Short Strings and Structure of Quantum

$A d S_{5} \times S^{5}$ Spectrum

Arkady Tseytlin

R. Roiban, AT, arXiv:0906.4294, arXiv:1102.1209
M. Beccaria, S. Giombi, G. Macorini, R. Roiban, AT, arXiv:1203.5710
M. Beccaria, AT, arXiv:1205.3656

Maximally symmetric case of gauge-string duality: planar $\mathcal{N}=4$ super Yang-Mills \leftrightarrow free $A d S_{5} \times S^{5}$ superstring closed string states on $R \times S^{1} \leftrightarrow$ gauge-inv. SYM states on $R \times S^{3}$ marginal str. vertex ops on $R^{2} \leftrightarrow$ conf. primary SYM ops on R^{4}
correlators of $A d S_{5} \times S^{5}$ string vertex operators

- analogs of S-matrix elements in flat 10d space are dual to correlators of conformal operators of planar $\mathcal{N}=4$ SYM In particular, relation of 2-point functions means that spectrum of $A d S_{5} \times S^{5}$ string energies \leftrightarrow spectrum of dimensions of SYM primary operators

Then spectrum of $\mathcal{N}=4$ SYM dimensions $\Delta(\lambda)$ should be described by $2 \mathrm{~d} A d S_{5} \times S^{5}$ superstring sigma :
integrability in 4 d has 2 d origin

Integrability:

allows "in principle" to solve the problem of spectrum enormous progress in the last 10 years
Some key inputs:

- SYM action + perturbation theory $(\lambda \ll 1)$
- $A d S_{5} \times S^{5}$ GS superstring action $+\alpha^{\prime}$-expansion $(\sqrt{\lambda} \gg 1)$
- classical integrability of $A d S_{5} \times S^{5} \mathrm{GS}$ action
- perturbative integrability of SYM spectral problem:
(1-loop, 2-loop, ...) dilatation operator = spin chain Hamiltonian
[Minahan, Zarembo; Beisert, Staudacher, ...]
- guidance from large-charge limits: BMN, GKP, FT

Assume integrability extends to all orders on both sides

- construct interpolating Bethe ansatz guided by general principles, symmetries and data from both weak+strong coupling
- check consistency of its predictions
I. Spectrum of "long" operators / "semiclassical" string states determined by Asymptotic Bethe Ansatz (2002-2007)
- its final [Beisert-Eden-Staudacher] form found by intricate superposition of data from $\lambda \ll 1$ gauge theory (spin chain, BA,...) and perturbative string theory (classical and 1-loop phase, BMN), symmetries (S-matrix), assumption of exact integrability
- consequences checked against available gauge and string data Key example: cusp anomalous dimension - dim of $\operatorname{Tr}\left(\Phi D^{S} \Phi\right)$

$$
\begin{aligned}
& \Delta=S+2+f(\lambda) \ln S+\ldots, \quad S \gg 1 \\
& f_{\lambda \ll 1}=\frac{\lambda}{2 \pi^{2}}\left[1-\frac{\lambda}{48}+\frac{11 \lambda^{2}}{45 \cdot 2^{8}}-\left(\frac{73}{630}+\frac{4 \zeta_{3}^{2}}{\pi^{6}}\right) \frac{\lambda^{3}}{2^{7}}+\ldots\right] \\
& f_{\lambda \gg 1}=\frac{\sqrt{\lambda}}{\pi}\left[1-\frac{3 \ln 2}{\sqrt{\lambda}}-\frac{K}{(\sqrt{\lambda})^{2}}-\ldots\right]+O\left(e^{-\frac{1}{4} \sqrt{\lambda}}\right)
\end{aligned}
$$

$$
\zeta_{k}=\zeta(k)=\sum_{n=1}^{\infty} \frac{1}{n^{k}}, \quad K=\beta(2)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}=0.915 \ldots
$$

from 2-loop string sigma-model integrals [Roiban,Tirziu,AT] exact integral eq. [Basso, Korchemsky, Kotanski]: any order term
II. Spectrum of "short" operators = quantum string states

Thermodynamic Bethe Ansatz (2005-...)

- reconstructed from ABA using solely methods/intuition of 2-d integrable QFT, i.e. inspired by string-theory side
- highly non-trivial construction - lack of 2-d Lorentz invariance in standard BMN-vacuum-adapted 1.c. gauge
- in few cases ABA "improved" by Luscher corrections is enough:

4- and 5-loop Konishi dim, 4-loop dim. of twist 2 operator

- complicated set of integral equations in need of simplification;
so far predictions extracted only numerically starting from weak coupling and interpolating to larger λ
- need more data to check predictions at $\lambda \ll 1$ and $\lambda \gg 1$
- against perturbative gauge-theory and string-theory data

Key example:
dimension $\Delta=2+\gamma(\lambda)$ of Konishi operator $\operatorname{Tr}\left(\bar{\Phi}_{i} \Phi_{i}\right)$

$$
\begin{aligned}
& \gamma(\lambda \ll 1)=\frac{12 \lambda}{(4 \pi)^{2}}\left[1-\frac{4 \lambda}{(4 \pi)^{2}}+\frac{28 \lambda^{2}}{(4 \pi)^{4}}\right. \\
& \quad-\left(208-48 \zeta_{3}+120 \zeta_{5}\right) \frac{\lambda^{3}}{(4 \pi)^{6}} \\
&+8(158+\left.\left.72 \zeta_{3}-54 \zeta_{3}^{2}-90 \zeta_{5}+315 \zeta_{7}\right) \frac{\lambda^{4}}{(4 \pi)^{8}}+\ldots\right]
\end{aligned}
$$

5-loop result first found using integrability [Banjok,Janik] confirmed by more standard methods [Velizhanin; Eden et al 12]

Suppose one can sum up (convergent) $\lambda \ll 1$ expansion and then re-expand at $\lambda \gg 1$

What one should expect to get for $\gamma(\lambda \gg 1)$?

