Holography, Unfolding and Higher-Spin Theories

M.A.Vasiliev

Lebedev Institute, Moscow

Ginzburg conference on physics
Moscow, June 02, 2012

HS theory

Higher derivatives in interactions
A.Bengtsson, I.Bengtsson, Brink (1983), Berends, Burgers, van Dam (1984)

$$
S=S^{2}+S^{3}+\ldots, \quad S^{3}=\sum_{p, q, r}\left(D^{p} \varphi\right)\left(D^{q} \varphi\right)\left(D^{r} \varphi\right) \rho^{p+q+r+\frac{1}{2} d-3}
$$

HS Gauge Theories $(m=0)$:
Fradkin, M.V. (1987)

$$
A d S_{d}: \quad\left[D_{n}, D_{m}\right] \sim \rho^{-2}=\lambda^{2}
$$

AdS / CFT:
$(3 d, m=0) \otimes(3 d, m=0)=\sum_{s=0}^{\infty}(4 d, m=0)$
Flato, Fronsdal (1978);
Sundborg (2001), Sezgin, Sundell $(2002,2003)$, Klebanov, Polyakov (2002),
Giombi, Yin (2009)...

Results

$C F T_{3}$ dual of $A d S_{4}$ HS theory: 3d conformal HS theory

Holography: Unfolding

Plan

Unfolded dynamics and holographic duality
Free massless HS fields in $A d S_{4}$
Conserved currents and massless equations
$A d S_{4}$ HS theory as $3 d$ conformal HS theory
Conclusion

Unfolded dynamics

First-order form of differential equations

$$
\dot{q}^{i}(t)=\varphi^{i}(q(t)) \quad \text { initial values: } \quad q^{i}\left(t_{0}\right)
$$

Unfolded dynamics: multidimensional covariant generalization

$$
\begin{gathered}
\frac{\partial}{\partial t} \rightarrow d, \quad q^{i}(t) \rightarrow W^{\Omega}(x)=d x^{n_{1}} \wedge \ldots \wedge d x^{n_{p}} \\
\mathrm{dW}^{\Omega}(\mathrm{x})=\mathrm{G}^{\Omega}(\mathrm{W}(\mathrm{x})), \quad \mathrm{d}=\mathrm{dx}^{\mathrm{n}} \partial_{\mathrm{n}}
\end{gathered}
$$

$G^{\Omega}(W)$: function of "supercoordinates" W^{Φ}

$$
G^{\Omega}(W)=\sum_{n=1}^{\infty} f^{\Omega}{\Phi_{1} \ldots \Phi_{n}} W^{\Phi_{1}} \wedge \ldots \wedge W^{\Phi_{n}}
$$

$d>1$: Nontrivial compatibility conditions

$$
G^{\Phi}(W) \wedge \frac{\partial G^{\Omega}(W)}{\partial W^{\Phi}} \equiv 0
$$

Any solution: FDA Sullivan (1968); D'Auria and Fre (1982)
The unfolded equation is invariant under the gauge transformation

$$
\delta W^{\Omega}(x)=d \varepsilon^{\Omega}(x)+\varepsilon^{\Phi}(x) \frac{\partial G^{\Omega}(W(x))}{\partial W^{\Phi}(x)},
$$

Vacuum geometry

a Lie algebra. $\omega=\omega^{\alpha} T_{\alpha}: h$ valued 1-form.

$$
G(\omega)=-\omega \wedge \omega \equiv-\frac{1}{2} \omega^{\alpha} \wedge \omega^{\beta}\left[T_{\alpha}, T_{\beta}\right]
$$

the unfolded equation with $W=\omega$ has the zero-curvature form

$$
d \omega+\omega \wedge \omega=0 .
$$

Compatibility condition: Jacobi identity for h.
FDA: usual gauge transformation of the connection ω.

Zero-curvature equations: background geometry in a coordinate independent way.
If h is Poincare or anti-de Sitter algebra it describes Minkowski or $\operatorname{AdS} S_{a}$ space-time

Properties

- General applicability
- Manifest (HS) gauge invariance
- Invariance under diffeomorphisms

Exterior algebra formalism

- Interactions: nonlinear deformation of $G^{\Omega}(W)$
- Local degrees of freedom are in 0-forms $C^{i}\left(x_{0}\right)$ at any $x=x_{0}$ (as $q\left(t_{0}\right)$) infinite dimensional module dual to the space of single-particle states
- Independence of ambient space-time

Geometry is encoded by $G^{\Omega}(W)$

Unfolding and holographic duality

Unfolded formulation unifies various dual versions of the same system.
Duality in the same space-time:
ambiguity in what is chosen to be dynamical or auxiliary fields.

