The ultraviolet behaviour $\mathcal{N} = 4$ and $\mathcal{N} = 8$ supergravities

Pierre Vanhove

Ginzburg Conference on Physics May 28, 2012 based on [arXiv:1202.3692] with Piotr Tourkine and [arXiv:1105.6087] with Guillaume Bossard, Paul Howe, Kelly Stelle $\mathcal{N}=4$ and $\mathcal{N}=8$ supergravity arises as the low-energy limit of string

String theory provides a consistent ultraviolet finite theory of quantum gravity. One could wonder if one can remove the string massive modes and address the question of ultraviolet behaviour of *pure supergravity*

In this talk we will discuss

- ► the role of supersymmetry in perturbative computation
- ► the role of non-perturbative duality symmetries in string theory

Behavior of supergravity amplitudes

Gravity has a dimensional coupling constant

$$[1/\kappa_{(D)}^2] = \text{mass}^{D-2}$$

An L-loop n-point gravity amplitude in D-dimensions has the dimension

 $[\mathfrak{M}_L^{(D)}] = \mathrm{mass}^{(D-2)L+2}$

Behavior of supergravity amplitudes

Gravity has a dimensional coupling constant

$$[1/\kappa_{(D)}^2] = \text{mass}^{D-2}$$

An L-loop n-point gravity amplitude in D-dimensions has the dimension

 $[\mathfrak{M}_L^{(D)}] = \mathrm{mass}^{(D-2)L+2}$

4-graviton amplitudes factorize an \mathbb{R}^4 term and possibly higher derivatives

$$[\mathfrak{M}_{L}^{(D)}] = \operatorname{mass}^{(D-2)L-6-2\beta_{L}^{N}} \partial^{2\beta_{L}^{N}} \mathfrak{R}^{4}$$

Behavior of supergravity amplitudes

Gravity has a dimensional coupling constant

$$[1/\kappa_{(D)}^2] = \text{mass}^{D-2}$$

An L-loop n-point gravity amplitude in D-dimensions has the dimension

 $[\mathfrak{M}_L^{(D)}] = \mathrm{mass}^{(D-2)L+2}$

4-graviton amplitudes factorize an \mathbb{R}^4 term and possibly higher derivatives

$$[\mathfrak{M}_{L}^{(D)}] = \operatorname{mass}^{(D-2)L-6-2\beta_{L}^{N}} \partial^{2\beta_{L}^{N}} \mathfrak{R}^{4}$$

Critical dimension for UV divergences is

$$D \geqslant D_c = 2 + \frac{6 + 2\beta_L^N}{L}$$

Supersymmetry and UV behaviour

Critical dimension for UV divergence is

$$D \geqslant D_c = 2 + \frac{6 + 2\beta_L^N}{L}$$

Depending on the various implementations of supersymmetry

$$6 \leqslant 6 + 2\beta_L^N \leqslant 18$$

• With a first possible divergence in D = 4 at

• $L \ge 3$: $\beta_L^N = 0$ [Howe, Lindstrom, Stelle '81] • $L \ge 5$: $\beta_L^8 = 2$ [Howe, Stelle '06; Bossard, Howe, Stelle '09] • $L \ge 8$: $\beta_L^8 = 5$ [Kallosh '81] • $L \ge 7$: $\beta_L^8 = 4$ [Vanhove '10; Green, Bjornsson '10] • $L \ge 9$: $\beta_L^8 = 6$ [Green, Russo, Vanhove '06] • $L = \infty$: $\beta_L^8 = L$ [Green, Russo, Vanhove '06]

Non-renormalisation theorems

Supersymmetry implies various non-renormalisation theorems for higher dimension operators.