Duality to string theory predicts the structure of strong-coupling expansion:
leading term - near-flat-space expansion for fixed quant. numbers [Gubser, Klebanov, Polyakov 98]

$$
\Delta=\sqrt{2 N \sqrt{\lambda}}+\ldots
$$

Subleading terms: $\alpha^{\prime}=\frac{1}{\sqrt{\lambda}}$ expansion of 2 d anom. dimensions of corresponding vertex operators [Roiban, AT 09] ($N=2$)

$$
\begin{aligned}
\gamma(\lambda \gg 1) & =2 \sqrt[4]{\lambda}+\frac{b_{1}}{\sqrt[4]{\lambda}}+\frac{b_{2}}{(\sqrt[4]{\lambda})^{3}}+\frac{b_{3}}{(\sqrt[4]{\lambda})^{5 / 2}}+\ldots \\
& =2 \sqrt[4]{\lambda}\left[1+\frac{b_{1}}{2 \sqrt{\lambda}}+\frac{b_{2}}{2(\sqrt{\lambda})^{2}}+\frac{b_{3}}{2(\sqrt{\lambda})^{3}}+\ldots\right]
\end{aligned}
$$

Values of b_{k} from string theory? From TBA?

Dimensions of "short" SYM operators
$=$ energies of quantum string states
find leading $\alpha^{\prime}=\frac{1}{\sqrt{\lambda}}$ corrections to energy of
"lightest" massive string states on first massive string level dual to operators in Konishi multiplet in SYM theory

- compare with predictions of TBA approach
important to check integrability-based approach which involves subtle assumptions directly against perturbative string sigma model

TBA results:
start at weak coupling for $\operatorname{sl}(2)$ Konishi descendant $\operatorname{Tr}\left(\Phi D^{2} \Phi\right)$ use TBA to find $\Delta(\lambda)$ numerically; match to expected form of strong-coupling expansion to extract b_{k} [Gromov, Kazakov, Vieira 09; Frolov 10, 12]

$$
b_{1} \approx 1.988, \quad b_{2} \approx-3.07
$$

Compare to string theory:
One can find b_{k} using semiclassical "short string" expansion [Roiban, AT 09, 11; Gromov, Serban, Shenderovich, Volin 11]

$$
b_{1}=2, \quad b_{2}=a-3 \zeta_{3}
$$

rational a was found [Gromov, Valatka 11] using "2-loop" coefficient in exact slope function $E^{2}=h(\lambda) S$ [Basso 11]

$$
b_{2}=\frac{1}{2}-3 \zeta_{3} \approx-3.106 \ldots
$$

Remarkable agreement with TBA - check of quantum integrability

Konishi state

Figure 1: Plot from Gromov, Kazakov, Vieira [09]

Recent work on string side: [BGMRT 12; BT12]

- highest transcendentality terms in b_{k} are $\sim \zeta_{2 k-1}$ and have 1-loop origin, e.g.,

$$
b_{3}=a_{1}+a_{2} \zeta_{3}+a_{3} \zeta_{5}
$$

rational a_{1} receives contribution from 3 loops; a_{2} from 2-loops, etc.; $b_{4} \sim \zeta_{7}+\ldots$, etc.

- supermultiplet structure: universality of coefficients in E for string states with spins in different $A d S_{5} \times S^{5}$ directions: dual operators from Konishi multiplet have same energy (up to constant shift depending on position in the multiplet)
- states on leading Regge trajectory:
general structure of dependence of energy on string tension $\sqrt{\lambda}$, string level (spin) and S^{5} orbital momentum J

Some open questions:

- Analytic form of strong-coupling expansion from TBA?
- only ζ_{k} coefficients in $\Delta(\lambda)$ in both weak and strong coupling expansions or other transcendental constants appear? (cf. cusp anomalous dimension)
[2-loop string computation may shed light on this ...]
- Asymptotic form of strong coupling expansion:
$e^{-k \sqrt{\lambda}}$ corrections to cusp dimension absent for short strings / operators like Konishi? [no such corrections in slope function; no massless S^{5} modes]
- Energies of other quantum states: general structure of spectrum?

Konishi multiplet:

long multiplet related to singlet $[0,0,0]_{(0,0)}$ by susy
$\left[J_{2}-J_{3}, J_{1}-J_{2}, J_{2}+J_{3}\right]_{\left(s_{L}, s_{R}\right)}$
$s_{L, R}=\frac{1}{2}\left(S_{1} \pm S_{2}\right)$
$S O(6)\left(J_{1}, J_{2}, J_{3}\right)$ and $S O(4)\left(S_{1}, S_{2}\right)$ labels
of $S O(2,4) \times S O(6)$ global symmetry
$\Delta=\Delta_{0}+\gamma(\lambda), \quad \Delta_{0}=2, \frac{5}{2}, 3, \ldots, 10$
same anomalous dimension γ for all members
singlet eigen-state of anom. dim. matrix with lowest eigenvalue

Examples of gauge-theory operators in Konishi multiplet:

$$
\begin{aligned}
& {[0,0,0]_{(0,0)}:} \\
& \operatorname{Tr}\left(\bar{\Phi}_{i} \Phi_{i}\right), \quad i=1,2,3, \quad \Delta_{0}=2 \\
& {[2,0,2]_{(0,0)}:} \\
& \operatorname{Tr}\left(\left[\Phi_{1}, \Phi_{2}\right]^{2}\right) \text { in } s u(2) \text { sector, } \\
& \\
& {[0,2,0]_{(1,1)}:} \\
& \operatorname{Tr}\left(\Phi_{1} D^{2} \Phi_{1}\right) \text { in } s l(2) \text { sector, }
\end{aligned}
$$