Holographic duality between theories in different dimensions: universal unfolded system admits different space-time interpretations.

Extension of space-time without changing dynamics by letting the differential d and differential forms W to live in a larger space

$$
d=d X^{n} \frac{\partial}{\partial X^{n}} \rightarrow \tilde{d}=d X^{n} \frac{\partial}{\partial X^{n}}+d \widehat{X}^{\hat{n}} \frac{\partial}{\partial \widehat{X}^{\hat{n}}}, \quad d X^{n} W_{n} \rightarrow d X^{n} W_{n}+d \widehat{X}^{\widehat{n}} \hat{W}_{\hat{n}}
$$

$\hat{X}^{\hat{n}}$ are additional coordinates

$$
\tilde{d} W^{\Omega}(X, \hat{X})=G^{\Omega}(W(X, \hat{X}))
$$

Particular space-time interpretation of a universal unfolded system, e.g, whether a system is on-shell or off-shell, depends not only on $G^{\Omega}(W)$ but, in the first place, on space-time M^{d} and chosen vacuum solution $W_{0}(X)$.

Two unfolded systems in different space-times are equivalent (dual) i they have the same unfolded form.

Direct way to establish holographic duality between two theories: unfold both to see whether their unfolded formulations coincide.

Given unfolded system generates a class of holographically dual theories in different dimensions.

Infinite set of spins $s=0,1 / 2,1,3 / 2,2 \ldots$
Fermions require doubling of fields
$\omega^{i i}(y, \bar{y} \mid x), \quad C^{i 1-i}(y, \bar{y} \mid x), \quad i=0,1$,

$$
\begin{aligned}
\bar{\omega}^{i i}(y, \bar{y} \mid x) & =\omega^{i i}(\bar{y}, y \mid x), \quad \bar{C}^{i 1-i}(y, \bar{y} \mid x)=C^{1-i i}(\bar{y}, y \mid x) . \\
A(y, \bar{y} \mid x) & =i \sum_{n, m=0}^{\infty} \frac{1}{n!m!} y_{\alpha_{1}} \ldots y_{\alpha_{n}} \bar{y}_{\dot{\beta}_{1}} \ldots \bar{y}_{\dot{\beta}_{m}} A^{\alpha_{1} \ldots \alpha_{n}}, \dot{\beta}_{1} \ldots \dot{\beta}_{m}(x)
\end{aligned}
$$

The unfolded system for free massless fields is

$$
\begin{aligned}
& \star \quad R_{1}^{i i}(y, \bar{y} \mid x)=\eta \bar{H}^{\dot{\alpha} \dot{\beta}} \frac{\partial^{2}}{\partial \bar{y}^{\dot{\alpha}} \partial \bar{y}^{\dot{\beta}}} C^{1-i i}(0, \bar{y} \mid x)+\bar{\eta} H^{\alpha \beta} \frac{\partial^{2}}{\partial y^{\alpha} \partial y^{\beta}} C^{i 1-i}(y, 0 \mid x) \\
& \star \\
& \tilde{D}_{0} C^{i 1-i}(y, \bar{y} \mid x)=0 \\
& \\
& R_{1}(y, \bar{y} \mid x)=D_{0}^{a d} \omega(y, \bar{y} \mid x) \quad H^{\alpha \beta}=e^{\alpha}{ }_{\dot{\alpha}} \wedge e^{\beta \dot{\alpha}}, \quad \bar{H}^{\dot{\alpha} \dot{\beta}}=e_{\alpha}^{\dot{\alpha}} \wedge e^{\alpha \dot{\beta}}
\end{aligned}
$$

$$
D_{0}^{a d} \omega=D^{L}-\lambda e^{\alpha \dot{\beta}}\left(y_{\alpha} \frac{\partial}{\partial \bar{y}^{\dot{\beta}}}+\frac{\partial}{\partial y^{\alpha}} \bar{y}_{\dot{\beta}}\right), \quad \tilde{D}_{0}=D^{L}+\lambda e^{\alpha \dot{\beta}}\left(y_{\alpha} \bar{y}_{\dot{\beta}}+\frac{\partial^{2}}{\partial y^{\alpha} \partial \bar{y}^{\dot{\beta}}}\right)
$$

$$
D^{L}=d_{x}-\left(\omega^{\alpha \beta} y_{\alpha} \frac{\partial}{\partial y^{\beta}}+\bar{\omega}^{\dot{\alpha} \dot{\beta}} \overline{y_{\dot{\alpha}}} \frac{\partial}{\partial \bar{y}^{\dot{\beta}}}\right) .
$$