- Heterotic compactification ($\mathcal{N} = 4$ models)
 - \Re^4 is a $\frac{1}{2}$ -BPS coupling 1-loop exact in perturbation [Bachas, Kiritsis; Bachas, Fabre, Kiritsis, Obers, Vanhove; Tourkine, Vanhove]

► Type II compactifications on a torus (N = 8 models) [Green, Russo, Vanhove; Berkovits]

- \mathcal{R}^4 is $\frac{1}{2}$ -BPS : 1-loop exact
- $\partial^4 \mathcal{R}^4$ is $\frac{1}{4}$ -BPS : 2-loop exact
- $\partial^6 \mathcal{R}^4$ is $\frac{1}{8}$ -BPS : 3-loop exact

These operators are potential UV divergences counter-term to supergravity in various dimensions

How these stringy results allow to conclude about the ultraviolet behaviour of supergravity?

The ultraviolet behaviour of $\mathcal{N} = 8$ supergravity

- $\mathcal{N}=8$ non-renormalisation theorems imply that [Green, Russo, Vanhove]
 - ► 1-loop non-renormalisation of \mathcal{R}^4 : $\beta_L^8 \ge 2$ for $L \ge 2$
 - ► 2-loop non-renormalisation of $\partial^4 \mathcal{R}^4$: $\beta_L^8 \ge 3$ for $L \ge 3$
 - ► 3-loop non-renormalisation of $\partial^6 \mathbb{R}^4$: $\beta_L^8 \ge 4$ for $L \ge 4$

Same critical UV behaviour for $\mathcal{N} = 4$ SYM and $\mathcal{N} = 8$ SUGRA at $1 \leq L \leq 4$ loops

$$[\mathfrak{M}_{4:L}^{(D)}] \sim \Lambda^{(D-4)L-6} \,\partial^{2L} \,\mathcal{R}^4 \qquad 2 \leqslant L \leqslant 4$$

This has been confirmed using various field theory supersymmetry [Bossard, Stelle, Howe], and direct loop computation [Bern, Carrasco, Dixon, Johansson, Roiban], and continuous E₇ arguments [Elvang, Keirmaier, Freedman et al.]

The ultraviolet behaviour of $\mathcal{N} = 8$ supergravity

- Up to an including 4 loops the rule $\beta_L^8 = L$ is satisfied.
- If this rule is true to all order then the theory would have critical UV behaviour and making the N = 8 SUGRA UV finite in D = 4.

$$D_c = 4 + \frac{6}{L}$$

The question is therefore to see a deviation from the $\beta_L^8 = L$ rule At which order $\mathcal{N} = 8$ SUGRA can have a worse UV behaviour of $\mathcal{N} = 4$ SYM?

The ultraviolet behaviour of $\mathcal{N} = 8$ supergravity

In $\mathcal{N} = 8$ the big question is if the $\partial^8 \mathcal{R}^4$ is protected or not

• After 4-loop it is expected a worse UV behaviour than for N = 4 SYM

[Green, Russo, Vanhove], [Vanhove], [Green, Bjornsson]

$$[\mathfrak{M}_{4:L}^{(D)}] \sim \Lambda^{(D-2)L-14} \,\mathfrak{d}^8 \,\mathfrak{R}^4 \qquad \beta_L^8 = 4 \text{ for } L \geqslant 4$$

At five-loop order the 4-point amplitude in

- $\mathcal{N} = 4$ SYM divergences for $5 < 26/5 \leq D$
- $\mathcal{N} = 8$ SUGRA divergences for $24/5 \leq D$
- Would imply a *seven-loop* divergence in D = 4 with counter-term $\partial^8 \mathcal{R}^4$

The candidate counter-term $\partial^8 \mathbb{R}^4$ has dimension 16 and it is tempting to conclude that it is a D-term given by the volume of superspace

$$\partial^8 \mathcal{R}^4 \sim \int d^{32} \theta E(x, \theta)$$

Classical extended supergravity is invariant under continuous duality group : $E_{7,7}(\mathbb{R})/SU(8)$ for $\mathbb{N} = 8$ and $SU(1,1,\mathbb{R})/U(1)$ for $\mathbb{N} = 4$