Δ_{0}	
2	$[0,0,0]_{(0,0)}$
$\frac{5}{2}$	$[0,0,1]_{\left(0, \frac{1}{2}\right)}+[1,0,0]_{\left(\frac{1}{2}, 0\right)}$
3	$[0,0,0]_{\left(\frac{1}{2}, \frac{1}{2}\right)}+[0,0,2]_{(0,0)}+[0,1,0]_{(0,1)+(1,0)}+[1,0,1]_{\left(\frac{1}{2}, \frac{1}{2}\right)}+[2,0,0]_{(0,0)}$
$\frac{7}{2}$	$[0,0,1]_{\left(\frac{1}{2}, 0\right)+\left(\frac{1}{2}, 1\right)+\left(\frac{3}{2}, 0\right)}+[0,1,1]_{\left(0, \frac{1}{2}\right)+\left(1, \frac{1}{2}\right)}+[1,0,0]_{\left(0, \frac{1}{2}\right)+\left(0, \frac{3}{2}\right)+\left(1, \frac{1}{2}\right)}+[1,0,2]_{\left(\frac{1}{2}, 0\right)}$
	$+[1,1,0]_{\left(\frac{1}{2}, 0\right)+\left(\frac{1}{2}, 1\right)}+[2,0,1]_{\left(0, \frac{1}{2}\right)}$
4	$[0,0,0]_{(0,0)+(0,2)+(1,1)+(2,0)}+[0,0,2]_{\left(\frac{1}{2}, \frac{1}{2}\right)+\left(\frac{3}{2}, \frac{1}{2}\right)}+[0,1,0]_{2\left(\frac{1}{2}, \frac{1}{2}\right)+\left(\frac{1}{2}, \frac{3}{2}\right)+\left(\frac{3}{2}, \frac{1}{2}\right)}+[2,0,2]_{(0,0)}$
	$+[0,1,2]_{(1,0)}+[0,2,0]_{2(0,0)+(1,1)}+[1,0,1]_{(0,0)+2(0,1)+2(1,0)+(1,1)}+[1,1,1]_{2\left(\frac{1}{2}, \frac{1}{2}\right)}+[2,0,0]_{\left(\frac{1}{2}\right)}$
6	$[0,0,0]_{3(0,0)+3(1,1)+(2,2)}+[0,0,2]_{3\left(\frac{1}{2}, \frac{1}{2}\right)+\left(\frac{1}{2}, \frac{3}{2}\right)+\left(\frac{3}{2}, \frac{1}{2}\right)+\left(\frac{3}{2}, \frac{3}{2}\right)}+[0,1,0]_{4\left(\frac{1}{2}, \frac{1}{2}\right)+2\left(\frac{1}{2}, \frac{3}{2}\right)+2\left(\frac{3}{2}, \frac{1}{2}\right)+}$
	$+[0,1,2]_{(0,0)+2(0,1)+2(1,0)+(1,1)}+[0,2,0]_{3(0,0)+(0,1)+(0,2)+(1,0)+3(1,1)+(2,0)}+[0,2,2]_{\left(\frac{1}{2}, \frac{1}{2}\right)}$
	$+[0,3,0]_{2\left(\frac{1}{2}, \frac{1}{2}\right)}+[0,4,0]_{(0,0)}+[1,0,1]_{(0,0)+3(0,1)+3(1,0)+4(1,1)+(1,2)+(2,1)}+[1,0,3]_{\left(\frac{1}{2}, \frac{1}{2}\right)}+[0$,
	$+[1,1,1]_{4\left(\frac{1}{2}, \frac{1}{2}\right)+2\left(\frac{1}{2}, \frac{3}{2}\right)+2\left(\frac{3}{2}, \frac{1}{2}\right)}+[1,2,1]_{(0,0)+(0,1)+(1,0)}+[2,0,0]_{3\left(\frac{1}{2}, \frac{1}{2}\right)+\left(\frac{1}{2}, \frac{3}{2}\right)+\left(\frac{3}{2}, \frac{1}{2}\right)+\left(\frac{3}{2}, \frac{3}{2}\right)}$
	$+[2,0,2]_{(0,0)+(1,1)}+[2,1,0]_{(0,0)+2(0,1)+2(1,0)+(1,1)}+[2,2,0]_{\left(\frac{1}{2}, \frac{1}{2}\right)}+[3,0,1]_{\left(\frac{1}{2}, \frac{1}{2}\right)}+[4,0,0]_{(0,0}$
$\frac{17}{2}$	$[0,0,1]_{\left(0, \frac{1}{2}\right)+\left(0, \frac{3}{2}\right)+\left(1, \frac{1}{2}\right)}+[0,1,1]_{\left(\frac{1}{2}, 0\right)+\left(\frac{1}{2}, 1\right)}+[1,0,0]_{\left(\frac{1}{2}, 0\right)+\left(\frac{1}{2}, 1\right)+\left(\frac{3}{2}, 0\right)}+[1,0,2]_{\left(0, \frac{1}{2}\right)}$
	$+[1,1,0]_{\left(0, \frac{1}{2}\right)+\left(1, \frac{1}{2}\right)}+[2,0,1]_{\left(\frac{1}{2}, 0\right)}$
9	$[0,0,0]_{\left(\frac{1}{2}, \frac{1}{2}\right)}+[0,0,2]_{(0,0)}+[0,1,0]_{(0,1)+(1,0)}+[1,0,1]_{\left(\frac{1}{2}, \frac{1}{2}\right)}+[2,0,0]_{(0,0)}$
$\frac{19}{2}$	$[0,0,1]_{\left(\frac{1}{2}, 0\right)}+[1,0,0]_{\left(0, \frac{1}{2}\right)}$
10	$[0,0,0]_{(0,0)}$

Table 1: Long Konishi multiplet (part of it)

Comparison between gauge and string theory states:

- $\lambda \ll 1$: gauge-theory operators built out of free fields, canonical dim. Δ_{0} determines operators that can mix
- $\lambda \gg 1$: in near-flat-space expansion string states built out of free oscillators, level N determines states that can mix
(i) relate states with same global charges
(ii) assume direct interpolation (no "level crossing") for states with same quantum numbers as λ changes from small to large values
- Konishi operator dual to
"lightest" among massive $A d S_{5} \times S^{5}$ string states
- large $\sqrt{\lambda}=\frac{\mathrm{R}^{2}}{\alpha^{\prime}}$:
"short" strings probe near-flat limit of $A d S_{5} \times S^{5}$
- members of supermultiplet:
strings with spins/oscillators in different $\operatorname{AdS} S_{5} \times S^{5}$ directions

String spectrum in $A d S_{5} \times S^{5}$:
long multiplets of $\operatorname{PSU}(2,2 \mid 4)$
highest weight states:

$$
\begin{aligned}
& {\left[J_{2}-J_{3}, J_{1}-J_{2}, J_{2}+J_{3}\right]_{\left(s_{1}, s_{2}\right)}} \\
& \quad s_{1,2}=\frac{1}{2}\left(S_{1} \pm S_{2}\right)
\end{aligned}
$$

Flat-space string spectrum can be re-organized in multiplets of $S O(2,4) \times S O(6) \subset P S U(2,2 \mid 4)$
[Bianchi, Morales, Samtleben 03; Beisert et al 03]
$S O(4) \times S O(5) \subset S O(9)$ rep.
lifted to $S O(4) \times S O(6)$ rep. of $S O(2,4) \times S O(6)$

Konishi multiplet:
$\mathcal{K}=(1+Q+Q \wedge Q+\ldots)[0,0,0]_{(0,0)}$
determines the "floor" of 1 -st excited string level $\sum_{J=0}^{\infty}[0, J, 0]_{(0,0)} \times \mathcal{K}$

Spins: S_{1}, S_{2} in $A d S_{5} ;\left(J_{1}, J_{2}\right)$ in S^{5} orbital momentum $J=J_{3}$ in S^{5}

Examples:

- folded string with spin S_{1} and momentum J :

$$
S_{1}=J=2 \quad \rightarrow \quad[0,2,0]_{(1,1)}, \quad \Delta_{0}=4
$$

- folded string with spin J_{1} and momentum J :
$J_{1}=J=2 \quad \rightarrow \quad[2,0,2]_{(0,0)}, \quad \Delta_{0}=4$
- circular string with spins $J_{1}=J_{2}$ and momentum J :
$J_{1}=J_{2}=1, J=2 \rightarrow[0,1,2]_{(0,0)}, \quad \Delta_{0}=6$
- circular string with spins $S_{1}=S_{2}$ and momentum J :
$S_{1}=S_{2}=1, J=2 \quad \rightarrow \quad[0,2,0]_{(0,1)}, \quad \Delta_{0}=6$
- circular string with spins $S_{1}=J_{1}$ and momentum J :
$S_{1}=J_{1}=1, J=2 \quad \rightarrow \quad[1,1,1]_{\left(\frac{1}{2}, \frac{1}{2}\right)}, \quad \Delta_{0}=6$

Direct approaches to computation of quantum string energies:
(i) vertex operator approach:
use $A d S_{5} \times S^{5}$ string sigma model perturbation theory to find leading terms in 2 d anomalous dimension of corresponding vertex operators and impose marginality condition
[Polyakov 01; AT 03]
(ii) "light-cone" gauge approach:
start with AdS light-cone gauge $A d S_{5} \times S^{5}$ string action and compute corrections to energy of corresponding flat-space oscillator string state [Metsaev, Thorn, AT 00]
both approaches yet to be developed in detail; here will be guided by vertex operator approach but use indirect "semiclassical" approach:
"short string" limit of semiclassical expansion
[Tirziu, AT 08; Roiban, AT 09, 11]

Massive string states in curved background:

$$
\begin{aligned}
& \int d^{D} x \sqrt{g}\left[\Phi_{\ldots}\left(-D^{2}+m^{2}+X\right) \Phi_{\ldots}+\ldots\right] \\
& m^{2}=\frac{2 N}{\alpha^{\prime}}, \quad X=R_{\ldots .}+O\left(\alpha^{\prime}\right)
\end{aligned}
$$

case of $A d S_{5} \times S^{5}$ background

$$
R_{m n}-\frac{1}{96}\left(F_{5} F_{5}\right)_{m n}=0, \quad R=0, \quad F_{5}^{2}=0
$$

Find leading-order term in X...
leading α^{\prime} correction to scalar string state mass is $0(?!)$

$$
\begin{aligned}
& {\left[-D^{2}+m^{2}+O\left(\frac{1}{\sqrt{\lambda}}\right)\right] \Phi=0} \\
& \Delta=2+\sqrt{2 N+4+O\left(\frac{1}{\sqrt{\lambda}}\right)} \\
& \Delta_{N=2}=2+2 \sqrt[4]{\lambda}\left[1+\frac{1}{2 \sqrt{\lambda}}+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)\right]
\end{aligned}
$$

Too naive: $S O(6)$ scalar, not 10d scalar, mixing,... What is found for non-singlet (susy descendant) Konishi states?