Non-Abelian HS algebra

$$
\begin{aligned}
& (f * g)(Y)=\int d S d T f(Y+S) g(Y+T) \exp -i S_{A} T^{A} \\
& {\left[Y_{A}, Y_{B}\right]_{*}=2 i C_{A B}, \quad C_{\alpha \beta}=\epsilon_{\alpha \beta}, \quad C_{\dot{\alpha} \dot{\beta}}=\epsilon_{\dot{\alpha} \dot{\beta}}}
\end{aligned}
$$

Non-Abelian HS curvature

$$
R_{1}(y, \bar{y} \mid x) \rightarrow R(y, \bar{y} \mid x)=d \omega(y, \bar{y} \mid x)+\omega(y, \bar{y} \mid x) * \omega(y, \bar{y} \mid x)
$$

$$
\tilde{D}_{0} C(y, \bar{y} \mid x) \rightarrow \tilde{D} C(y, \bar{y} \mid x)=d C(y, \bar{y} \mid x)+\omega(y, \bar{y} \mid x) * C(y, \bar{y} \mid x)-C(y, \bar{y} \mid x) * \omega(y,-\bar{y} \mid x)
$$

Conformal invariant massless equations in $d=3$

$$
d x^{\alpha \beta}\left(\frac{\partial}{\partial x^{\alpha \beta}} \pm \frac{\partial^{2}}{\partial y^{\alpha} \partial y^{\beta}}\right) C(y \mid x)=0, \quad \alpha, \beta=1,2
$$

Rank r unfolded equations: tensoring of Fock modules Gelfond, MV (2003)

$$
d x^{\alpha \beta}\left(\frac{\partial}{\partial x^{\alpha \beta}}+\eta_{i j} \frac{\partial^{2}}{\partial y_{i}^{\alpha} \partial y_{j}^{\beta}}\right) C(y \mid x)=0, \quad i, j=1, \ldots r .
$$

For diagonal $\eta^{i j}$ higher-rank equations are satisfied by

$$
C\left(y_{i} \mid x\right)=C_{1}\left(y_{1} \mid x\right) C_{2}\left(y_{2} \mid x\right) \ldots C_{r}\left(y_{r} \mid x\right) .
$$

Rank-two equations: conserved currents

$$
\left\{\frac{\partial}{\partial x^{\alpha \beta}}-\frac{\partial^{2}}{\partial y^{(\alpha} \partial u^{\beta)}}\right\} T(u, y \mid x)=0
$$

$T(u, y \mid x)$: generalized stress tensor. Rank-two equation is obeyed by

$$
T(u, y \mid x)=\sum_{i=1}^{N} C_{+i}(y-u \mid x) C_{-i}(u+y \mid x)
$$

Rank-two fields: bilocal fields in the twistor space.

Dynamical currents (primaries)

$$
\begin{gathered}
J(u \mid x)=T(u, 0 \mid x), \quad \tilde{J}(y \mid x)=T(0, y \mid x) \\
J^{\text {asym }}(u, y \mid x)=u_{\alpha} y^{\alpha}\left(\left.\frac{\partial^{2}}{\partial u^{\beta} \partial y_{\beta}} T(u, y \mid x)\right|_{u=y=0}\right)
\end{gathered}
$$

$J(u \mid x)$ generates $3 d$ currents of all integer and half-integer spins

$$
\begin{gathered}
J(u \mid x)=\sum_{2 s=0}^{\infty} u^{\alpha_{1}} \ldots u^{\alpha_{2 s}} J_{\alpha_{1} \ldots \alpha_{2 s}}(x), \quad \widetilde{J}(u \mid x)=\sum_{2 s=0}^{\infty} u^{\alpha_{1}} \ldots u^{\alpha_{2 s}} \widetilde{J}_{\alpha_{1} \ldots \alpha_{2 s}}(x) . \\
J^{a s y m}(u, y \mid x)=u_{\alpha} y^{\alpha} J^{a s y m}(x) \\
\Delta J_{\alpha_{1} \ldots \alpha_{2 s}}(x)=\Delta \tilde{J}_{\alpha_{1} \ldots \alpha_{2 s}}(x)=s+1 \quad \Delta J^{a s y m}(x)=2
\end{gathered}
$$