We can define duality invariant superspace volume

$$d^{4\mathcal{N}}\theta E(x,\theta) = \partial^{2(\mathcal{N}-4)} \mathcal{R}^4 + \cdots$$

For N = 8 this gives the candidate 7-loop counter-term in D = 4: $\partial^8 \mathcal{R}^4$

For $\mathbb{N} = 4$ this gives the candidate 3-loop counter-term in D = 4: \mathbb{R}^4

One could be tempted to conclude that this settles the question since there are obvious D-terms

Classical extended supergravity is invariant under continuous duality group : $E_{7,7}(\mathbb{R})/SU(8)$ for $\mathbb{N} = 8$ and $SU(1, 1, \mathbb{R})/U(1)$ for $\mathbb{N} = 4$

We can define *duality invariant* superspace volume

$$d^{4\mathcal{N}}\theta E(x,\theta) = \partial^{2(\mathcal{N}-4)} \mathcal{R}^4 + \cdots$$

For $\mathcal{N} = 8$ this gives the candidate 7-loop counter-term in D = 4: $\partial^8 \mathcal{R}^4$

For $\mathbb{N} = 4$ this gives the candidate 3-loop counter-term in D = 4: \mathbb{R}^4

Доверяй, но проверяй!

Duality invariant superspace volume

Classical extended supergravity is invariant under continuous duality group : $E_{7,7}(\mathbb{R})/SU(8)$ for $\mathbb{N} = 8$ and $SU(1, 1, \mathbb{R})/U(1)$ for $\mathbb{N} = 4$

We can define *duality invariant* superspace volume

$$\int d^{4\mathcal{N}}\theta E(x,\theta) = \partial^{2(\mathcal{N}-4)} \mathcal{R}^4 + \cdots$$

- For $\mathcal{N} = 8$ this gives the candidate 7-loop counter-term in D = 4: $\partial^8 \mathcal{R}^4$
- For $\mathcal{N} = 4$ this gives the candidate 3-loop counter-term in D = 4: \mathcal{R}^4
- ► Extending to N ≥ 4 a flow equation by [Kuzenko et al.] we showed the vanishing of the duality invariant superspace volume [Bossard, Howe, Stelle, Vanhove]

$$d^{4}xd^{4\mathcal{N}}\theta E(x,\theta)=0, \qquad 4\leqslant \mathcal{N}\leqslant 8$$

Pierre Vanhove (IPhT & IHES)

Harmonic superspace

$$d^4x d^{4\mathcal{N}} \Theta E(x, \Theta) = 0, \qquad 4 \leqslant \mathcal{N} \leqslant 8$$

This does not imply the absence of divergence because using harmonic superspace one can construct *fully supersymmetric and duality invariant counterterm* [Bossard, Howe, Stelle, Vanhove]

► We defined the 1/N harmonic measure (over $4(N-1) \theta_s$) $d\mu_{(N,1,1)}$ for $U(1) \times U(N-2) \times U(1) \setminus U(N)$

$$\int d^4x d^{4\mathcal{N}} \Theta E(x,\theta) \Phi(x,\theta) =: \int d^4x d\mu_{(\mathcal{N},1,1)} (D^1)^2 (\bar{D}_{\mathcal{N}})^2 \Phi$$

1/N Harmonic superspace

With this measure of integration we constructed candidate $\mathcal{N} - 1$ -loop counter-terms in D = 4 [Bossard, Howe, Stelle, Vanhove]

• The $\partial^8 \mathcal{R}^4$ term for $\mathcal{N} = 8$ (χ_{α}^{ijk} are the mass dimension $\frac{1}{2}$ spinor)

$$\int d\mu_{(8,1,1)} \, \bar{\chi}^{1mn} \chi_{8mn} \bar{\chi}^{1pq} \chi_{8pq} \sim \int d^4 x e \left(\partial^8 \, \mathcal{R}^4 + \cdots \right)$$