Vertex operator approach

calculate 2 d anomalous dimensions from "first principles"superstring theory in $\operatorname{AdS} S_{5} \times S^{5}$:

$$
\begin{gathered}
I=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma\left[\partial Y_{p} \bar{\partial} Y^{p}+\partial X_{k} \bar{\partial} X_{k}+\text { fermions }\right] \\
-Y_{0}^{2}-Y_{5}^{2}+Y_{1}^{2}+\ldots+Y_{4}^{2}=-1, \quad X_{1}^{2}+\ldots+X_{6}^{2}=1
\end{gathered}
$$

construct marginal $(1,1)$ operators in terms of Y_{p} and X_{k} e.g. vertex operator for dilaton (in NSR framework)

$$
\begin{aligned}
\mathrm{V}_{J} & =\left(Y_{+}\right)^{-\Delta}\left(X_{x}\right)^{J}\left[\partial Y_{p} \bar{\partial} Y^{p}+\partial X_{k} \bar{\partial} X_{k}+\text { fermions }\right] \\
Y_{+} & \equiv Y_{0}+i Y_{5}=z+z^{-1} x_{m} x_{m} \sim e^{i t} \\
X_{x} & \equiv X_{1}+i X_{2} \sim e^{i \varphi} \\
2 & =2+\frac{1}{2 \sqrt{\lambda}}[\Delta(\Delta-4)-J(J+4)]+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)
\end{aligned}
$$

i.e. $\Delta=4+J$ (BPS)

Vertex operators $=$ eigenstates of 2 d anomalous dimension matrix particular linear combinations like

$$
V=f_{k_{1} \ldots k_{\ell} m_{1} \ldots m_{2 s}} X_{k_{1} \ldots X_{k_{\ell}}} \partial X_{m_{1}} \bar{\partial} X_{m_{2}} \ldots \partial X_{m_{2 s-1}} \bar{\partial} X_{m_{2 s}}
$$

their renormalization studied in $O(n)$ sigma model [Wegner 90] simplest case: $f_{k_{1} \ldots k_{\ell}} X_{k_{1}} \ldots X_{k_{\ell}}$ with traceless $f_{k_{1} \ldots k_{\ell}}$
h.-w. rep. $V_{J}=\left(X_{x}\right)^{J}, \quad \widehat{\gamma}=2-\frac{1}{2 \sqrt{\lambda}} J(J+4)+\ldots$
$A d S_{5} \times S^{5}$: candidates for operators on leading Regge trajectory:

$$
\begin{array}{ll}
\mathrm{V}_{J}=\left(Y_{+}\right)^{-\Delta}\left(\partial X_{x} \bar{\partial} X_{x}\right)^{J / 2}, & X_{x} \equiv X_{1}+i X_{2} \\
\mathrm{~V}_{S}=\left(Y_{+}\right)^{-\Delta}\left(\partial Y_{u} \bar{\partial} Y_{u}\right)^{S / 2}, & Y_{u} \equiv Y_{1}+i Y_{2}
\end{array}
$$

+ fermionic terms
$+\alpha^{\prime} \sim \frac{1}{\sqrt{\lambda}}$ terms from diagonalization of anom. dim. op.
- mixing with ops with same charges and dimension

Example of higher-level scalar/singlet operator:

$$
Y_{+}^{-\Delta}\left[\left(\partial X_{k} \bar{\partial} X_{k}\right)^{r}+\ldots\right], \quad N=2(r-1)
$$

Marginality condition:
[cf. Kravtsov, Lerner, Yudson 89; Castilla, Chakravarty 96]

$$
\begin{aligned}
0=2(r-1) & -\frac{1}{2 \sqrt{\lambda}}[\Delta(\Delta-4)+2 r(r-1)] \\
& -\frac{1}{(\sqrt{\lambda})^{2}}\left[\frac{2}{3} r(r-1)\left(r-\frac{7}{2}\right)+4 r\right]+\ldots
\end{aligned}
$$

$r=1$: ground level- fermions should make $r=1$ zero of $\widehat{\gamma}$
$r=2: \quad$ excited level - analog of singlet Konishi state $\Delta_{0}=2$

$$
\begin{aligned}
& \Delta(\Delta-4)=4 \sqrt{\lambda}-4+O\left(\frac{1}{\sqrt{\lambda}}\right) \\
& \Delta-\Delta_{0}=2 \sqrt[4]{\lambda}\left[1+0 \times \frac{1}{\sqrt{\lambda}}+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right)\right]
\end{aligned}
$$

fermionic contributions change subleading coefficients

How to take fermionic contributions into account?
(i) compute energies of semiclassical string states in $\frac{1}{\sqrt{\lambda}}$ expansion using full $A d S_{5} \times S^{5}$ Green-Schwarz action
(ii) compare to structure of $E=\Delta$ expected from marginality condition
(iii) determine unknown coefficients in E expanded in $\frac{1}{\sqrt{\lambda}}$

General structure of dimension/energy $\Delta=E$
marginality condition - condition on quantum numbers Q_{i}
$Q=\left(E(\lambda), S_{1}, S_{2} ; J_{1}, J_{2}, J_{3} ; \ldots\right) ; \quad N=\sum_{i} a_{i} Q_{i}=$ level

$$
\begin{aligned}
& 0=2 N+\frac{1}{\sqrt{\lambda}}\left(\sum_{i, j} c_{i j} Q_{i} Q_{j}+\sum_{i} c_{i} Q_{i}\right) \\
& +\frac{1}{(\sqrt{\lambda})^{2}}\left(\sum_{i, j, k} c_{i j k} Q_{i} Q_{j} Q_{k}+\sum_{i, j} c_{i j}^{\prime} Q_{i} Q_{j}+\sum_{i} c_{i}^{\prime} Q_{i}\right)+\ldots
\end{aligned}
$$