Differential equations: conventional conservation condition

$$
\frac{\partial}{\partial x^{\alpha \beta}} \frac{\partial^{2}}{\partial u_{\alpha} \partial u_{\beta}} J(u \mid x)=0, \quad \frac{\partial}{\partial x^{\alpha \beta}} \frac{\partial^{2}}{\partial y_{\alpha} \partial y_{\beta}} \widetilde{J}(y \mid x)=0
$$

3d conformal setup in $A d S_{4}$ HS theory

For manifest conformal invariance introduce

$$
y_{\alpha}^{+}=\frac{1}{2}\left(y_{\alpha}-i \bar{y}_{\alpha}\right), \quad y_{\alpha}^{-}=\frac{1}{2}\left(\bar{y}_{\alpha}-i y_{\alpha}\right), \quad\left[y_{\alpha}^{-}, y^{+\beta}\right]_{*}=\delta_{\alpha}^{\beta}
$$

$3 d$ conformal realization of the algebra $s p(4 ; \mathbb{R}) \sim o(3,2)$

$$
\begin{gathered}
L_{\beta}^{\alpha}=y^{+\alpha} y_{\beta}^{-}-\frac{1}{2} \delta_{\beta}^{\alpha} y^{+\gamma} y_{\gamma}^{-}, \quad D=\frac{1}{2} y^{+\alpha} y_{\alpha}^{-} \\
P_{\alpha \beta}=i y_{\alpha}^{-} y_{\beta}^{-}, \quad K^{\alpha \beta}=-i y^{+\alpha} y^{+\beta}
\end{gathered}
$$

Conformal weight of HS gauge fields

$$
\left[D, \omega\left(y^{ \pm} \mid X\right)\right]=\frac{1}{2}\left(y^{+\alpha} \frac{\partial}{\partial y^{+\alpha}}-y_{\alpha}^{-} \frac{\partial}{\partial y_{\alpha}^{-}}\right) \omega\left(y^{ \pm} \mid X\right) .
$$

Pullback $\hat{\omega}\left(y^{ \pm} \mid x\right)$ of $\omega\left(y^{ \pm} \mid x\right)$ to Σ : $3 d$ conformal HS gauge fields
D in the twisted adjoint representation is realized by the second-order operator

$$
\{D, C\}_{*}=\left(y^{+\alpha} y_{\alpha}^{-}-\frac{1}{4} \frac{\partial^{2}}{\partial y^{+\alpha} \partial y_{\alpha}^{-}}\right) C
$$

Fields C inherited from $A d S_{4}$ theory are not manifestly conformal.

Conformal frame: Wick star product

$$
\begin{gathered}
\left(f_{N} \star g_{N}\right)\left(y^{ \pm}\right)=\int \mu\left(u^{ \pm}\right) \exp \left(-u_{\alpha}^{-} u^{+\alpha}\right) f_{N}\left(y^{+}, y^{-}+u^{-}\right) g_{N}\left(y^{+}+u^{+}, y^{-}\right) \\
f_{N}\left(y^{ \pm}\right)=\exp -\frac{1}{2} \epsilon^{\alpha \beta} \frac{\partial^{2}}{\partial y^{-\alpha} \partial y^{+\beta}} f\left(y^{ \pm}\right) \\
\left\{D_{N}, \ldots\right\}_{\star}=\frac{1}{2}\left(y^{+\alpha} \frac{\partial}{\partial y^{+\alpha}}+y^{-\alpha} \frac{\partial}{\partial y^{-\alpha}}\right)+y_{\alpha}^{-} y^{+\alpha}+1 \\
T\left(y^{ \pm} \mid x\right)=\exp -y_{\alpha}^{-} y^{+\alpha} C_{N}\left(y^{ \pm} \mid x\right) \\
\star \quad D_{N}\left(T\left(y^{ \pm}\right)\right)=\frac{1}{2}\left(y^{+\alpha} \frac{\partial}{\partial y^{+\alpha}}+y^{-\alpha} \frac{\partial}{\partial y^{-\alpha}}+2\right) T\left(y^{ \pm}\right)
\end{gathered}
$$