- Supersymmetric and E₇₍₇₎ invariant because this is expressed in terms of the dim ¹/₂ superfield χ (¹/₂-torsion component)
- The \mathbb{R}^4 term for $\mathbb{N} = 4$

$$\int d\mu_{(4,1,1)} \,\bar{\chi}^{1mn} \chi_{4mn} \bar{\chi}^{1pq} \chi_{4pq} \sim \int d^4 x e \left(\mathfrak{R}^4 + \cdots \right)$$

▶ Supersymmetric and *SU*(1, 1) invariant expression

The special case of $\mathcal{N} = 4$ supergravity

 $\mathcal{N} = 4$ supergravity is special because of the U(1) R-symmetry anomaly [Marcus].

Therefore the SU(1,1) duality symmetry is broken in perturbation and full superspace integrals of functions of the axion-dilaton $\mathcal{S} \in SU(1,1)/U(1)$ are allowed

$$\int d^{16}\theta E(x,\theta) G(\mathbb{S},\bar{\mathbb{S}}) = f(S,\bar{S}) \,\mathbb{R}^4 + \text{susy completion}$$

Only for f = 1 this is a 3-loop UV divergence counter-term in the 4 graviton amplitude.

But f = 1 would violate the \mathbb{R}^4 1-loop non renormalisation theorems derived from string theory

Pierre Vanhove (IPhT & IHES)

 $\mathcal{N} = 4$ supergravity is special because of the U(1) R-symmetry anomaly [Marcus].

Therefore the SU(1,1) duality symmetry is broken in perturbation and full superspace integrals of functions of the axion-dilaton $\mathcal{S} \in SU(1,1)/U(1)$ are allowed

Because of the anomaly canceling term $\Re e \int d^4x h(S, \bar{S}) \operatorname{tr}(R - i * R)^2$ it is tempting to conclude that the \Re^4 will also have a non-trivial dependence on the scalar field *S*

$$\kappa^4_{(4)} \int d^4x f(S,\bar{S}) \,\mathcal{R}^4$$

This would be compatible with the string theory non-renormalisation theorems

The ultraviolet behavior of $\mathcal{N} = 4$ supergravity

► 4 graviton amplitude computations gives that [Tourkine, Vanhove]

$$M_4^{1-loop} \sim \mathcal{R}^4 I_{box}[\ell^4] \quad : \qquad \beta_1^4 = 0$$
$$M_4^{2-loop} \sim \partial^2 \mathcal{R}^4 I_{double-box}[\ell^4] \quad : \qquad \beta_2^4 = 1$$

► 1-loop non-renormalisation of \mathcal{R}^4 : $\beta_L^4 \ge 1$ for $L \ge 2$

First UV divergence in 4D: $L \ge 3 + \beta_L^4 \ge 4 \text{ loops}$

 $\mathcal{N} = 4$ non-renormalisation theorems for \mathcal{R}^4 term $\beta_L^4 = 1$ for $L \ge 2_{|\text{Tourkine}}$, Vanhove] $[\mathfrak{M}^{(D)}] = \max^{(D-2)L-8} \partial^2 \mathcal{R}^4$ for $L \ge 2$

The same result was obtained from direct field theory computation [Bern, Davies, Dennen, Huang] (see [Kallosh] for alternative arguments)

Outlook

- Using string theory we have put constraints on the possible counter-terms for UV divergences of four gravitons amplitudes in N = 4 and N = 8 supergravity
- Using harmonic superspace we have constructed *supersymmetric duality invariant* candidate counter-terms for first possible UV divergence in D = 4
- ► We showed that the \mathbb{R}^4 term satisfies a *non-renormalisation* theorem in $\mathbb{N} = 4$ $\kappa^4_{(4)} \int d^4x f(S) \mathbb{R}^4$
- Where f(S) = tree + 1 loop and no constant piece
- ► Could it be as well that the partial superspace ∂⁸R⁴ in N = 8 has an enhanced protection delaying the UV divergences of N = 8 supergravity beyond 7-loops ? May be till 9 loops ?[Green, Russo, Vanhove]