States on "leading Regge trajectory": (max spin for given E) marginality condition: $Q=(E, J ; N), N=$ spin

$$
\begin{aligned}
0 & =2 N+\frac{1}{\sqrt{\lambda}}\left(-E^{2}+J^{2}+n_{02} N^{2}+n_{11} N\right) \\
& +\frac{1}{(\sqrt{\lambda})^{2}}\left(n_{01} J^{2} N+n_{03} N^{3}+n_{12} N^{2}+n_{21} N\right)+\ldots
\end{aligned}
$$

solution for E^{2} takes form [Roiban, AT 09, 11; BGMRT 12]

$$
\begin{aligned}
E^{2}= & 2 \sqrt{\lambda} N+J^{2}+n_{02} N^{2}+n_{11} N \\
& +\frac{1}{\sqrt{\lambda}}\left(n_{01} J^{2} N+n_{03} N^{3}+n_{12} N^{2}+n_{21} N\right) \\
+ & \frac{1}{(\sqrt{\lambda})^{2}}\left(\widetilde{n}_{11} J^{2} N+\widetilde{n}_{02} J^{2} N^{2}+n_{04} N^{4}+n_{13} N^{3}+n_{22} N^{2}+n_{31} N\right)+\ldots
\end{aligned}
$$

Expanding in large $\sqrt{\lambda}$ for fixed N, J

$$
\begin{aligned}
& E=\sqrt{2 \sqrt{\lambda} N}\left[1+\frac{A_{1}}{\sqrt{\lambda}}+\frac{A_{2}}{(\sqrt{\lambda})^{2}}+O\left(\frac{1}{(\sqrt{\lambda})^{3}}\right)\right] \\
& A_{1}=\frac{1}{4 N} J^{2}+\frac{1}{4}\left(n_{02} N+n_{11}\right) \\
& A_{2}=-\frac{1}{2} A_{1}^{2}+\frac{1}{4}\left(n_{01} J^{2}+n_{03} N^{2}+n_{12} N+n_{21}\right)
\end{aligned}
$$

Gives strong-coupling dimension of dual SYM operator

States on 1-st excited superstring level: $N=2$
Konishi multiplet states: $N=2, J=2$

$$
\begin{aligned}
& E=\sqrt[4]{\lambda}\left[2+\frac{b_{1}}{\sqrt{\lambda}}+\frac{b_{2}}{(\sqrt{\lambda})^{2}}+O\left(\frac{1}{(\sqrt{\lambda})^{3}}\right)\right] \\
& b_{1}=1+n_{02}+\frac{1}{2} n_{11} \\
& b_{2}=-4 b_{1}^{2}+2 n_{01}+2 n_{03}+n_{12}+\frac{1}{2} n_{21}
\end{aligned}
$$

coefficients $n_{k m}=$? - use semiclassical "short string" expansion:

- start with solitonic string carrying same charges as vertex operator representing particular quantum string state - perform semiclassical expansion: $\sqrt{\lambda} \gg 1$
for fixed classical parameters $\mathcal{N}=\frac{1}{\sqrt{\lambda}} N, \quad \mathcal{J}=\frac{1}{\sqrt{\lambda}} J$
- expand E in small values of \mathcal{N}, \mathcal{J}
- re-interpret the resulting E in terms of N, J : get $n_{k m}$

Key point: $\quad \operatorname{limit} \mathcal{N}=\frac{N}{\sqrt{\lambda}} \rightarrow 0, \quad \mathcal{J}=\frac{J}{\sqrt{\lambda}} \rightarrow 0$ corresponds to $\sqrt{\lambda} \gg 1$ for fixed values of quantum charges N, J

Digression: Slope function

Semicl. expansion of E^{2} organized as expansion in small \mathcal{N} or N

$$
\begin{aligned}
& E^{2}=J^{2}+h_{1}(\lambda, J) N+h_{2}(\lambda, J) N^{2}+h_{3}(\lambda, J) N^{3}+\ldots \\
& h_{1}=2 \sqrt{\lambda}+n_{11}+\frac{n_{21}}{\sqrt{\lambda}}+\frac{n_{31}}{(\sqrt{\lambda})^{2}}+\ldots+J^{2}\left(\frac{n_{01}}{\sqrt{\lambda}}+\frac{\widetilde{n}_{11}}{(\sqrt{\lambda})^{2}}+\ldots\right)+(1 .)
\end{aligned}
$$

$h_{2}=n_{02}+\frac{n_{12}}{\sqrt{\lambda}}+\ldots, \quad h_{3}=\frac{n_{03}}{\sqrt{\lambda}}+\ldots$
exact "slope" h_{1} for $\operatorname{sl}(2)$ sector operator $\operatorname{Tr}\left(D^{S} \Phi^{J}\right)$
dual to $A d S_{5}$ folded spinning string $(N=S)$
from BA (I_{J} - modif. Bessel of 1st type) [Basso 11,12;Gromov 12]

$$
\begin{aligned}
h_{1}(\lambda, J) & =2 J+2 \sqrt{\lambda} \frac{I_{J+1}(\sqrt{\lambda})}{I_{J}(\sqrt{\lambda})} \\
= & 2 \sqrt{\lambda} \sqrt{1+\mathcal{J}^{2}}-\frac{1}{1+\mathcal{J}^{2}}-\frac{\frac{1}{4}-\mathcal{J}^{2}}{\sqrt{\lambda}\left(1+\mathcal{J}^{2}\right)^{5 / 2}}+\ldots \\
= & 2 \sqrt{\lambda+J^{2}}-\frac{\lambda}{\lambda+J^{2}}-\frac{\lambda\left(\frac{1}{4} \lambda-J^{2}\right)}{\left(\lambda+J^{2}\right)^{5 / 2}}+\ldots
\end{aligned}
$$

h_{1} : does not depend on wrappings or dressing phase corrections [h_{1} from direct summation of 4d or 2d graphs or localization ?] h_{1} in large J expansion:

$$
h_{1}=2 J+\sum_{n=1}^{\infty} \frac{c_{n}(\lambda)}{J^{n}}
$$

$c_{n}=a_{1} \lambda^{k}+\ldots+a_{k} \lambda+a_{k+1}-$ same finite polynomials for
$\lambda \ll 1, J \gg 1$ and $\sqrt{\lambda} \gg 1, \mathcal{J}=\frac{J}{\sqrt{\lambda}} \gg 1$
same coefficients "seen" in opposite string and gauge expansions:
an extension of known "non-renormalization" relations
[Beisert, Minahan, Staudacher, Zarembo; Frolov, AT03;...]