$A d S_{4}$ foliation: $x^{n}=\left(\mathrm{x}^{a}, z\right): \mathrm{x}^{a}$ are coordinates of leafs $(a=0,1,2)$,$z is$ foliation parameter

Poincaré coordinates

$$
\begin{gathered}
W=\frac{i}{z} d \mathbf{x}^{\alpha \beta} y_{\alpha}^{-} y_{\beta}^{-}-\frac{d z}{2 z} y_{\alpha}^{-} y^{+\alpha} \\
e^{\alpha \dot{\alpha}}=\frac{1}{2 z} d x^{\alpha \dot{\alpha}}, \quad \omega^{\alpha \beta}=-\frac{i}{4 z} d \mathbf{x}^{\alpha \beta}, \quad \bar{\omega}^{\dot{\alpha} \dot{\beta}}=\frac{i}{4 z} d \mathbf{x}^{\dot{\alpha} \dot{\beta}} \\
{\left[d_{\mathbf{x}}+\frac{i}{z} d \mathbf{x}^{\alpha \beta}\left(y_{\alpha} \frac{\partial}{\partial y^{\beta}}-\bar{y}_{\alpha} \frac{\partial}{\partial \bar{y}^{\beta}}+y_{\alpha} \bar{y}_{\beta}-\frac{\partial^{2}}{\partial y^{\alpha} \partial \bar{y}^{\beta}}\right)\right] C(y, \bar{y} \mid \mathbf{x}, z)=0}
\end{gathered}
$$

Rescaling y^{α} and $\bar{y}^{\dot{\alpha}}$ via

$$
\begin{gathered}
C(y, \bar{y} \mid \mathbf{x}, z)=z \exp \left(y_{\alpha} \bar{y}^{\alpha}\right) T(w, \bar{w} \mid \mathbf{x}, z) \\
w^{\alpha}=z^{1 / 2} y^{\alpha}, \quad \bar{w}^{\alpha}=z^{1 / 2} \bar{y}^{\alpha}
\end{gathered}
$$

$T(w, \bar{w} \mid \mathbf{x}, z)$ satisfies the $3 d$ conformal invariant current equation

$$
\left[d_{\mathbf{x}}-i d \mathbf{x}^{\alpha \beta} \frac{\partial^{2}}{\partial w^{\alpha} \partial \bar{w}^{\beta}}\right] T(w, \bar{w} \mid \mathbf{x}, z)=0
$$

Setting

$$
\begin{gathered}
W^{j j}\left(y^{ \pm} \mid \mathbf{x}, z\right)=\Omega^{j j}\left(v^{-}, w^{+} \mid \mathbf{x}, z\right) \\
\mathbf{v}^{ \pm}=\mathrm{z}^{-1 / 2} \mathbf{y}^{ \pm}, \quad \mathrm{w}^{ \pm}=\mathrm{z}^{1 / 2} \mathbf{y}^{ \pm}
\end{gathered}
$$

manifest z-dependence disappears

$$
D_{\mathbf{x}} \Omega^{j j}\left(v^{-}, w^{+} \mid \mathbf{x}, z\right)=\left(d_{\mathbf{x}}+2 i d \mathbf{x}^{\alpha \beta} v_{\alpha}^{-} \frac{\partial}{\partial w^{+\beta}}\right) \Omega^{j j}\left(v^{-}, w^{+} \mid \mathbf{x}, z\right)
$$

Using

$$
w_{\alpha}=w_{\alpha}^{+}+i z v_{\alpha}^{-}, \quad \bar{w}_{\alpha}=i w_{\alpha}^{+}+z v_{\alpha}^{-}
$$

