alpha \langle \hat{p} - p_{\alpha} + 2 \rangle} + \ldots + X_{\alpha}^{\langle -p_{\alpha} - 1 \rangle}}_{antifields}}, \\ end{tabular} \\ \text{of fixed total degree } |\cdot| := \deg(\cdot) + \operatorname{gh}(\cdot) \text{ viz.} \\ &| \mathbf{X}^{\alpha} | = p_{\alpha}, \qquad | \mathbf{P}_{\alpha} | = \hat{p} - p_{\alpha}. \end{split}$$

AKSZ formalism: II. Master action

The AKSZ master action is given by the superfunctional

$$\mathbf{S}_{ ext{bulk}} := \int_{B} \mathbf{L} , \quad \mathbf{L} := d\mathbf{X}^{lpha} \mathbf{P}_{lpha} - \mathcal{H}(\mathbf{X}, \mathbf{P}) ,$$

where $\int_B(\cdot)$ projects onto form degree $\hat{p}+1$ such that

$$\mathrm{gh}(\mathbf{S}) = 0 \;, \quad \mathbf{S}_{\mathrm{bulk}}|_{\mathbf{X}=X,\mathbf{P}=P} \;=\; S^{\mathrm{cl}}_{\mathrm{bulk}}$$

As in the classical case, $\delta_{m{arepsilon}} {f S}_{
m bulk} \equiv \int_{B} d{f K}_{m{arepsilon}}$ with

$$\mathsf{K}_{\boldsymbol{\varepsilon}} \;=\; (-1)^{\hat{\boldsymbol{\rho}}(\alpha+1)} \boldsymbol{\eta}_{\alpha} \mathsf{R}^{\alpha} + \left((\overrightarrow{\mathsf{P}} - 1) \overrightarrow{\boldsymbol{\epsilon}} + \overrightarrow{\mathsf{P}} \overrightarrow{\boldsymbol{\eta}} \right) \mathcal{H} \;.$$

Thus S_{bulk} is globally-defined in fiber-bundle type geometries where • gauge transition parameters t^{α} obey

$$(\overrightarrow{\mathbf{P}} - 1)\overrightarrow{\mathbf{t}}\mathcal{H} \equiv 0$$

fields and gauge parameters obey Dirichlet boundary conditions

$$|\eta_{lpha}|_{\partial B} = 0, \qquad \mathbf{P}_{lpha}|_{\partial B} = 0$$

AKSZ formalism: III. Classical master equation

• Ultra-local super-functionals $\mathbf{F} := F(\mathbf{X}, \mathbf{P})$ idem F' obey

$$\left(\int_{B} \mathbf{P}_{\alpha} d\mathbf{X}^{\alpha}, \mathbf{F}\right) \equiv d\mathbf{F}, \quad \left(\int_{B} \mathbf{F}, \mathbf{F}'\right) \equiv \left\{F, F'\right\}_{\text{P.B.}}\Big|_{(X, P) \to (\mathbf{X}, \mathbf{P})}$$

It follows that

$$(\mathbf{S}_{\text{bulk}}, \mathbf{S}_{\text{bulk}}) = (-1)^{\hat{p}} \int_{B} d(\mathbf{R}^{\alpha} \mathbf{P}_{\alpha} - 2\mathbf{L}) = 0$$

where the former equality follows from the structure equation $\{\mathcal{H}, \mathcal{H}\}_{P.B.} \equiv 0$, while the latter follows from $\mathbf{P}_{a}|_{aB} = 0$ and $\mathcal{H}_{B-a} = 0$ which imply that boundary terms cancel