Slope function in su(2) sector [Beccaria, AT 12; Gromov 12]
state in su(2) sector $\operatorname{Tr}\left(Z^{J} \Phi^{J^{\prime}}\right)$ dual to folded string in S^{5}
Relation between folded string in $\operatorname{AdS}_{5}(\mathcal{E}, \mathcal{S} ; \mathcal{J})$ and in $S^{5}:\left(\mathcal{E} ; \mathcal{J}^{\prime}, \mathcal{J}\right)$ analytic continuation [Beisert,Frolov,Staudacher,AT 03]
$\mathcal{E} \rightarrow-\mathcal{J}, \quad \mathcal{J} \rightarrow-\mathcal{E}, \quad \mathcal{J}^{\prime} \rightarrow \mathcal{S}, \quad \sqrt{\lambda} \rightarrow-\sqrt{\lambda}$
$\mathrm{su}(2)$ slope function \widetilde{h}_{1} is then related to $\mathrm{sl}(2)$ one

$$
\begin{aligned}
& E^{2}=J^{2}+\widetilde{h}_{1}(J, \lambda) J^{\prime}+\ldots, \quad \widetilde{h}_{1}(J, \lambda)=-h_{1}(-J,-\sqrt{\lambda}) \\
& \widetilde{h}_{1}(\lambda, J)=2 J+2 \sqrt{\lambda} \frac{K_{J-1}(\sqrt{\lambda})}{K_{J}(\sqrt{\lambda})}
\end{aligned}
$$

$K_{J}=$ modified Bessel function of 2nd type
regular $\lambda \gg 1$ expansion but singularities at $\lambda \ll 1$ at fixed J
$h_{1}(J, \lambda)=2 J+\frac{\lambda}{J+1}-\frac{\lambda^{2}}{4(J+1)^{2}(J+2)}+\frac{\lambda^{3}}{8(J+1)^{3}(J+2)(J+3)}+\cdots$,
$\widetilde{h}_{1}(J, \lambda)=2 J+\frac{\lambda}{J-1}-\frac{\lambda^{2}}{4(J-1)^{2}(J-2)}+\frac{\lambda^{3}}{8(J-1)^{3}(J-2)(J-3)}+\cdots$.
resummation reflected in $\lambda^{n} \ln ^{k} \lambda$ terms

$$
\begin{array}{ll}
J=2: & \widetilde{h}_{1}=4+\lambda+\frac{1}{4} \lambda^{2}\left(\ln \frac{\lambda}{4}+2 \gamma_{\mathrm{E}}\right)+\ldots \\
J=3: & \widetilde{h}_{1}=6+\frac{\lambda}{2}-\frac{\lambda^{2}}{16}-\frac{\lambda^{3}}{123}\left(2 \ln \frac{\lambda}{4}+4 \gamma_{\mathrm{E}}-1\right)+\ldots, \\
J=4: & \widetilde{h}_{1}=8+\frac{\lambda}{3}-\frac{\lambda^{2}}{72}+\frac{\lambda^{3}}{432}+\frac{\lambda^{4}}{20736}\left(9 \ln \frac{\lambda}{4}+18 \gamma_{\mathrm{E}}-8\right)+\ldots, \\
J=5: & \widetilde{h}_{1}=10+\frac{\lambda}{4}-\frac{\lambda^{2}}{192}+\frac{\lambda^{3}}{3072}-\frac{7 \lambda^{4}}{147456}-\frac{\lambda^{5}}{2359296}\left(16 \ln \frac{\lambda}{4}+32 \gamma_{\mathrm{E}}-19\right)
\end{array}
$$

meaning of $\lambda^{J} \ln \lambda$ terms ?

- defn of slope function at finite J is non-trivial:
requires analytic continuation to small values of spin
in $\mathfrak{s u}(2)$ sector J^{\prime} is bounded by the fixed length of spin chain $L=J^{\prime}+J$ $\mathfrak{s u}(2)$ slope is defined only in the large J limit?
\bullet in contrast to $\mathfrak{s l}(2)$ slope, the $\mathfrak{s u}(2)$ slope may (?) receive wrapping contributions which also start at $\left(\lambda^{L}\right)_{J^{\prime} \rightarrow 0} \sim \lambda^{J}$ order starting with a TBA generalization of ABA may (?) lead to cancellation of $\lambda^{J} \ln \lambda$ terms
- may be $\lambda^{J} \ln \lambda$ terms have physical meaning:
non-perturbative terms from resummation of λ^{n} expansion analogous to $\lambda^{n} \ln \lambda+\ldots$ terms appearing in (ladder-diagram) IR-resummed perturbation theory for Wilson loop for $q-\bar{q}$ potential
[Erickson,Semenoff,Szabo,Zarembo 00; Correa,Maldacena,Sever 12]
cusp $<W(\phi, \lambda)>$ is described by an integrable TBA system analogy between expectation value of the cusp Wilson loop
at small ϕ and $\mathfrak{s l}(2)$ slope function h_{1} at $J=1$
suggests that $q-\bar{q}$ potential $(\phi \rightarrow \pi)$ is related to the $\mathfrak{s u}(2)$ slope \widetilde{h}_{1} ?