in the limit $z \rightarrow 0$ free HS equations take the form

$$
\begin{aligned}
& \star \quad D_{\mathbf{x}} \Omega_{\mathbf{x}}^{j j}\left(v^{-}, w^{+} \mid \mathbf{x}, 0\right)=d \mathbf{x}_{\alpha}^{\gamma} d \mathbf{x}_{\beta \gamma} \frac{\partial^{2}}{\partial w^{+\alpha} \partial w^{+\beta}} \mathcal{T}^{j j}\left(w^{+}, 0 \mid \mathbf{x}, 0\right) \\
& \star \quad\left[d_{\mathbf{x}}-i d \mathbf{x}^{\alpha \beta} \frac{\partial^{2}}{\partial w^{+\alpha} \partial w^{-\beta}}\right] T^{j 1-j}\left(w^{+}, w^{-} \mid \mathbf{x}, 0\right)=0 \\
& \mathcal{T}^{j j}\left(w^{+}, w^{-} \mid \mathbf{x}, 0\right)=\eta T^{j 1-j}\left(w^{+}, w^{-} \mid \mathbf{x}, 0\right)-\bar{\eta} T^{1-j j}\left(-i w^{-}, i w^{+} \mid \mathbf{x}, 0\right)
\end{aligned}
$$

Towards nonlinear 3d conformal HS theory

Conformal HS theory is nonlinear since conformal HS curvatures inherited from the $A d S_{4}$ HS theory are non-Abelian Fradkin, Linetsky (1990)

$$
R_{\mathrm{Xx}}\left(v^{-}, w^{+} \mid \mathbf{x}\right)=d_{\mathbf{x}} \Omega_{\mathbf{x}}\left(v^{-}, w^{+} \mid \mathbf{x}\right)+\Omega_{\mathbf{x}}\left(v^{-}, w^{+} \mid \mathbf{x}\right) \star \Omega_{\mathbf{x}}\left(v^{-}, w^{+} \mid \mathbf{x}\right)
$$

It is important

$$
\left[v_{\alpha}^{-}, w^{+\beta}\right]_{\star}=\delta_{\alpha}^{\beta}
$$

The equation on 0 -forms deforms to nonlinear twisted adjoint representation

$$
d T\left(w^{ \pm} \mid x\right)+\Omega\left(\frac{\partial}{\partial w^{+\beta}}, w_{\alpha}^{+}\right) \circ T\left(w^{ \pm} \mid x\right)-T\left(w^{ \pm} \mid x\right) \circ \Omega\left(-i \eta \frac{\partial}{\partial w^{-\alpha}},-i \eta w^{-} \mid x\right)=O\left(T^{2}\right) .
$$

Matter fields can be added via the Fock module

$$
\left(d+\Omega_{0}\left(v^{-}, w^{+} \mid \mathbf{x}\right)\right) \star C^{i}\left(w^{+} \mid \mathbf{x}\right) \star F=0
$$

Doubling of $A d S$

$z=0$ is smooth point in rescaled variables

Continuation $z \rightarrow-z: A d S$ doubling

Parity automorphism

$$
P(z)=-z
$$

P-even solution: Neumann boundary condition P-odd solution: Dirichlet boundary condition

The unfolded equation

$$
D_{\mathbf{x}} \Omega_{\mathbf{x}}^{j j}\left(v^{-}, w^{+} \mid \mathbf{x}, 0\right)=\mathcal{H}^{\alpha \beta} \frac{\partial^{2}}{\partial w^{+\alpha} \partial w^{+\beta}} \mathcal{T}^{j j}\left(w^{+}, 0 \mid \mathbf{x}, 0\right)
$$

remains free if

$$
\mathcal{T}^{j j}=0 \quad \longrightarrow J^{\text {asym }}=0 \quad \text { or } \quad J^{\text {sym }}=0
$$

depending on whether A-model or B-model is considered. For these cases the model remains free in accordance with the Klebanov-Polyakov Sezgin-Sundell conjecture.

Free models are equivalent to the reductions of the HS theory with respect to P-involution $y \leftrightarrow \bar{y}$ which is possible for the A and B models.

For HS theory with general phase η parameter such reduction is not possible: no realization as a free conformal theory.

Non-Abelian contribution of superconformal HS connections has to be taken into account.

Conclusions

Holographic duality relates theories that have equivalent unfolded formulation: equivalent twistor space description.

Beyond $1 / N$
$A d S_{4}$ HS theory is dual to nonlinear $3 d$ conformal HS theory of $3 d$ currents

Both of holographically dual theories are HS theories of gravity

Holography at any surface is nonlocal

Free boundary theories are dual to truncations of HS theories under P reflection automorphism of z in the doubled $A d S_{4}$

AdS doubling

To do

Nonlinear $3 d$ conformal HS theory

Actions

Correlators
$A d S_{3} / C F T_{2}$ and Gaberdiel-Gopakumar conjecture