•
$$A_{\alpha|\partial B} = 0$$
 and $A_{P_{\alpha=0}} = 0$ which imply that boundary terms can
• $\delta_t L \equiv K_t \equiv 0$ and

$$\begin{split} \delta_{\mathbf{t}} \mathbf{P}_{\alpha} &= -(-1)^{\alpha} \overrightarrow{\mathbf{t}} \partial_{\alpha} \mathcal{H} , \quad \delta_{\mathbf{t}} \mathbf{R}^{\alpha} = (-1)^{\hat{\rho}(\alpha+1)} \overrightarrow{\mathbf{R}}_{X} \overrightarrow{\mathbf{t}} \partial^{\alpha} \mathcal{H} \\ \text{with } \overrightarrow{\mathbf{R}}_{X} &:= \mathbf{R}^{\alpha} \partial_{\alpha} \text{, which imply that} \\ \delta_{\mathbf{t}} (\mathbf{R}^{\alpha} \mathbf{P}_{\alpha}) &\equiv \overrightarrow{\mathbf{R}}_{X} \overrightarrow{\mathbf{t}} (\overrightarrow{\mathbf{P}} - 1) \mathcal{H} \equiv 0 , \end{split}$$

such that contributions from chart boundaries cancel.

• If $\mathbf{L} = L(X, P; dX, dP)$ is an ultra-local superfunctional then

4

$$\Delta \int_B {f L} \equiv 0$$
 .

• In particular, it follows that

$$\Delta {f S}_{
m bulk}~\equiv~0$$
 .

- $\bullet \, \rightsquigarrow \,$ Existence of a BRST current and hence a BRST operator
- → Suitable (perturbatively defined) correlation functions yield homotopy-associative operator algebras A_∞[p̂] (with *n*-ary products led by Π_(n))

AKSZ formalism: V. Deformed action

- BRST cohomology at $\mathrm{gh}=0$ consists of classical observables $\mathcal{O}.$
- Super-field formalism lead to off-shell extensions

$$\widehat{\mathbf{O}} := \mathcal{O}[\mathbf{X}, \mathbf{P}] + \int_{\Sigma} (\mathbf{R}^{\alpha} \mathbf{L}_{\alpha} + \mathbf{R}_{\alpha} \mathbf{L}^{\alpha}) \equiv \mathbf{O} + s \left(\int_{\Sigma} (\mathbf{X}^{\alpha} \mathbf{L}_{\alpha} + \mathbf{P}_{\alpha} \mathbf{L}^{\alpha}) \right) ,$$

where it is assumed that

$$s\mathbf{L}_{lpha} = \mathbf{0} = s\mathbf{L}^{lpha}$$
 .

• Assuming also $(\widehat{\mathbf{O}}^r, \widehat{\mathbf{O}}^r) \equiv 0$, one has a total quantum master action

$$\mathbf{S}_{ ext{tot}} := \mathbf{S}_{ ext{bulk}} + \sum_{i} \mu_i \widehat{\mathbf{O}}^i$$
 .

• Compatibility between boundary conditions off-shell (classical master equation) and on-shell (classical variational principle) yields

$$\mathbf{S}_{ ext{tot}} = \mathbf{S}_{ ext{bulk}} + \sum_{i} \mu_i \int_{\mathbf{\Sigma}_i} \mathbf{V}^i , \quad \mathbf{V}^i := \mathcal{V}^i(\mathbf{X}, d\mathbf{X}) .$$

4D HSGRA: I. Classical action

- Fields live on correspondence space $C = B \times T$ where
 - B is a universal noncommutative base manifold
 - ► *T* is a noncommutative twistor space (supporting central elements)
- Bulk action

$$S_{\text{bulk}}^{\text{cl}} = \int_{C} \left[U \star DB + V \star \left(F + \mathcal{F}(B; J) + \widetilde{\mathcal{F}}(U; J) \right) \right] ,$$

$$DB := dB + [A, B]_{\star} , \quad F := dA + A \star A ,$$

- graded-cyclic trace operation \int_C non-degenerate on subspace of $\Omega(C)$ such that "zero-modes" \leftrightarrow fiber coordinates
- $\dim(B) \equiv 2n + 1$ $(\hat{p} = 2n + 4) \rightsquigarrow$ form degrees

$$A = A_{[1]} + A_{[3]} + \dots + A_{[2n-1]}, \qquad B = B_{[0]} + B_{[2]} + \dots + B_{[2n-2]},$$
$$U = U_{[2]} + U_{[4]} + \dots + U_{[2n]}, \qquad V = V_{[1]} + V_{[3]} + \dots + V_{[2n-1]}.$$