Back to spectrum problem:

To find E for quantum states one need coefficients in higher "slopes" h_{2}, h_{3}, \ldots which already depend on wrapping corrections

Strategy: consider examples of "small" semiclassical string states corresponding to quantum string states with angular momentum J and few oscillator (spin-carrying) modes excited

- start with classical string solutions in flat space representing states on leading Regge trajectory
- find the corresponding solutions in $A d S_{5} \times S^{5}$
- find 1-loop correction to their energy E
- expand E in $\mathcal{N}=\frac{N}{\sqrt{\lambda}} \rightarrow 0$ - interpolate result to finite N
- find the coefficients $n_{k m}$
- check universality of E for $N=2$ (implied by susy)

Examples studied: folded strings with $S_{1}=J=2$; with $J_{1}=J=2$; circular strings with $J_{1}=J_{2}=1, J=2$; with $S_{1}=S_{2}=1, J=2$; with $S_{1}=J_{1}=1, J=2$

Results: for several states on leading Regge trajectory

$$
\begin{aligned}
E^{2}= & 2 \sqrt{\lambda} N+J^{2}+n_{02} N^{2}+n_{11} N \\
& +\frac{1}{\sqrt{\lambda}}\left(n_{01} J^{2} N+n_{03} N^{3}+n_{12} N^{2}+n_{21} N\right) \\
+ & \frac{1}{(\sqrt{\lambda})^{2}}\left(\widetilde{n}_{11} J^{2} N+\widetilde{n}_{02} J^{2} N^{2}+n_{04} N^{4}+n_{13} N^{3}+n_{22} N^{2}+n_{31} N\right) \\
+ & \frac{1}{(\sqrt{\lambda})^{3}}\left(\widetilde{n}_{01} J^{4} N+\widetilde{n}_{21} J^{2} N+\widetilde{n}_{12} J^{2} N^{2}+n_{05} N^{5}+\ldots\right)+\ldots
\end{aligned}
$$

- $n_{01}=1, \widetilde{n}_{01}=-\frac{1}{4}, \ldots$ from near-BMN expansion $(J \ll \sqrt{\lambda})$
$E^{2}=J^{2}+2 N \sqrt{\lambda+J^{2}}+\ldots=J^{2}+N\left(2 \sqrt{\lambda}+\frac{J^{2}}{\sqrt{\lambda}}+\ldots\right)$
- "tree-level" coeffs $n_{02}, n_{03}, n_{04}, \ldots$ are all rational
- leading 1-loop n_{11} is rational [Roiban, AT 09; Gromov et al 11]
- $\widetilde{n}_{11}=-n_{11}$, i.e. in general [BGMRT 12]

$$
\begin{aligned}
& h_{1}=2 \sqrt{\lambda} \sqrt{1+\mathcal{J}^{2}}+\frac{n_{11}}{1+\mathcal{J}^{2}}+\frac{1}{\sqrt{\lambda}}\left(n_{21}+\widetilde{n}_{21} \mathcal{J}^{2}+\ldots\right)+\ldots \\
& h_{2}=\frac{n_{02}+\mathcal{J}^{2}}{1+\mathcal{J}^{2}}+\frac{1}{\sqrt{\lambda}}\left(n_{12}+\widetilde{n}_{12} \mathcal{J}^{2}+\ldots\right)+\ldots \\
& -\quad n_{12}=n_{12}^{\prime}-3 \zeta_{3}, \quad n_{12}^{\prime}=-\frac{3}{8}-2 n_{03} \text { is rational }
\end{aligned}
$$

[Tirziu, AT 08; Roiban, AT 09; Gromov-Valatka 11]
ζ_{3} term is universal for states on leading Regge trajectory

- $\widetilde{n}_{12}=\widetilde{n}_{12}^{\prime}+3 \zeta_{3}+\frac{15}{4} \zeta_{5}, \quad \widetilde{n}_{12}^{\prime}$ rational
- $n_{1 k}$ contains universal $\zeta_{2 k-1}$ (universal UV $n \gg 1$ asymptotics)
e.g. $n_{13}=\widetilde{n}_{12}^{\prime}+\widetilde{n}_{1 k}^{\prime \prime} \zeta_{3}+\frac{15}{4} \zeta_{5}$
- leading 2-loop coefficient n_{21} is universal: $n_{21}=-\frac{1}{4}$
for folded string state [Basso]; evidence from universality [BGMRT] of the Konishi state energy $(J=N=2)$

$$
\begin{aligned}
& E_{N=J=2}=\sqrt[4]{\lambda}\left[2+\frac{b_{1}}{\sqrt{\lambda}}+\frac{b_{2}}{(\sqrt{\lambda})^{2}}+\frac{b_{3}}{(\sqrt{\lambda})^{3}}+\ldots\right] \\
& b_{1}=1+n_{02}+\frac{1}{2} n_{11}=2 \\
& b_{2}=-\frac{1}{4} b_{1}^{2}+2 n_{01}+2 n_{03}+n_{12}+\frac{1}{2} n_{21}=\frac{1}{2}-3 \zeta_{3} \\
& b_{3}=a_{1}+a_{2} \zeta_{3}+\frac{15}{2} \zeta_{5}, \quad \ldots
\end{aligned}
$$

b_{1}, b_{2} : match TBA predictions interpolated to $\lambda \gg 1$

- need 2-loop string sigma model computation to confirm universality of n_{21}, fix $n_{22} \rightarrow$ determine b_{3}

Conclusions

- progress in understanding of $A d S_{5} \times S^{5}$ string spectrum or spectrum of conformal $\mathcal{N}=4$ SYM operators
- agreement with numerical results from TBA:
non-trivial check of quantum string integrability
- prediction of transcendental structure of leading coefficients: reproduce them by an analytic solution of TBA at strong coupling?
- evidence of universality of some coefficients in strong coupling expansion of dimensions of states on leading Regge trajectory
- exact results for leading "slope" functions
- need systematic study of quantum string theory in $A d S_{5} \times S^{5}$ in near-flat-space expansion
- still need first-principles solution for spectrum of $A d S_{5} \times S^{5}$ superstring $=$ spectrum of $\mathcal{N}=4 \mathrm{SYM}$ based on integrability
... it now seems within reach...