4D HSGRA: II. Structure equation

General variation

$$\delta S^{\rm cl}_{\rm bulk} = \int_C \delta Z^i \star \mathcal{R}^j \mathcal{M}_{ij} + \int_C d \left(U \star \delta B - V \star \delta A \right) ,$$

where \mathcal{M}_{ij} is a constant non-degenerate matrix and

$$\mathcal{R}^{A} = F + \mathcal{F} + \widetilde{\mathcal{F}} , \qquad \mathcal{R}^{B} = DB + (V\partial_{U}) \star \widetilde{\mathcal{F}} ,$$

$$\mathcal{R}^{U} = DU - (V\partial_{B}) \star \mathcal{F} , \qquad \mathcal{R}^{V} = DV + [B, U]_{\star} .$$

• On-shell Cartan integrability for

bilinear Q-structure : $\mathcal{F} = B \star J$, $J = J_{[2]} + J_{[4]}$, bilinear P-structure : $\widetilde{\mathcal{F}} = U \star J'$, $J' = J'_{[2]} + J'_{[4]}$,

• *N.B.* Exist more general cases of which some are of interest for 3D HSGRAs

4D HSGRA: III. Gauge invariance

 On-shell Cartan gauge transformations remain symmetries off shell modulo boundary terms, viz.

$$\delta_{\epsilon,\eta} S^{
m cl}_{
m bulk} \;\equiv\; \int_{\mathcal{C}} d {\cal K}_{\eta} \;,$$

$$\mathcal{K}_{\eta} := \eta^U \star DB + \eta^V \star (F + \mathcal{F} + (1 - U\partial_U) \star \widetilde{\mathcal{F}}) \;.$$

• Gauge transitions with parameters (t^A, t^B) whose action on (η^U, η^V) reads

$$\delta_t \eta^U = -[t^A, \eta^U] - (t^B \partial_B) \star (\eta^V \partial_B) \mathcal{F}, \quad \delta_t \eta^V = -[t^A, \eta^V] + \{\eta^U, t^B\}$$

 $\rightsquigarrow \delta_t K_\eta = 0$, *i.e.* the contributions to $\delta_{\epsilon,\eta} S_{\text{bulk}}^{\text{cl}}$ from interior chart boundaries cancel.

• At the boundaries of C i.e. of B one imposes

 $\eta_{\alpha}|_{\partial B} = 0$, $P_{\alpha}|_{\partial B} = 0$.

4D HSGRA: IV. Fiber-bundle compatibility conditions

• The compatibility conditions on $\{t^A, t^B\}$ read as follows:

$$\overrightarrow{\mathcal{R}}\star[\overrightarrow{t},\overrightarrow{\epsilon}]_\star\star\mathcal{Q}^i\ =\ 0\qquad$$
 for all $i,\ \overrightarrow{\mathcal{R}}$ and $\overrightarrow{\epsilon}$,

c.f. the commutative case where $(t^{\alpha}\partial_{\alpha})\partial_{\beta}\partial_{\gamma}Q^{\delta} \equiv 0$.

- Conditions on t^A hold for all \mathcal{F} .
- Those for t^B hold only if \mathcal{F} is at most bi-linear.
- Thus, if \mathcal{F} is at least tri-linear then t^B -transitions must be discarded.

• *-functional differentiation defined naturally via

$$\delta F[X,P] \equiv F[X+\delta X,P+\delta P] =: \int_{\mathcal{M}} (\delta X^{\alpha} \star \delta_{\alpha} F + \delta P_{\alpha} \star \delta^{\alpha} F)$$

- *N.B.* The *-functional derivatives act as differentials on ultra-local functionals and cyclic derivatives on local functionals.
- ~ non-commutative generalization of the Dirac delta function (which in a certain sense is less singular than the commuting ditto).
- BV gauge-fixing procedure \rightsquigarrow BV Laplacian given by double *-functional derivatives.

1

HSGRA: VI. AKSZ master action for 4D HSGRA

AKSZ master action

$$\mathbf{S} = S_{\text{bulk}}^{\text{cl}}[\mathbf{A},\mathbf{B};\mathbf{U},\mathbf{V}]\Big|^{\langle \mathbf{0}\rangle} \equiv \int_{C} \mathbf{L}\Big|^{\langle \mathbf{0}\rangle} ,$$

$$\mathsf{L} = \mathsf{U} \star \mathsf{D}\mathsf{B} + \mathsf{V} \star \left(\mathsf{F} + \mathcal{F}(\mathsf{B}; J^r) + \widetilde{\mathcal{F}}(\mathsf{U}; J^r)\right) \ .$$

• Using $(S, X^{\alpha}) \equiv R^{\alpha} := dX^{\alpha} + Q^{\alpha}$ with $Q^{\alpha} := Q^{\alpha}(A, B; U, V)$ idem P_{α} , one has

$$(\mathbf{S},\mathbf{S}) \equiv -\int_{\mathcal{C}} d\left(\mathbf{U}\star\mathbf{DB}+\mathbf{V}\star\left(\mathbf{F}+\mathcal{F}(\mathbf{B};J)+(1-\mathbf{U}\partial_{\mathbf{U}})\star\widetilde{\mathcal{F}}(\mathbf{U};J)\right)\right)$$

i.e. the natural generalization of the noncommutative result, viz.

$$(\mathbf{S},\mathbf{S}) \equiv (-1)^{\hat{p}} \int_{C} d\left[(\mathbf{R}^{lpha} \star \mathbf{P}_{lpha} - 2\mathbf{L} \right] .$$

The classical BV master equation is thus obeyed provided that

$$\mathbf{P}_{\boldsymbol{\alpha}}|_{\partial B} = \mathbf{0} ,$$

and that gauge transitions between charts act as follows:

$$\begin{split} \delta_{\mathbf{t}} \mathbf{A} &= \mathbf{D} \mathbf{t}^{A} - (\mathbf{t}^{B} \partial_{B}) \star \mathcal{F} ,\\ \delta_{\mathbf{t}} \mathbf{B} &= \mathbf{D} \mathbf{t}^{B} - [\mathbf{t}^{A}, B]_{\star} ,\\ \delta_{\mathbf{t}} \mathbf{U} &= -[\mathbf{t}^{A}, \mathbf{U}]_{\star} + (\mathbf{t}^{B} \partial_{B}) \star (\mathbf{V} \partial_{B}) \star \mathcal{F} ,\\ \delta_{\mathbf{t}} \mathbf{V} &= -[\mathbf{t}^{A}, \mathbf{V}]_{\star} - [\mathbf{t}^{B}, \mathbf{U}]_{\star} ,\end{split}$$

with parameters $(\mathbf{t}^A, \mathbf{t}^B)$ obeying the natural super-field extension of the fiber-bundle compatibility conditions.

Conclusions

Aspects of quantizing 4D HS fields using higher-dimensional PSMs:

- Bulk Lagrangian contains two types of couplings:
 - Q-structures providing the correct classical limit
 - Generalized Poisson structures providing quantum corrections
- Fiber-bundle-like geometries arise for generalized Poisson structures obeying additional compatibility conditions.
- We have also found a number of topological vertex operators that can be inserted on submanifolds as to yield on-shell actions.
- Main frontiers at this point:
 - Existence of topological vertex-operator four-form that yields holographic correlators coinciding with the O(N) vector model.
 - Existence of more general NCPSMs applicable to 3D HSGRAs and how to make these models globally defined (need to go beyond fiber-bundle-type geometries)
 - Generalization to quasi-free differential algebras of homotopy-associative type.

Ρ.	Sundell	(UMons)
----	---------	---------